首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melafen stimulating effect on cell growth of cyanobacteria Synechococcus sp. PCC 6301 cultures amounted to 30–45% at 1000 lx illumination. The melafen effect decreased when cell cultures were exposed at the illumination of the saturation range (4000 lx). Growth rate and biomass increase of Anabaena variabilis, as well as the observed melafen stimulating effect, were higher on nitrogen-free medium compared to a nitrogen-containing one by 20–25%. We conclude that melafen activates photosynthetic processes and, probably, stimulates fixation of the atmospheric nitrogen in the cells. Opposite to the stimulating effect of melafen, ions of the heavy metal Cd2+ inhibited both biomass increase and the average number of the cells in the cyanobacteria A. variabilis colonies. The melafen added to the medium together with the Cd2+ ions decreased their negative effect. The other heavy metal ions, Cu2+, inhibited the growth of the cyanobacteria Synechococcus sp. PCC 6301 and green microalgae Chlorella vulgaris but had a stimulation effect on carbohydrate excretion by the cell cultures. Again, the melafen decreased the toxic effect of Cu2+ in this case. We suppose that melafen has an antistress activity at heavy metal ions presence and reduces their toxic effect on growth of phototrophic microorganisms.  相似文献   

2.
Structures which may establish cytoplasmic continuity between adjacent cells of filamentous cyanobacteria have been observed by freeze-fracture electron microscopy. They are visible in the septum region of the plasma membrane as pits on the E-face (EF) and corresponding protrusions on the P-face (PF). Between 100 and 250 of these structures, termed microplasmodesmata, were present between adjacent vegetative cells in all four strains of heterocyst-forming filamentous cyanobacteria, Anabaena cylindrica Lemm, A. variabilis (IUCC B377), A. variabilis Kütz. (ATCC 29413) and Nostoc muscorum, examined. Only 30–40 microplasmodesmata were observed between adjacent cells in two species, Phormidium luridum and Plectonema boryanum, that do not form heterocysts. The results suggest that in species that form heterocysts a greater degree of cytoplasmic continuity is established, presumably to facilitate the exchange of metabolites. In species capable of forming heterocysts, the number of microplasmodesmata per septum between two adjacent vegetative cells remained constant whether the filaments were grown in the presence of NH4 and lacked heteroxysts or under N2-fixing conditions and contained heterocysts. When a vegetative cell differentiates into a heterocyst, about 80% of the existing microplasmodesmata are destroyed as the poles of the cell become constricted into narrow necks leaving smaller areas of contact with the adjacent vegetative cells.  相似文献   

3.
Heterosigma akashiwo shows remarkable ultrastructural changes during the recovery from a late stationary phase (“aged” culture) induced by nutrient depletion. H. akashiwo cells showed different morphological types in “aged” cultures, with an increase in irregular cells and cell fragments. The irregular cells mostly corresponded to an amoeboid shape of the cell. Many of these cells showed chloroplasts with a homogeneous matrix of medium electron density lacking most thylakoids and condensed nucleus, probably as a result of cyst/resting cells germination. In other cells, we observed nuclear blebbing without chromatin condensation and changes in mitochondrion ultrastructure. Some vegetative cells in active phase (“young” culture) were connected to each other, apparently phagocytizing cytoplasmic fragments and intact chloroplasts in the medium. An explanation for the phenomenon may reside in the need of acquiring organic material after nutrient reduction for a faster recovery. On the basis of our observations, we conclude that some ultrastructural features, normally used to distinguish between different species and strains of Raphidophyceae, may be related to different physiological states and should be used with caution for systematic purposes.  相似文献   

4.
We present an improved method for genomic DNA extraction from cyanobacteria by updating the earlier method from our group (Sinha et al. 2001) that does not require lysozyme treatment or sonication to lyse the cells. This method use lysis buffer to lyse the cells and also skips the initial treatments to remove the exopolysaccharides or to break the clumps. To test the efficacy of the method DNA was extracted from the freshwater cyanobacteria Anabaena variabilis PCC 7937, Anabaena sp. PCC 7120, Synechocystis sp. PCC 6803, Synechococcus sp. PCC 6301 and Rivularia sp. HKAR-4 (Accession number: FJ939128). The spectrophotometric and gel electrophoresis analysis revealed high yield and high quality of genomic DNA extracted by this method. Furthermore, the RAPD resulted in the amplification of unidentified genomic regions of various lengths; however, rDNA amplification gave only one band of 1.5 kb in all studied cyanobacteria. Thymine dimer detection study revealed that thymine dimers are induced only by UV-B radiation in A. variabilis PCC 7937 and there is no effect of PAR and UV-A on its genome. Collectively, all these findings put forward the applicability of this method in different studies and purposes.  相似文献   

5.
Cyanobacteria possess thylakoid membranes that differ in their protein composition from the cytoplasmic membrane. To study possible pathways of protein targeting to these membranes, we have investigated whether or not cyanobacteria have a homologue or homologues of the signal recognition particle-like chaperone Ffh. We have amplified a fragment of ffh by polymerase chain reaction and established that ffh is present as a single copy in the genomes of three cyanobacterial species. We have cloned and sequenced ffh from Synechococcus sp. PCC7942 and predict that Ffh functions as a ribonucleoprotein in cyanobacteria and chloroplasts.  相似文献   

6.
New siderophores were isolated and purified from the spent growth medium of the cyanobacteriaSynechococcus sp. PCC 7942 (Anacystis nidulans R2) andAnabaena variabilis ATCC 29413 by solvent extraction and thin-layer chromatography. For each species the siderophore was released into the medium when the cells were grown at low iron concentrations and was not found in the medium of cells grown in iron-sufficient medium. Through a series of biological and chemical tests, combined with spectral analysis, the dihydroxamate nature of each siderophore was confirmed. The siderophores produced bySynechococcus sp. PCC 7942 andA. variabilis had distinct relative molecular masses of 310–313 Da and 520–525 Da, respectively. Neither of the two strains produced Arnow-positive extracellular organics, which indicate the excretion of extracellular catechol-type siderophores.  相似文献   

7.
Summary The short-term accumulation of chromate by the cyanobacteriaAnabaena variabilis andSynechococcus PCC 6301 has been described as consisting of a rapid and relatively low level of biosorption of chromate to the cell walls; no energy-dependent uptake was detected. This biosorption was dependent on chromate concentration and could be described by a Freundlich adsorption isotherm for both cyanobacterial species studied. Decreasing the external pH increased the chromate accumulation by both species. Over a longer time period with growth it was shown thatA. variabilis was capable of reducing chromate (VI) to chromium (III) and then accumulating the chromium (III).Synechococcus PCC 6301 showed no further interaction with chromate concentrations over the same time period after the initial biosorption.  相似文献   

8.
We examined ultrastructural changes of the cell organelles ofArabidopsis stems in response to gamma irradiation. Seedlings treated with 0 to 5 Gy developed normally, while height growth in plants exposed to 50 Gy was significantly inhibited. Based on TEM observations, the chloroplasts were extremely sensitive to such irradiation. In particular, the thylakoids were heavily swollen, some portions of the mitochondria and endoplasmic reticulum were structurally altered, and the plasmalemma had pulled away from the cell wall in places. However, no ultrastructural changes in cell organelles occurred at doses of 0 to 5 Gy.  相似文献   

9.
The diel variability in picophytoplankton cell death was analyzed by quantifying the proportion of dead cyanobacteria Prochlorococcus and Synechococcus cells along several in situ diel cycles in the open Mediterranean Sea. During the diel cycle, total cell abundance varied on average 2.8 ± 0.6 and 2.6 ± 0.4 times for Synechococcus and Prochlorococcus populations, respectively. Increasing percentages of dead cells of Prochlorococcus and Synechococcus were observed during the course of the day reaching the highest values around dusk and decreasing as the night progressed, indicating a clear pattern of diel variation in the cell mortality of both cyanobacteria. Diel cycles of cell division were also monitored. The maximum percentage of dead cells (Max % DC) and the G2 + M phase of the cell division occurred within a period of 2 h for Synechoccoccus and 4.5 h for Prochlorococcus, and the lowest fraction of dead cells occurred at early morning, when the maximum number of cells in G1 phase were also observed. The G1 maximum corresponded with the maximal increase in newly divided cells (minimum % dead cells), and the subsequent exposure of healthy daughter cells to environmental stresses during the day resulted in the progressive increase in dying cells, with the loss of these cells from the population when cell division takes place. The discovery of diel patterns in cell death observed revealed the intense dynamics of picocyanobacterial populations in nature.  相似文献   

10.
We have identified a homologue of 4-deoxygadusol (core of mycosporine-like amino acids) synthesizing gene (ZP_05036788) from Synechococcus sp. PCC 7335 that was found to have additional functionally unknown N-terminal domain similar to homologues from dinoflagellates based on the ClustalW analysis. Phylogenetic analysis revealed that Synechococcus sp. (ZP_05036788) makes a clade together with dinoflagellates and was closest to the Oxyrrhis marina. This study shows for the first time that N-terminal additional sequences that possess upstream plastid targeting sequence in Heterocapsa triquetra and Karlodinium micrum were already evolved in cyanobacteria, and plastid targeting sequence were evolved later in dinoflagellates after divergence from chloroplast lacking Oxyrrhis marina. Thus, MAAs synthesizing genes were transferred from cyanobacteria to dinoflagellates and possibly Synechococcus sp. PCC 7335 acted as a donor during lateral gene transfer event. In addition, we also tried to mutate 4-deoxygadusol synthesizing gene (YP_324358) of Anabaena variabilis PCC 7937 by homologous recombination, however, all approaches to get complete segregation of the mutants from the wild-type were unsuccessful, showing the essentiality of YP_324358 for A. variabilis PCC 7937.  相似文献   

11.
DnaK chaperones participate in essential cellular processes including the assistance of the folding, structural maintenance, trafficking, and degradation of proteins, the control of stress responses, and so on. In contrast to the situation found in most other bacterial groups, the cyanobacteria contain multiple dnaK homolog genes whose cellular roles remain ambiguous. We compared in this work the in vivo chaperone capabilities of the DnaK1 members from the halophyte Aphanothece halophytica and the freshwater species Synechococcus elongatus. The corresponding dnaK1 genes were expressed in Escherichia coli, and the abilities of the encoded chaperones to provide for both general and specific functions conducted by E. coli DnaK were analyzed. Synechococcus DnaK1 was far more effective than A. halophytica DnaK1 in replacing E. coli DnaK in all activities tested in vivo, including changes in cell morphology and downregulation of the heat shock response, prevention of the aggregation of misfolded proteins, and restoration of thermotolerance to dnaK-deficient mutants. Thus, regardless of an extensive sequence similarity and comparable in vitro chaperone capabilities, the two cyanobacterial DnaK1 chaperones functionally differed under in vivo conditions. The overall results reinforce the notion that A. halophytica DnaK1 and Synechococcus DnaK1 evolved different substrate specificity since they separated from a common ancestor.  相似文献   

12.
Several recent studies have mapped out the characters of spermiogenesis within several species of squamates. Many of these data have shown both conserved and possibly apomorphic morphological traits that could be important in future phylogenetic analysis within Reptilia. There, however, has not been a recent study that compares spermiogenesis and its similarities or differences between two species of reptile that reside in the same genus. Thus, the present analysis details the changes to spermiogenesis in Sceloporus variabilis and then compares spermatid morphologies to that of Sceloporus bicanthalis. Many of the morphological changes that the spermatids undergo in these two species are similar or conserved, which is similar to what has been reported in other squamates. There are six main character differences that can be observed during the development of the spermatids between these two sceloporid lizards. They include the presence (S. variabilis) or absence (S. bicanthalis) of a mitochondrial/endoplasmic reticulum complex near the Golgi apparatus during acrosome development, a shallow (S. variabilis) or deep (S. bicanthalis) nuclear indentation that accommodates the acrosomal vesicle, filamentous (S. variabilis) or granular (S. bicanthalis) chromatin condensation, no spiraling (S. variabilis) or spiraling (S. bicanthalis) of chromatin during condensation, absence (S. variabilis) or presence (S. bicanthalis) of the longitudinal manchette microtubules, and the lack of (S. variabilis) or presence (S. bicanthalis) of nuclear lacunae. This is the first study that compares spermiogenic ultrastructural characters between species within the same genus. The significance of the six character differences between two distantly related species within Sceloporus is still unknown, but these data do suggest that spermiogenesis might be a good model to study the hypothesis that spermatid ontogeny is species specific. J. Morphol. 275:258–268, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Lipid Fatty Acid Composition and Thermophilicity of Cyanobacteria   总被引:1,自引:0,他引:1  
An analysis of lipid fatty acid composition in several unicellular and filamentous forms of mesophilic and thermophilic cyanobacteria was performed. At 47°C (the temperature of thermophilic cyanobacteria maintenance in the collection), the unicellular thermophilic Synechococcus strains were devoid of polyenoic acids as distinct from the mesophilic forms of this genus at the temperature of 20°C (the temperature of this cyanobacterial maintenance in the collection). In the thermophilic Synechococcus elongatusIPPAS B-267 strain, a decrease in temperature did not result in the occurrence of C18 polyenoic acids, but the quantitative relationship between the saturated and unsaturated fatty acids (S/U ratio) was decreased twofold. In contrast, the culturing of mesophilic strains at 25–32°C resulted in an increase in the S/U ratio due to an increase in the proportion of the 16:0 acid. In the Synechococcus IPPAS B-434 strain, this treatment resulted in a decrease in the relative content of monoenoic, mainly hexadecenoic, acids. The cyanobacterium Gloeobacter violaceus, which lacks thylakoids, and whose photosystems are formed in a cell membrane, contained polyenoic acids. The filamentous thermophilic cyanobacterium Phormidium laminosum, at the maintenance temperature of 47°C, did contain polyenoic acids, but their proportion was considerably lower than that in the filamentous mesophilic forms, such as Tolypothrix sp. and Spirulina platensis. A relative content of hexadecenoic acids in Ph. laminosum was higher than in the mesophilic forms. A possible role of hexadecenoic acids in the processes of adaptation of cyanobacteria to high temperatures is discussed. A relationship between the characteristics of fatty acid composition fixed by evolution and the changes caused by adaptation to a particular environment is considered.  相似文献   

14.
Mycosporine-like amino acids (MAAs) are a family of more than 20 compounds having absorption maxima between 310 and 362 nm. These compounds are well known for their UV-absorbing/screening role in various organisms and seem to have evolutionary significance. In the present investigation we tested four cyanobacteria, e.g., Anabaena variabilis PCC 7937, Anabaena sp. PCC 7120, Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 6301, for their ability to synthesize MAA and conducted genomic and phylogenetic analysis to identify the possible set of genes that might be involved in the biosynthesis of these compounds. Out of the four investigated species, only A. variabilis PCC 7937 was able to synthesize MAA. Genome mining identified a combination of genes, YP_324358 (predicted DHQ synthase) and YP_324357 (O-methyltransferase), which were present only in A. variabilis PCC 7937 and missing in the other studied cyanobacteria. Phylogenetic analysis revealed that these two genes are transferred from a cyanobacterial donor to dinoflagellates and finally to metazoa by a lateral gene transfer event. All other cyanobacteria, which have these two genes, also had another copy of the DHQ synthase gene. The predicted protein structure for YP_324358 also suggested that this product is different from the chemically characterized DHQ synthase of Aspergillus nidulans contrary to the YP_324879, which was predicted to be similar to the DHQ synthase. The present study provides a first insight into the genes of cyanobacteria involved in MAA biosynthesis and thus widens the field of research for molecular, bioinformatics and phylogenetic analysis of these evolutionary and industrially important compounds. Based on the results we propose that YP_324358 and YP_324357 gene products are involved in the biosynthesis of the common core (deoxygadusol) of all MAAs.  相似文献   

15.
The fine structure of the type species of the genusCyanothece Komárek 1976,C. aeruginosa, is described and compared with the main cytological characteristics of morphologically related members of the generaCyanobium, Cyanobacterium andSynechococcus. Several morphological features, such as cell walls with thick outer layers containing a special type of vesicles, position of thylakoids, keritomy (net-like appearance of protoplast caused by arrangement of thylakoids, net-like nucleoids and/or by tendency to form intrathylakoidal spaces) and a special structure of mucilaginous envelopes were found to be characteristic of this genus, supporting its separate position among coccal cyanoprokaryotes (cyanobacteria, cyanophytes). The taxonomic significance of ultrastructural features in all mentioned genera is discussed.  相似文献   

16.
The effects of Bdellovibrio bacteriovorus (Stolp & Starr) culture supernatants on Phormidium luridum var. olivacea Boresch and Synechococcus sp. were examined by transmission electron microscopy. Both normal (nonheat-treated) and heat-treated bdellovibrio supernatant caused the formation of intrathylakoidal vesicles in P. luridum in 24–48 h. This vesiculation increased until 96–129 h when the P. luridum showed loss of the mucopeptide layer in the cell envelope and subsequently lysed. Similar treatment of Synechococcus sp. with the bdellovibrio supernatants showed a different ultrastructural pattern with the apparent dissolution of many of the photosynthetic membranes in the bluegreen cells. Myelin-like membranous configurations were seen in some of these treated cells. The results suggest that an autolytic mechanism in P. luridum and Synechococcus sp. is stimulated by the bdellovibrio secretions.  相似文献   

17.
Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.  相似文献   

18.
19.
Cyanobacteria are among the most important primary producers on the Earth. However, the evolutionary forces driving cyanobacterial species diversity remain largely enigmatic due to both their distinction from macro‐organisms and an undersampling of sequenced genomes. Thus, we present a new genome of a Synechococcus‐like cyanobacterium from a novel evolutionary lineage. Further, we analyse all existing 16S rRNA sequences and genomes of Synechococcus‐like cyanobacteria. Chronograms showed extremely polyphyletic relationships in Synechococcus, which has not been observed in any other cyanobacteria. Moreover, most Synechococcus lineages bifurcated after the Great Oxidation Event, including the most abundant marine picoplankton lineage. Quantification of horizontal gene transfer among 70 cyanobacterial genomes revealed significant differences among studied genomes. Horizontal gene transfer levels were not correlated with ecology, genome size or phenotype, but were correlated with the age of divergence. All findings were synthetized into a novel model of cyanobacterial evolution, characterized by serial convergence of the features, that is multicellularity and ecology.  相似文献   

20.
Ultrathin sections were studied in 2 strains and 2 samples from the nature of the genusChamaesiphon, representing 4 different species. Thylakoids are distributed mainly on the periphery of the cells, the cell-wall is probably 2-layered, and variable multilayered mucilaginous envelopes are developed around the cells. The cell division starts, as well as in otherCyanophyceae, by the invagination of the cytoplasmic membrane and of cell-wall layers into the protoplast; the mucilaginous envelopes—pseudovaginae—do not participate in this process but they form only the firm sheaths around the cells. The way of reproduction is, therefore, essentially the same as that described in other chroococcal Blue-Green algae (e.g.,Synechococcus), and the main difference is the polarized growth of theChamaesiphon cells. The taxonomical position of chamaesiphonoid algae is not as isolated as it was earlier supposed, the similarity withEntophysalidaceae is evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号