首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ability in various cognitive domains is often assessed by measuring task performance, such as the accuracy of a perceptual categorization. A similar analysis can be applied to metacognitive reports about a task to quantify the degree to which an individual is aware of his or her success or failure. Here, we review the psychological and neural underpinnings of metacognitive accuracy, drawing on research in memory and decision-making. These data show that metacognitive accuracy is dissociable from task performance and varies across individuals. Convergent evidence indicates that the function of the rostral and dorsal aspect of the lateral prefrontal cortex (PFC) is important for the accuracy of retrospective judgements of performance. In contrast, prospective judgements of performance may depend upon medial PFC. We close with a discussion of how metacognitive processes relate to concepts of cognitive control, and propose a neural synthesis in which dorsolateral and anterior prefrontal cortical subregions interact with interoceptive cortices (cingulate and insula) to promote accurate judgements of performance.  相似文献   

2.
Dobbins IG  Foley H  Schacter DL  Wagner AD 《Neuron》2002,35(5):989-996
During recognition, one may sense items as familiar (item memory) and additionally recollect specific contextual details of the earlier encounters (source memory). Cognitive theory suggests that, unlike item memory, source memory requires controlled cue specification and monitoring processes. Functional imaging suggests that such processes may depend on left prefrontal cortex (PFC). However, the nature and possible anatomical segregation of these processes remains unknown. Using functional magnetic resonance imaging, we isolated distinct response patterns in left PFC during source memory consistent with semantic analysis/cue specification (anterior ventrolateral), recollective monitoring (posterior dorsolateral and frontopolar), and phonological maintenance/rehearsal (posterior ventrolateral). Importantly, cue specification and recollective monitoring responses were not seen during item memory and were unaffected by retrieval success, demonstrating that the mere attempt to recollect episodic detail engages multiple control processes with different left PFC substrates.  相似文献   

3.
《Journal of Physiology》2013,107(6):510-516
Prefrontal cortex (PFC) and posterior parietal cortex (PPC) are neural substrates for spatial cognition. We here review studies in which we tested the hypothesis that human frontoparietal cortex may function as a priority map. According to priority map theory, objects or locations in the visual world are represented by neural activity that is proportional to their attentional priority. Using functional magnetic resonance imaging (fMRI), we first identified topographic maps in PFC and PPC as candidate priority maps of space. We then measured fMRI activity in candidate priority maps during the delay periods of a covert attention task, a spatial working memory task, and a motor planning task to test whether the activity depended on the particular spatial cognition. Our hypothesis was that some, but not all, candidate priority maps in PFC and PPC would be agnostic with regard to what was being prioritized, in that their activity would reflect the location in space across tasks rather than a particular kind of spatial cognition (e.g., covert attention). To test whether patterns of delay period activity were interchangeable during the spatial cognitive tasks, we used multivariate classifiers. We found that decoders trained to predict the locations on one task (e.g., working memory) cross-predicted the locations on the other tasks (e.g., covert attention and motor planning) in superior precentral sulcus (sPCS) and in a region of intraparietal sulcus (IPS2), suggesting that these patterns of maintenance activity may be interchangeable across the tasks. Such properties make sPCS in frontal cortex and IPS2 in parietal cortex viable priority map candidates, and suggest that these areas may be the human homologs of the monkey frontal eye field (FEF) and lateral intraparietal area (LIP).  相似文献   

4.
Neuroimaging and neurophysiology have revealed that multiple areas in the prefrontal cortex (PFC) are activated in a specific memory task, but severity of impairment after PFC lesions is largely different depending on which activated area is damaged. The critical relationship between lesion sites and impairments has not yet been given a clear mechanistic explanation. Although recent works proposed that a whole-brain network contains hubs that play integrative roles in cortical information processing, this framework relying on an anatomy-based structural network cannot account for the vulnerable locus for a specific task, lesioning of which would bring impairment. Here, we hypothesized that (i) activated PFC areas dynamically form an ordered network centered at a task-specific “functional hub” and (ii) the lesion-effective site corresponds to the “functional hub,” but not to a task-invariant “structural hub.” To test these hypotheses, we conducted functional magnetic resonance imaging experiments in macaques performing a temporal contextual memory task. We found that the activated areas formed a hierarchical hub-centric network based on task-evoked directed connectivity, differently from the anatomical network reflecting axonal projection patterns. Using a novel simulated-lesion method based on support vector machine, we estimated severity of impairment after lesioning of each area, which accorded well with a known dissociation in contextual memory impairment in macaques (impairment after lesioning in area 9/46d, but not in area 8Ad). The predicted severity of impairment was proportional to the network “hubness” of the virtually lesioned area in the task-evoked directed connectivity network, rather than in the anatomical network known from tracer studies. Our results suggest that PFC areas dynamically and cooperatively shape a functional hub-centric network to reallocate the lesion-effective site depending on the cognitive processes, apart from static anatomical hubs. These findings will be a foundation for precise prediction of behavioral impacts of damage or surgical intervention in human brains.  相似文献   

5.
Multiunit microelectrode recording techniques were used to study the location and organization of the third somatosensory area (SIII) in cats. Representations of all major contralateral body parts were found in a small region of cortex along the lateral wing of the ansate sulcus and between the lateral sulcus and the suprasylvian sulcus. The systematic map of the body surface included forepaw and face regions previously identified as parts of SIII. The forepaw representation was generally buried on the rostral bank of the lateral wing of the ansate sulcus. The representations of the face and mystacial vibrissae were largely exposed on the rostral suprasylvian gyrus, but part of the representation of the face was also buried in the lateral wing of the ansate sulcus. Representations of the trunk and hindlimb extended from the suprasylvian gyrus onto the medial bank of the suprasylvian sulcus. We had expected to find these latter body parts in more medial cortex just caudal to the representation of these parts in the first somatosensory area (SI). Instead, neurons in penetrations in cortex caudal to the SI trunk and hindlimb representations were unresponsive to tactile stimulation. The unexpected location of the hindlimb in SIII led us to determine whether the proposed parts of SIII had similar cortical and thalamic connections. Injected anatomical tracers revealed that the representations of both the forelimb and hindlimb were interconnected with SI and a region of the thalamus just dorsal to the ventroposterior nucleus. Similarities in patterns of connections of forelimb and hindlimb portions of SIII supported the conclusion that SHI as presented here is a functional unit of cortex. We conclude that SIII has a somatotopic organization that does not parallel that in SI, and that SIII is not entirely coextensive with either area 5 or area 5a of Hassler and Muhs-Clement (1964).  相似文献   

6.
Badre D  Wagner AD 《Neuron》2004,41(3):473-487
Prefrontal cortex (PFC) supports flexible behavior by mediating cognitive control, though the elemental forms of control supported by PFC remain a central debate. Dorsolateral PFC (DLPFC) is thought to guide response selection under conditions of response conflict or, alternatively, may refresh recently active representations within working memory. Lateral frontopolar cortex (FPC) may also adjudicate response conflict, though others propose that FPC supports higher order control processes such as subgoaling and integration. Anterior cingulate cortex (ACC) is hypothesized to upregulate response selection by detecting response conflict; it remains unclear whether ACC functions generalize beyond monitoring response conflict. The present fMRI experiment directly tested these competing theories regarding the functional roles of DLPFC, FPC, and ACC. Results reveal dissociable control processes in PFC, with mid-DLPFC selectively mediating resolution of response conflict and FPC further mediating subgoaling/integration. ACC demonstrated a broad sensitivity to control demands, suggesting a generalized role in modulating cognitive control.  相似文献   

7.
Distributions of corticospinal and corticobulbar neurons were revealed by tetramethylbenzidine (TMB) processing after injections of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) into the cervical or lumbar enlargements of the spinal cord, or medullary or pontine levels of the brain stem. Sections reacted for cytochrome oxidase (CO) allowed patterns of labeled neurons to be related to the details of the body surface map in the first somatosensory cortical area (SI). The results indicate that a number of cortical areas project to these subcortical levels: (1) Projection neurons in granular SI formed a clear somatotopic pattern. The hindpaw region projected to the lumbar enlargement, the forepaw region to the cervical enlargement, the whisker pad field to the lower medulla, and the more rostral face region to more rostral brain stem levels. (2) Each zone of labeled neurons in SI extended into adjacent dysgranular somatosensory cortex, forming a second somatotopic pattern of projection neurons. (3) A somatotopic pattern of projection neurons in primary motor cortex (MI) paralleled SI in mediolateral sequence corresponding to the hindlimb, forelimb, and face. (4) A weak somatotopic pattern of projection neurons was suggested in medial agranular cortex (Agm), indicating a premotor field with a rostromedial-to-caudolateral representation of hindlimb, forelimb, and face. (5) A somatotopic pattern of projection neurons representing the foot to face in a mediolateral sequence was observed in medial parietal cortex (PM) located between SI and area 17. (6) In the second somatosensory cortical area (SII), neurons projecting to the brain stem were immediately adjacent caudolaterally to the barrel field of SI, whereas neurons projecting to the upper spinal cord were more lateral. No projection neurons in this region were labeled by the injections in the lower spinal cord. (7) Other foci of projection neurons for the face and forelimb were located rostral to SII, providing evidence for a parietal ventral area (PV) in perirhinal cortex (PR) lateral to SI, and in cortex between SII and PM. None of these regions, which may be higher-order somatosensory areas, contained labeled neurons after injections in the lower spinal cord. Thus, more cortical fields directly influence brain stem and spinal cord levels related to sensory and motor functions of the face and forepaw than the hindlimb. The termination patterns of corticospinal and corticobulbar projections were studied in other rats with injections of WGA:HRP in SI.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Memory enables flexible use of past experience to inform new behaviors. Although leading theories hypothesize that this fundamental flexibility results from the formation of integrated memory networks relating multiple experiences, the neural mechanisms that support memory integration are not well understood. Here, we demonstrate that retrieval-mediated learning, whereby prior event details are reinstated during encoding of related experiences, supports participants' ability to infer relationships between distinct events that share content. Furthermore, we show that activation changes in a functionally coupled hippocampal and ventral medial prefrontal cortical circuit track the formation of integrated memories and successful inferential memory performance. These findings characterize the respective roles of these regions in retrieval-mediated learning processes that support relational memory network formation and inferential memory in the human brain. More broadly, these data reveal fundamental mechanisms through which memory representations are constructed into prospectively useful formats.  相似文献   

9.
Stress, pervasive in society, contributes to over half of all work place accidents a year and over time can contribute to a variety of psychiatric disorders including depression, schizophrenia, and post-traumatic stress disorder. Stress impairs higher cognitive processes, dependent on the prefrontal cortex (PFC) and that involve maintenance and integration of information over extended periods, including working memory and attention. Substantial evidence has demonstrated a relationship between patterns of PFC neuron spiking activity (action-potential discharge) and components of delayed-response tasks used to probe PFC-dependent cognitive function in rats and monkeys. During delay periods of these tasks, persistent spiking activity is posited to be essential for the maintenance of information for working memory and attention. However, the degree to which stress-induced impairment in PFC-dependent cognition involves changes in task-related spiking rates or the ability for PFC neurons to retain information over time remains unknown. In the current study, spiking activity was recorded from the medial PFC of rats performing a delayed-response task of working memory during acute noise stress (93 db). Spike history-predicted discharge (SHPD) for PFC neurons was quantified as a measure of the degree to which ongoing neuronal discharge can be predicted by past spiking activity and reflects the degree to which past information is retained by these neurons over time. We found that PFC neuron discharge is predicted by their past spiking patterns for nearly one second. Acute stress impaired SHPD, selectively during delay intervals of the task, and simultaneously impaired task performance. Despite the reduction in delay-related SHPD, stress increased delay-related spiking rates. These findings suggest that neural codes utilizing SHPD within PFC networks likely reflects an additional important neurophysiological mechanism for maintenance of past information over time. Stress-related impairment of this mechanism is posited to contribute to the cognition-impairing actions of stress.  相似文献   

10.
The present experiment tested three hypotheses regarding the function and organization of lateral prefrontal cortex (PFC). The first account (the information cascade hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the timing with which cue stimuli reduce uncertainty in the action selection process. The second account (the levels-of-abstraction hypothesis) suggests that the anterior-posterior organization of lateral PFC is based on the degree of abstraction of the task goals. The current study began by investigating these two hypotheses, and identified several areas of lateral PFC that were predicted to be active by both the information cascade and levels-of-abstraction accounts. However, the pattern of activation across experimental conditions was inconsistent with both theoretical accounts. Specifically, an anterior area of mid-dorsolateral PFC exhibited sensitivity to experimental conditions that, according to both accounts, should have selectively engaged only posterior areas of PFC. We therefore investigated a third possible account (the adaptive context maintenance hypothesis) that postulates that both posterior and anterior regions of PFC are reliably engaged in task conditions requiring active maintenance of contextual information, with the temporal dynamics of activity in these regions flexibly tracking the duration of maintenance demands. Activity patterns in lateral PFC were consistent with this third hypothesis: regions across lateral PFC exhibited transient activation when contextual information had to be updated and maintained in a trial-by-trial manner, but sustained activation when contextual information had to be maintained over a series of trials. These findings prompt a reconceptualization of current views regarding the anterior-posterior organization of lateral PFC, but do support other findings regarding the active maintenance role of lateral PFC in sequential working memory paradigms.  相似文献   

11.
Distributions of corticospinal and corticobulbar neurons were revealed by tetramethylbenzidine (TMB) processing after injections of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) into the cervical or lumbar enlargements of the spinal cord, or medullary or pontine levels of the brain stem. Sections reacted for cytochrome oxidase (CO) allowed patterns of labeled neurons to be related to the details of the body surface map in the first somatosensory cortical area (SI). The results indicate that a number of cortical areas project to these subcortical levels: (1) Projection neurons in granular SI formed a clear somatotopic pattern. The hindpaw region projected to the lumbar enlargement, the forepaw region to the cervical enlargement, the whisker pad field to the lower medulla, and the more rostral face region to more rostral brain stem levels. (2) Each zone of labeled neurons in SI extended into adjacent dysgranular somatosensory cortex, forming a second somatotopic pattern of projection neurons. (3) A somatotopic pattern of projection neurons in primary motor cortex (MI) paralleled SI in mediolateral sequence corresponding to the hindlimb, forelimb, and face. (4) A weak somatotopic pattern of projection neurons was suggested in medial agranular cortex (Agm), indicating a premotor field with a rostromedial-to-caudolateral representation of hindlimb, forelimb, and face. (5) A somatotopic pattern of projection neurons representing the foot to face in a mediolateral sequence was observed in medial parietal cortex (PM) located between SI and area 17. (6) In the second somatosensory cortical area (SII), neurons projecting to the brain stem were immediately adjacent caudolaterally to the barrel field of SI, whereas neurons projecting to the upper spinal cord were more lateral. No projection neurons in this region were labeled by the injections in the lower spinal cord. (7) Other foci of projection neurons for the face and forelimb were located rostral to SII, providing evidence for a parietal ventral area (PV) in perirhinal cortex (PR) lateral to SI, and in cortex between SII and PM. None of these regions, which may be higher-order somatosensory areas, contained labeled neurons after injections in the lower spinal cord. Thus, more cortical fields directly influence brain stem and spinal cord levels related to sensory and motor functions of the face and forepaw than the hindlimb.

The termination patterns of corticospinal and corticobulbar projections were studied in other rats with injections of WGA:HRP in SI. Injections in lateral SI representing the face produced dense terminal label in the contralateral trigeminal complex. Injections in cortex devoted to the forelimb and forepaw labeled the contralateral cuneate nucleus and parts of the dorsal horn of the spinal cord. The cortical injections also demonstrated interconnections of parts of SI with some of the other regions of cortex with projections to the spinal cord, and provided further evidence for the existence of PV in rats.  相似文献   

12.
JM Scimeca  D Badre 《Neuron》2012,75(3):380-392
Declarative memory is known to depend on the medial temporal lobe memory system. Recently, there has been renewed focus on the relationship between the basal ganglia and declarative memory, including the involvement of striatum. However, the contribution of striatum to declarative memory retrieval remains unknown. Here, we review neuroimaging and neuropsychological evidence for the involvement of the striatum in declarative memory retrieval. From this review, we propose that, along with the prefrontal cortex (PFC), the striatum primarily supports cognitive control of memory retrieval. We conclude by proposing three hypotheses for the specific role of striatum in retrieval: (1) striatum modulates the re-encoding of retrieved items in accord with their expected utility (adaptive encoding), (2) striatum selectively admits information into working memory that is expected to increase the likelihood of successful retrieval (adaptive gating), and (3) striatum enacts adjustments in cognitive control based on the outcome of retrieval (reinforcement learning).  相似文献   

13.
Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex''s role in semantic control and the dorsolateral prefrontal cortex''s role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity.  相似文献   

14.
Fujisawa S  Buzsáki G 《Neuron》2011,72(1):153-165
Network oscillations support transient communication across brain structures. We show here, in rats, that task-related neuronal activity in the medial prefrontal cortex (PFC), the hippocampus, and the ventral tegmental area (VTA), regions critical for working memory, is coordinated by a 4 Hz oscillation. A prominent increase of power and coherence of the 4 Hz oscillation in the PFC and the VTA and its phase modulation of gamma power in both structures was present in the working memory part of the task. Subsets of both PFC and hippocampal neurons predicted the turn choices of the rat. The goal-predicting PFC pyramidal neurons were more strongly phase locked to both 4 Hz and hippocampal theta oscillations than nonpredicting cells. The 4 Hz and theta oscillations were phase coupled and jointly modulated both gamma waves and neuronal spikes in the PFC, the VTA, and the hippocampus. Thus, multiplexed timing mechanisms in the PFC-VTA-hippocampus axis may support processing of information, including working memory.  相似文献   

15.
Microelectrode mapping techniques were used to determine the organization of somatosensory cortex in the Australian brush-tailed possum (Trichosurus vulpecula). The results of electrophysiological mapping were combined with data on the cyto- and myeloarchitecture, and patterns of corticocortical connections, using sections cut tangential to the pial surface. We found evidence for three topographically organized representations of the body surface that were coextensive with architectonic subdivisions. A large, discontinuous cutaneous representation in anterior parietal cortex was termed the primary somatosensory area (SI). Lateral to SI we found evidence for two further areas, the second somatosensory area (SII) and the parietal ventral area (PV). While neurones in all of these areas were responsive to cutaneous stimulation, those of SI were non-habituating, whereas those in SII and PV often habituated to the stimuli. Moreover, neuronal receptive fields in SII and PV were, in general, larger than those in SI. Neurones in cortex adjacent to the rostral and caudal boundaries of SI, including cortex that interdigitated between the discontinuous SI head and body representations, required stimulation of deep receptors in the periphery to elicit responses. Within the region of cortex containing neurones responsive to stimulation of deep receptors, body parts were represented in a mediolateral progression. Injections of anatomical tracers placed in electrophysiologically identified locations in SI revealed ipsilateral connections with other parts of SI, as well as cortex rostral to, caudal to, and interdigitating between, SI. Injections in SI also resulted in labelling in PV, SII, motor cortex, posterior parietal cortex and perirhinal cortex. The patterns of contralateral projections reflected those of ipsilateral projections, although they were relatively less dense. The present findings support recent observations in other marsupials in which multiple representations of the body surface were described, and suggest that multiple interconnected sensory representations may be a common feature of cortical organization and function in marsupials.  相似文献   

16.
Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex.  相似文献   

17.
Experiences during brain development may influence the pathogenesis of developmental disorders. Thus, social isolation (SI) rearing after weaning is a useful animal model for studying the pathological mechanisms of such psychiatric diseases. In this study, we examined the effect of SI on neurogenesis in the hippocampal dentate gyrus (DG) relating to memory and emotion-related behaviors. When newly divided cells were labeled with 5-bromo-2'-deoxyuridine (BrdU) before SI, the number of BrdU-positive cells and the rate of differentiation into neurons were significantly decreased after 4-week SI compared with those in group-housed mice. Repeated treatment of fluoxetine prevented the SI-induced impairment of survival of newly divided cells and ameliorated spatial memory impairment and part of aggression in SI mice. Furthermore, we investigated the changes in gene expression in the DG of SI mice by using DNA microarray and real-time PCR. We finally found that SI reduced the expression of development-related genes Nurr1 and Npas4 . These findings suggest that communication in juvenile is important in the survival and differentiation of newly divided cells, which may be associated with memory and aggression, and raise the possibility that the reduced expression of Nurr1 and/or Npas4 may contribute to the impairment of neurogenesis and memory and aggression induced by SI.  相似文献   

18.
The digging apparatus of pocket gophers offers a unique opportunity to examine morphological constraints within a historical context because relationships among extant taxa are well resolved and the features enhancing digging performance are relatively well understood. Structural and functional considerations suggest that the muscles associated with tooth- and claw-digging in pocket gophers are subjected to contrasting levels of morphological constraints. To assess this hypothesis, we analysed the bones and muscles of the jaws and forelimbs in four genera comprising five species of pocket gophers. Morphometric analyses were performed on 12 osteological measurements selected to reflect overall skull size, variation in rostral shape and procumbency, differences in overall length of the forelimbs and processes relating to the function of lever systems used in claw-digging. In addition, dissections were made of the jaw, hyoid, neck and all of the forelimb muscles excluding the intrinsic muscles of the manus. Results of our morphometric analyses corroborate the recent suggestion that pocket gophers encompass a wide range of morphological variation extending from claw-diggers to tooth-diggers. Myologically, however, we found structural variation only in the forelimb muscles, some of which may be advantageous for digging. No changes in jaw, neck and hyoid muscles, other than differences in muscle mass or those concordant with differences in rostral shape, were noted. These results support our hypothesis that constrasting levels of morphological constraint exist between the jaw and forelimb muscles of pocket gophers. We present a discussion of the structural and functional constraints on jaws and forelimbs in gophers as well as an analysis of historical constraints acting on this group, and perhaps on mammals in general.  相似文献   

19.
Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号