首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of tissues like brain by using magnetic resonance (MR) images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i) a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii) a segmentation method (both hard and soft segmentation) to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using prior anatomical knowledge). Results have been successfully validated on human T2-weighted (T2) brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described.  相似文献   

2.
In this paper, we introduce a new approach for segmenting thin structures in electron micrographs. We introduce two new transforms, the Line Filter Transform (LFT) and the Orientation Filter Transform (OFT). The LFT can be viewed as an alternative to anisotropic diffusion algorithms that is particularly useful for thin structures. The OFT utilizes geometrical information about the structure by measuring correlations of local orientations in the image. By combining these methods with a contour extraction and labeling method we construct a segmentation method for thin structures in 2D images. We discuss how the method can be applied slice-by-slice to electron tomograms and illustrate the process by constructing two models of membrane structures from cellular tomograms. The suggested method has the advantage of being relatively insensitive to non-uniform contrast and high-contrast features such as ribosomes.  相似文献   

3.
Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.  相似文献   

4.
Spectral clustering methods have been shown to be effective for image segmentation. Unfortunately, the presence of image noise as well as textural characteristics can have a significant negative effect on the segmentation performance. To accommodate for image noise and textural characteristics, this study introduces the concept of sub-graph affinity, where each node in the primary graph is modeled as a sub-graph characterizing the neighborhood surrounding the node. The statistical sub-graph affinity matrix is then constructed based on the statistical relationships between sub-graphs of connected nodes in the primary graph, thus counteracting the uncertainty associated with the image noise and textural characteristics by utilizing more information than traditional spectral clustering methods. Experiments using both synthetic and natural images under various levels of noise contamination demonstrate that the proposed approach can achieve improved segmentation performance when compared to existing spectral clustering methods.  相似文献   

5.
《IRBM》2014,35(1):27-32
Automatic anatomical brain image segmentation is still a challenge. In particular, algorithms have to address the partial volume effect (PVE) as well as the variability of the gray level of internal brain structures which may appear closer to gray matter (GM) than white matter (WM). Atlas based segmentation is one solution as it brings prior information. For such tasks, probabilistic atlases are very useful as they take account of the PVE information. In this paper, we provide a detailed analysis of a generative statistical model based on dense deformable templates that represents several tissue types observed in medical images. The inputs are gray level data whereas our atlas is composed of both an estimation of the deformation metric and probability maps of each tissue (called class). This atlas is used to guide the tissue segmentation of new images. Experiments are shown on brain T1 MRI datasets. This method only requires approximate pre-registration, as the latter is done jointly with the segmentation. Note however that an approximate registration is a reasonable pre-requisite given the application.  相似文献   

6.
Development of scene-segmentation algorithms has generally been an ad hoc process. This paper presents a systematic technique for developing these algorithms using error-measure minimization. If scene segmentation is regarded as a problem of pixel classification whereby each pixel of a scene is assigned to a particular object class, development of a scene-segmentation algorithm becomes primarily a process of feature selection. In this study, four methods of feature selection were used to develop segmentation techniques for cervical cytology images: (1) random selection, (2) manual selection (best features in the subjective judgment of the investigator), (3) eigenvector selection (ranking features according to the largest contribution to each eigenvector of the feature covariance matrix) and (4) selection using the scene-segmentation error measure A2. Four features were selected by each method from a universe of 35 features consisting of gray level, color, texture and special pixel neighborhood features in 40 cervical cytology images . Evaluation of the results was done with a composite of the scene-segmentation error measure A2, which depends on the percentage of scenes with measurable error, the agreement of pixel class proportions, the agreement of number of objects for each pixel class and the distance of each misclassified pixel to the nearest pixel of the misclassified class. Results indicate that random and eigenvector feature selection were the poorest methods, manual feature selection somewhat better and error-measure feature selection best. The error-measure feature selection method provides a useful, systematic method of developing and evaluating scene-segmentation algorithms.  相似文献   

7.
Inglis LM  Gray AJ 《Biometrics》2001,57(1):232-239
Semiautomatic image analysis techniques are particularly useful in biological applications, which commonly generate very complex images, and offer considerable flexibility. However, systematic study of such methods is lacking; most research develops fully automatic algorithms. This paper describes a study to evaluate several different semiautomatic or computer-assisted approaches to contour segmentation within the context of segmenting degraded images of fungal hyphae. Four different types of contour segmentation method, with varying degrees and types of user input, are outlined and applied to hyphal images. The methods are evaluated both quantitatively and qualitatively by comparing results obtained by several test subjects segmenting simulated images qualitatively similar to the hyphal images of interest. An active contour model approach, using control points, emerges as the method to be preferred to three more traditional approaches. Feedback from the image provider indicates that any of the methods described have something useful to offer for segmentation of hyphae.  相似文献   

8.
This paper discusses two problems related to three-dimensional object recognition. The first is segmentation and the selection of a candidate object in the image, the second is the recognition of a three-dimensional object from different viewing positions. Regarding segmentation, it is shown how globally salient structures can be extracted from a contour image based on geometrical attributes, including smoothness and contour length. This computation is performed by a parallel network of locally connected neuron-like elements. With respect to the effect of viewing, it is shown how the problem can be overcome by using the linear combinations of a small number of two-dimensional object views. In both problems the emphasis is on methods that are relatively low level in nature. Segmentation is performed using a bottom-up process, driven by the geometry of image contours. Recognition is performed without using explicit three-dimensional models, but by the direct manipulation of two-dimensional images.  相似文献   

9.
Automated gray matter segmentation of magnetic resonance imaging data is essential for morphometric analyses of the brain, particularly when large sample sizes are investigated. However, although detection of small structural brain differences may fundamentally depend on the method used, both accuracy and reliability of different automated segmentation algorithms have rarely been compared. Here, performance of the segmentation algorithms provided by SPM8, VBM8, FSL and FreeSurfer was quantified on simulated and real magnetic resonance imaging data. First, accuracy was assessed by comparing segmentations of twenty simulated and 18 real T1 images with corresponding ground truth images. Second, reliability was determined in ten T1 images from the same subject and in ten T1 images of different subjects scanned twice. Third, the impact of preprocessing steps on segmentation accuracy was investigated. VBM8 showed a very high accuracy and a very high reliability. FSL achieved the highest accuracy but demonstrated poor reliability and FreeSurfer showed the lowest accuracy, but high reliability. An universally valid recommendation on how to implement morphometric analyses is not warranted due to the vast number of scanning and analysis parameters. However, our analysis suggests that researchers can optimize their individual processing procedures with respect to final segmentation quality and exemplifies adequate performance criteria.  相似文献   

10.
Segmentation aims to separate homogeneous areas from the sequential data, and plays a central role in data mining. It has applications ranging from finance to molecular biology, where bioinformatics tasks such as genome data analysis are active application fields. In this paper, we present a novel application of segmentation in locating genomic regions with coexpressed genes. We aim at automated discovery of such regions without requirement for user-given parameters. In order to perform the segmentation within a reasonable time, we use heuristics. Most of the heuristic segmentation algorithms require some decision on the number of segments. This is usually accomplished by using asymptotic model selection methods like the Bayesian information criterion. Such methods are based on some simplification, which can limit their usage. In this paper, we propose a Bayesian model selection to choose the most proper result from heuristic segmentation. Our Bayesian model presents a simple prior for the segmentation solutions with various segment numbers and a modified Dirichlet prior for modeling multinomial data. We show with various artificial data sets in our benchmark system that our model selection criterion has the best overall performance. The application of our method in yeast cell-cycle gene expression data reveals potential active and passive regions of the genome.  相似文献   

11.
MOTIVATION: Although numerous algorithms have been developed for microarray segmentation, extensive comparisons between the algorithms have acquired far less attention. In this study, we evaluate the performance of nine microarray segmentation algorithms. Using both simulated and real microarray experiments, we overcome the challenges in performance evaluation, arising from the lack of ground-truth information. The usage of simulated experiments allows us to analyze the segmentation accuracy on a single pixel level as is commonly done in traditional image processing studies. With real experiments, we indirectly measure the segmentation performance, identify significant differences between the algorithms, and study the characteristics of the resulting gene expression data. RESULTS: Overall, our results show clear differences between the algorithms. The results demonstrate how the segmentation performance depends on the image quality, which algorithms operate on significantly different performance levels, and how the selection of a segmentation algorithm affects the identification of differentially expressed genes. AVAILABILITY: Supplementary results and the microarray images used in this study are available at the companion web site http://www.cs.tut.fi/sgn/csb/spotseg/  相似文献   

12.
[目的]具有复杂背景的蝴蝶图像前背景分割难度大.本研究旨在探索基于深度学习显著性目标检测的蝴蝶图像自动分割方法.[方法]应用DUTS-TR数据集训练F3Net显著性目标检测算法构建前背景预测模型,然后将模型用于具有复杂背景的蝴蝶图像数据集实现蝴蝶前背景自动分割.在此基础上,采用迁移学习方法,保持ResNet骨架不变,利...  相似文献   

13.

Background

Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies.

Results

We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation.First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce.We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images.

Conclusions

FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0431-x) contains supplementary material, which is available to authorized users.  相似文献   

14.
A typical MR imaging protocol to study the status of atherosclerosis in the carotid artery consists of the application of multiple MR sequences. Since scanner time is limited, a balance has to be reached between the duration of the applied MR protocol and the quantity and quality of the resulting images which are needed to assess the disease. In this study an objective method to optimize the MR sequence set for classification of soft plaque in vessel wall images of the carotid artery using automated image segmentation was developed. The automated method employs statistical pattern recognition techniques and was developed based on an extensive set of MR contrast weightings and corresponding manual segmentations of the vessel wall and soft plaque components, which were validated by histological sections. Evaluation of the results from nine contrast weightings showed the tradeoff between scan duration and automated image segmentation performance. For our dataset the best segmentation performance was achieved by selecting five contrast weightings. Similar performance was achieved with a set of three contrast weightings, which resulted in a reduction of scan time by more than 60%. The presented approach can help others to optimize MR imaging protocols by investigating the tradeoff between scan duration and automated image segmentation performance possibly leading to shorter scanning times and better image interpretation. This approach can potentially also be applied to other research fields focusing on different diseases and anatomical regions.  相似文献   

15.
The segmentation accuracy of four fast and simple gray-scale threshold selection methods were compared using a data base of stained cervical cell images. Some postprocessing was applied to the segmented images to increase the accuracy of the nuclear segmentation. The most accurate method correctly segmented the cytoplasm of 81% of the cell images and the nuclei of 78% of the cell images in the data base.  相似文献   

16.
刘国成  张杨  黄建华  汤文亮 《昆虫学报》2015,58(12):1338-1343
【目的】叶螨(spider mite)是为害多种农作物的主要害虫,叶螨识别传统方法依靠肉眼,比较费时费力,为研究快速自动识别方法,引入计算机图像分析算法。【方法】该方法基于K-means聚类算法对田间作物上的叶螨图像进行分割与识别。【结果】对比传统RGB彩色分割方法,K-means聚类算法能够有效地对叶片上叶螨图像进行分割和识别。K-means聚类算法平均识别时间为3.56 s,平均识别准确率93.95%。识别时间 T 随图像总像素 Pi 的增加而增加。【结论】K-means聚类组合算法能够应用于叶螨图像分割与识别。  相似文献   

17.
Automatic image segmentation of immunohistologically stained breast tissue sections helps pathologists to discover the cancer disease earlier. The detection of the real number of cancer nuclei in the image is a very tedious and time consuming task. Segmentation of cancer nuclei, especially touching nuclei, presents many difficulties to separate them by traditional segmentation algorithms. This paper presents a new automatic scheme to perform both classification of breast stained nuclei and segmentation of touching nuclei in order to get the total number of cancer nuclei in each class. Firstly, a modified geometric active contour model is used for multiple contour detection of positive and negative nuclear staining in the microscopic image. Secondly, a touching nuclei method based on watershed algorithm and concave vertex graph is proposed to perform accurate quantification of the different stains. Finally, benign nuclei are identified by their morphological features and they are removed automatically from the segmented image for positive cancer nuclei assessment. The proposed classification and segmentation schemes are tested on two datasets of breast cancer cell images containing different level of malignancy. The experimental results show the superiority of the proposed methods when compared with other existing classification and segmentation methods. On the complete image database, the segmentation accuracy in term of cancer nuclei number is over than 97%, reaching an improvement of 3–4% over earlier methods.  相似文献   

18.
Bright field imaging of biological samples stained with antibodies and/or special stains provides a rapid protocol for visualizing various macromolecules. However, this method of sample staining and imaging is rarely employed for direct quantitative analysis due to variations in sample fixations, ambiguities introduced by color composition and the limited dynamic range of imaging instruments. We demonstrate that, through the decomposition of color signals, staining can be scored on a cell-by-cell basis. We have applied our method to fibroblasts grown from histologically normal breast tissue biopsies obtained from two distinct populations. Initially, nuclear regions are segmented through conversion of color images into gray scale, and detection of dark elliptic features. Subsequently, the strength of staining is quantified by a color decomposition model that is optimized by a graph cut algorithm. In rare cases where nuclear signal is significantly altered as a result of sample preparation, nuclear segmentation can be validated and corrected. Finally, segmented stained patterns are associated with each nuclear region following region-based tessellation. Compared to classical non-negative matrix factorization, proposed method: (i) improves color decomposition, (ii) has a better noise immunity, (iii) is more invariant to initial conditions and (iv) has a superior computing performance.  相似文献   

19.
In recent years, there has been an explosion of fluorescence microscopy studies of live cells in the literature. The analysis of the images obtained in these studies often requires labor-intensive manual annotation to extract meaningful information. In this study, we explore the utility of a neural network approach to recognize, classify, and select plasma membranes in high-resolution images, thus greatly speeding up data analysis and reducing the need for personnel training for highly repetitive tasks. Two different strategies are tested: 1) a semantic segmentation strategy, and 2) a sequential application of an object detector followed by a semantic segmentation network. Multiple network architectures are evaluated for each strategy, and the best performing solutions are combined and implemented in the Recognition Of Cellular Membranes software. We show that images annotated manually and with the Recognition Of Cellular Membranes software yield identical results by comparing Förster resonance energy transfer binding curves for the membrane protein fibroblast growth factor receptor 3. The approach that we describe in this work can be applied to other image selection tasks in cell biology.  相似文献   

20.
In this paper, three different clustering algorithms were applied to assemble infrared (IR) spectral maps from IR microspectra of tissues. Using spectra from a colorectal adenocarcinoma section, we show how IR images can be assembled by agglomerative hierarchical (AH) clustering (Ward's technique), fuzzy C-means (FCM) clustering, and k-means (KM) clustering. We discuss practical problems of IR imaging on tissues such as the influence of spectral quality and data pretreatment on image quality. Furthermore, the applicability of cluster algorithms to the spatially resolved microspectroscopic data and the degree of correlation between distinct cluster images and histopathology are compared. The use of any of the clustering algorithms dramatically increased the information content of the IR images, as compared to univariate methods of IR imaging (functional group mapping). Among the cluster imaging methods, AH clustering (Ward's algorithm) proved to be the best method in terms of tissue structure differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号