首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pancreatic acinar cells express keratins 8 and 18 (K8/18), which form cytoplasmic filament (CF) and apicolateral filament (ALF) pools. Hepatocyte K8/18 CF provide important protection from environmental stresses, but disruption of acinar cell CF has no significant impact. We asked whether acinar cell ALF are important in providing cytoprotective roles by studying keratin filaments in pancreata of K8- and K18-null mice. K8-null pancreas lacks both keratin pools, but K18-null pancreas lacks only CF. Mouse but not human acinar cells also express apicolateral keratin 19 (K19), which explains the presence of apicolateral keratins in K18-null pancreas. K8- and K18-null pancreata are histologically normal, and their acini respond similarly to stimulated secretion, although K8-null acini viability is reduced. Absence of total filaments (K8-null) or CF (K18-null) does not increase susceptibility to pancreatitis induced by caerulein or a choline-deficient diet. In normal and K18-null acini, K19 is upregulated after caerulein injury and, unexpectedly, forms CF. As in hepatocytes, acinar injury is also associated with keratin hyperphosphorylation. Hence, K19 forms ALF in mouse acinar cells and helps define two distinct ALF and CF pools. On injury, K19 forms CF that revert to ALF after healing. Acinar keratins appear to be dispensable for cytoprotection, in contrast to hepatocyte keratins, despite similar hyperphosphorylation patterns after injury.  相似文献   

3.
Keratin 8 protection of placental barrier function   总被引:2,自引:0,他引:2  
The intermediate filament protein keratin 8 (K8) is critical for the development of most mouse embryos beyond midgestation. We find that 68% of K8-/- embryos, in a sensitive genetic background, are rescued from placental bleeding and subsequent death by cellular complementation with wild-type tetraploid extraembryonic cells. This indicates that the primary defect responsible for K8-/- lethality is trophoblast giant cell layer failure. Furthermore, the genetic absence of maternal but not paternal TNF doubles the number of viable K8-/- embryos. Finally, we show that K8-/- concepti are more sensitive to a TNF-dependent epithelial apoptosis induced by the administration of concanavalin A (ConA) to pregnant mothers. The ConA-induced failure of the trophoblast giant cell barrier results in hematoma formation between the trophoblast giant cell layer and the embryonic yolk sac in a phenocopy of dying K8-deficient concepti in a sensitive genetic background. We conclude the lethality of K8-/- embryos is due to a TNF-sensitive failure of trophoblast giant cell barrier function. The keratin-dependent protection of trophoblast giant cells from a maternal TNF-dependent apoptotic challenge may be a key function of simple epithelial keratins.  相似文献   

4.
Mutations in genes encoding epidermal keratins cause skin disorders, while those in internal epithelial keratins, such as K8 and K18, are risk factors for liver diseases. The effect of dominant mutations in K8 or K18 during embryonic development and tissue homeostasis has not been examined so far. Here we demonstrate that the dominant mutation hK18 R89C, that is highly similar to hK14 R125C, causing EBS in humans, leads to cell type-specific lethality in mice, depending on the ratio of mutant to endogenous keratins. Mice expressing hK18 R89C in the absence of endogenous K19 and K18 died at mid-gestation from defects in trophoblast giant cells, accompanied by haematomas. A single, endogenous K18 allele rescued embryonic lethality but caused aggregation of keratins in all adult internal epithelia, surprisingly without spontaneous cell fragility. Closer analysis revealed that both filaments and aggregates coexisted in the same cell, depending on the ratio of mutant to endogenous keratins. Our results demonstrate that balanced overexpression of a wild-type keratin rescued the lethal consequences of a dominant-negative mutation. This has important implications for therapy approaches of keratinopathies, suggesting that suppressing the mutant allele is not necessary in vivo.  相似文献   

5.
We have previously shown that the targeted deletions of both type I keratins (K) 18 and 19 cause lethality by embryonic day (e) 9.5 due to fragility and cytolysis of trophoblast giant cells. The development of the embryo proper appeared to be unaffected and its death was caused by nutrient deficiency. In order to address the function of keratins within the embryo proper, lethality due to extraembryonic tissue failure must be overcome. One approach to rescue doubly deficient embryos is by aggregating knockout embryos with tetraploid wild-type embryos. As a general tool, tetraploid aggregation can be used to rescue embryonic lethality caused by defects in extraembryonic tissues like the placenta, trophoblast or yolk sac. We rescued K18-/- K19-/- embryos until e11.5, using this approach, proving that the loss of the keratin cytoskeleton causes defects in the trophoblast giant cell layer, but has no effect on early development of the embryo proper.  相似文献   

6.
We show here that at least 5 keratin proteins are present in villous trophoblast and the same 5 in extravillous trophoblast. A further 14 tested were undetectable in these tissues. In contrast, 10 of the 19 keratins tested were present in amniotic epithelium. The marking of amniotic epithelium on the one hand, as distinct from villous and extravillous trophoblast on the other, can be achieved using 5 keratins (K4, 6, 13, 14 and 17) with a mixture of positive and negative discrimination that is expected, in combination, to be highly sensitive. All the specific keratins identified in trophoblast were apparently up-regulated on the pathway to extravillous trophoblast. Co-ordinated differentiation at the molecular expression level is indicated by this finding. The relevant keratins are K5, 7, 8, 18 and 19. Specific keratins have been identified that are down-regulated in villous trophoblast in pre-eclamptic pregnancy. This difference between healthy and pre-eclamptic chorionic villous trophoblast keratin expression was statistically significant in 4 out of the 5 keratins. This was not the case for the extravillous trophoblast at the immunofluorescence confocal level but significant differences were obtained using immunogold electron microscopy. We suggest that the villous trophoblast in pre-eclamptic placentae is cytoskeletally weaker with respect to the filaments made from these specific proteins and that this is one reason why, in pre-eclampsia, trophoblast is deported in greater quantity than in healthy placentae.  相似文献   

7.
Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function.  相似文献   

8.
Dividing populations of stratified and simple epithelial tissues express keratins 5 and 14, and keratins 8 and 18, respectively. It has been suggested that these keratins form a mechanical framework important to cellular integrity, since their absence gives rise to a blistering skin disorder in neonatal epidermis, and hemorrhaging within the embryonic liver. An unresolved fundamental issue is whether different keratins perform unique functions in epithelia. We now address this question using transgenic technology to express a K16-14 hybrid epidermal keratin transgene and a K18 simple epithelial keratin transgene in the epidermis of mice null for K14. Under conditions where the hybrid epidermal keratin restored a wild-type phenotype to newborn epidermis, K18 partially but not fully rescued. The explanation does not appear to reside in an inability of K18 to form 10-nm filaments with K5, which it does in vitro and in vivo. Rather, it appears that the keratin network formed between K5 and K18 is deficient in withstanding mechanical stress, leading to perturbations in the keratin network in regions of the skin that are subjected either to natural or to mechanically induced trauma. Taken together, these findings suggest that the loss of a type I epidermal keratin cannot be fully compensated by its counterpart of simple epithelial cells, and that in vivo, all keratins are not equivalent.  相似文献   

9.
Human keratin 18 (K18) and keratin 8 (K8) and their mouse homologs, Endo B and Endo A, respectively, are expressed in adult mice primarily in a variety of simple epithelial cell types in which they are normally found in equal amounts within the intermediate filament cytoskeleton. Expression of K18 alone in mouse L cells or NIH 3T3 fibroblasts from either the gene or a cDNA expression vector results in K18 protein which is degraded relatively rapidly without the formation of filaments. A K8 cDNA containing all coding sequences was isolated and expressed in mouse fibroblasts either singly or in combination with K18. Immunoprecipitation of stably transfected L cells revealed that when K8 was expressed alone, it was degraded in a fashion similar to that seen previously for K18. However, expression of K8 in fibroblasts that also expressed K18 resulted in stabilization of both K18 and K8. Immunofluorescent staining revealed typical keratin filament organization in such cells. Thus, expression of a type I and a type II keratin was found to be both necessary and sufficient for formation of keratin filaments within fibroblasts. To determine whether a similar proteolytic system responsible for the degradation of K18 in fibroblasts also exists in simple epithelial cells which normally express a type I and a type II keratin, a mutant, truncated K18 protein missing the carboxy-terminal tail domain and a conserved region of the central, alpha-helical rod domain was expressed in mouse parietal endodermal cells. This resulted in destabilization of endogenous Endo A and Endo B and inhibition of the formation of typical keratin filament structures. Therefore, cells that normally express keratins contain a proteolytic system similar to that found in experimentally manipulated fibroblasts which degrades keratin proteins not found in their normal polymerized state.  相似文献   

10.
Defects in protein-folding and -degradation machinery have been identified as a major cause of intracellular protein aggregation and of aggregation-associated diseases. In general, it remains unclear how these aggregates are harmful to normal cellular function. We demonstrate here that, in the developing placenta of the mouse, the absence of the Mrj (Dnajb6) co-chaperone prevents proteasome degradation of keratin 18 (K18; Krt18) intermediate filaments, resulting in the formation of keratin inclusion bodies. These inclusions in chorionic trophoblast cells prevent chorioallantoic attachment during placental development. We show further that keratin-deficient embryos undergo chorioallantoic attachment and that, by genetically reducing keratin expression in Mrj(-/-) conceptuses, chorioallantoic attachment was rescued. Therefore, the chorioallantoic attachment phenotype in Mrj mutants is not due to a deficiency of the normal keratin cytoskeleton, but rather is cytotoxicity caused by keratin aggregates that disrupt chorion trophoblast cell organization and function.  相似文献   

11.
12.
Of the >20 epithelial keratins, keratin 20 (K20) has an unusual distribution and is poorly studied. We began to address K20 function, by expressing human wild-type and Arg80-->His (R80H) genomic (18 kb) and cDNA K20 in cells and mice. Arg80 of K20 is conserved in most keratins, and its mutation in epidermal keratins causes several skin diseases. R80H but not wild-type K20 generates disrupted keratin filaments in transfected cells. Transgenic mice that overexpress K20 R80H have collapsed filaments in small intestinal villus regions, when expressed at moderate levels, whereas wild-type K20-overexpressing mice have normal keratin networks. Overexpressed K20 maintains its normal distribution in several tissues, but not in the pancreas and stomach, without causing any tissue abnormalities. Hence, K20 pancreatic and gastric expression is regulated outside the 18-kb region. Cross-breeding of wild-type or R80H K20 mice with mice that overexpress wild-type K18 or K18 that is mutated at the conserved K20 Arg80-equivalent residue show that K20 plays an additive and compensatory role with K18 in maintaining keratin filament organization in the intestine. Our data suggest the presence of unique regulatory domains for pancreatic and gastric K20 expression and support a significant role for K20 in maintaining keratin filaments in intestinal epithelia.  相似文献   

13.
Monoclonal antibodies specific for vimentin (V9), keratin 7 (CK 7) and keratin 18 (CK5) have been microinjected into three human epithelial cell lines: HeLa, MCF-7 and RT-4. The effect of the injection on other keratin polypeptides and vimentin filaments has been observed by double label immunofluorescence and in some instances by immunoelectron microscopy using gold labels of different sizes. Microinjection of V9 into HeLa cells causes the vimentin to collapse into a perinuclear cap leaving the keratin filaments unaffected. Injection of CK5 does not affect the vimentin filaments but disrupts the keratin filaments revealing keratin aggregates similar to those seen in some epithelial cell lines during mitosis. The keratin aggregates obtained after microinjection in HeLa contain the keratins 8 and 18 and probably also other keratins, as no residual keratin filaments are observed with a keratin polyclonal antibody of broad specificity. Aggregates in mitotic HeLa cells contain at least the keratins 7, 8, and 18. In MCF-7 cells keratins 8, 18, and 19 are observed in the aggregates seen 3 h after microinjection which, however, show a different morphology from those seen in HeLa cells. In MCF-7 cells a new keratin filament is built within 6 h after the injection which is composed mainly of keratin 8 and 19. The antibody-complexed keratin 18 remains in spherical aggregates of different size. The results suggest that in HeLa cells vimentin and keratin form independent networks, and that individual 10 nm filaments in epithelial cell lines can contain more than two keratins.  相似文献   

14.
Disruption or absence of hepatocyte keratins 8 and 18 is associated with chronic hepatitis, marked hepatocyte fragility, and a significant predisposition to stress-induced liver injury. In contrast, pancreatic keratin disruption in transgenic mice that express keratin 18 Arg89 --> Cys (K18C) is not associated with an obvious pancreatic pathology. We compared the effects of keratin filament disruption on pancreatic acini or acinar cell viability, and on cholecystokinin (CCK)-stimulated secretion, in transgenic mice that overexpress wild-type keratin 18 and harbor normal extended keratin filaments (TG2) and K18C mice. We also compared the response of these mice to pancreatitis induced by a choline-deficient ethionine-supplemented diet or by caerulein. Despite extensive cytoplasmic keratin filament disruption, the apicolateral keratin filament bundles appear intact in the acinar pancreas of K18C mice, as determined ultrastructurally and by light microscopy. No significant pancreatitis-associated histologic, serologic, or F-actin/keratin apicolateral redistribution differences were noted between TG2 and K18C mice. Acinar cell viability and yield after collagenase digestion were lower in K18C than in TG2 mice, but the yields of intact acini and their (125)I-CCK uptake and responses to CCK-stimulated secretion were similar. Our results indicate that keratin filament reorganization is a normal physiologic response to pancreatic cell injury, but an intact keratin cytoplasmic filament network is not as essential in protection from cell injury as in the liver. These findings raise the possibility that the abundant apicolateral acinar keratin filaments, which are not as evident in hepatocytes, may play the cytoprotective role that is seen in liver and other tissues. Alternatively, identical keratins may function differently in different tissues.  相似文献   

15.
16.
Intermediate filaments, composed of desmin and of keratins, play important roles in linking contractile elements to each other and to the sarcolemma in striated muscle. Our previous results show that the tibialis anterior (TA) muscles of mice lacking keratin 19 (K19) lose costameres, accumulate mitochondria under the sarcolemma, and generate lower specific tension than controls. Here we compare the physiology and morphology of TA muscles of mice lacking K19 with muscles lacking desmin or both proteins [double knockout (DKO)]. K19-/- mice and DKO mice showed a threefold increase in the levels of creatine kinase (CK) in the serum. The absence of desmin caused a larger change in specific tension (-40%) than the absence of K19 (-19%) and played the predominant role in contractile function (-40%) and decreased tolerance to exercise in the DKO muscle. By contrast, the absence of both proteins was required to obtain a significantly greater loss of contractile torque after injury (-48%) compared with wild type (-39%), as well as near-complete disruption of costameres. The DKO muscle also showed a significantly greater misalignment of myofibrils than either mutant alone. In contrast, large subsarcolemmal gaps and extensive accumulation of mitochondria were only seen in K19-null TA muscles, and the absence of both K19 and desmin yielded milder phenotypes. Our results suggest that keratin filaments containing K19- and desmin-based intermediate filaments can play independent, complementary, or antagonistic roles in the physiology and morphology of fast-twitch skeletal muscle.  相似文献   

17.
In human patients, a wide range of mutations in keratin (K) 5 or K14 lead to the blistering skin disorder epidermolysis bullosa simplex. Given that K14 deficiency does not lead to the ablation of a basal cell cytoskeleton because of a compensatory role of K15, we have investigated the requirement for the keratin cytoskeleton in basal cells by inactivating the K5 gene in mice. We report that the K5(-/-) mice die shortly after birth, lack keratin filaments in the basal epidermis, and are more severely affected than K14(-/-) mice. In contrast to the K14(-/-) mice, we detected a strong induction of the wound-healing keratin K6 in the suprabasal epidermis of cytolyzed areas of postnatal K5(-/-) mice. In addition, K5 and K14 mice differed with respect to tongue lesions. Moreover, we show that in the absence of K5 and other type II keratins, residual K14 and K15 aggregated along hemidesmosomes, demonstrating that individual keratins without a partner are stable in vivo. Our data indicate that K5 may be the natural partner of K15 and K17. We suggest that K5 null mutations may be lethal in human epidermolysis bullosa simplex patients.  相似文献   

18.
The crucial role of structural support fulfilled by keratin intermediate filaments (IFs) in surface epithelia likely requires that they be organized into cross-linked networks. For IFs comprised of keratins 5 and 14 (K5 and K14), which occur in basal keratinocytes of the epidermis, formation of cross-linked bundles is, in part, self-driven through cis-acting determinants. Here, we targeted the expression of a bundling-competent KRT5/KRT8 chimeric cDNA (KRT8bc) or bundling-deficient wild type KRT8 as a control to the epidermal basal layer of Krt5-null mice to assess the functional importance of keratin IF self-organization in vivo. Such targeted expression of K8bc rescued Krt5-null mice with a 47% frequency, whereas K8 completely failed to do so. This outcome correlated with lower than expected levels of K8bc and especially K8 mRNA and protein in the epidermis of E18.5 replacement embryos. Ex vivo culture of embryonic skin keratinocytes confirmed the ability of K8bc to form IFs in the absence of K5. Additionally, electron microscopy analysis of E18.5 embryonic skin revealed that the striking defects observed in keratin IF bundling, cytoarchitecture, and mitochondria are partially restored by K8bc expression. As young adults, viable KRT8bc replacement mice develop alopecia and chronic skin lesions, indicating that the skin epithelia are not completely normal. These findings are consistent with a contribution of self-mediated organization of keratin IFs to structural support and cytoarchitecture in basal layer keratinocytes of the epidermis and underscore the importance of context-dependent regulation for keratin genes and proteins in vivo.  相似文献   

19.
The human keratins: biology and pathology   总被引:8,自引:2,他引:6  
The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins--including numerous keratins characterized only recently--are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family.  相似文献   

20.
Mammalian genomes feature multiple genes encoding highly related keratin 6 (K6) isoforms. These type II keratins show a complex regulation with constitutive and inducible components in several stratified epithelia, including the oral mucosa and skin. Two functional genes, K6alpha and K6beta, exist in a head-to-tail tandem array in mouse genomes. We inactivated these two genes simultaneously via targeting and homologous recombination. K6 null mice are viable and initially indistinguishable from their littermates. Starting at two to three days after birth, they show a growth delay associated with reduced milk intake and the presence of white plaques in the posterior region of dorsal tongue and upper palate. These regions are subjected to greater mechanical stress during suckling. Morphological analyses implicate the filiform papillae as being particularly sensitive to trauma in K6alpha/K6beta null mice, and establish the complete absence of keratin filaments in their anterior compartment. All null mice die about a week after birth. These studies demonstrate an essential structural role for K6 isoforms in the oral mucosa, and implicate filiform papillae as being the major stress bearing structures in dorsal tongue epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号