首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological process for phosphate (P(i)) removal is based on the use of bacteria capable of accumulating inorganic polyphosphate (polyP). We obtained Escherichia coli mutants which accumulate a large amount of polyP. The polyP accumulation in these mutants was ascribed to a mutation of the phoU gene that encodes a negative regulator of the P(i) regulon. Insertional inactivation of the phoU gene also elevated the intracellular level of polyP in Synechocystis sp. strain PCC6803. The mutant could remove fourfold more P(i) from the medium than the wild-type strain removed.  相似文献   

2.
3.
The yeast Saccharomyces cerevisiae accumulates the high levels of inorganic polyphosphates (polyPs) performing in the cells numerous functions, including phosphate and energy storage. The effects of vacuolar membrane ATPase (V-ATPase) dysfunction were studied on polyP accumulation under short-term cultivation in the Pi–excess media after Pi starvation. The addition of bafilomycin A1, a specific inhibitor of V-ATPase, to the medium with glucose resulted in strong inhibition of the synthesis of long-chain polyP and in substantial suppression of short-chain polyP. The addition of bafilomycin to the medium with ethanol resulted in decreased accumulation of high-molecular polyP, while the accumulation of low-molecular polyP was not affected. The levels of polyP synthesis in the mutant strain with a deletion in the vma2 gene encoding a V-ATPase subunit were significantly lower than in the parent strain in the media with glucose and with ethanol. The synthesis of the longest chain polyP was not observed in the mutant cells. The synthesis of only the low-polymer acid-soluble polyP fraction occurred in the cells of the mutant strain. However, the level of polyP1 was nearly tenfold lower than compared to the cells of the parent strain. Both bafilomycin A1 and the mutation in vacuolar ATPase subunit vma2 lead to a considerable decrease of cellular polyP accumulation. Thus, the defects in ΔμH+ formation on the vacuolar membrane resulted in the decrease of polyP biosynthesis in S. cerevisiae.  相似文献   

4.
Despite the crucial role of polyphosphate (polyP) in aquatic environments, its metabolism in cyanobacteria responding to nutrients is poorly understood. We investigate polyP in three cyanobacteria species, specifically unicellular picocyanobacteria, under various nutritional conditions. Our experiments show that the accumulation of polyP in cyanobacteria is strongly dynamic, depending on phosphate levels and growth stages. ‘Overplus’ uptake of phosphorus (P) during the lag phase leads to the rapid accumulation of polyP, followed by lower polyP quotas during the exponential growth stage as a result of competing ‘luxury’ P uptake and polyP utilization to support rapid cell division. Cyanobacteria are capable of P deficiency responses that preferentially maintain polyP. However, preferential utilization of polyP occurs under severe P stress, suggesting the crucial role of polyP as P reserve to support cellular survival. Strong variability was observed among different species of cyanobacteria in their ability to accumulate polyP, and likely in the threshold P levels at which preferential polyP degradation occurs. This suggests that some cyanobacteria may be more adaptive to P-stressed or P-fluctuating conditions. Our results explain and provide important insights into the variability of polyP observed in aquatic environments where picocyanobacteria are the dominant primary producers.  相似文献   

5.
The dynamic behavior of inorganic polyphosphate (polyP), its accumulation and disappearance, is the most striking aspect of polyP metabolism in bacteria. Imbalance between polyP synthesis and degradation results in fluctuations of polyP by 100- to 1000-fold. We here review recent results with respect to this polyP metabolism in bacteria. PolyP accumulation in response to amino acid starvation, accompanied by increased levels of stringent factors, has been observed in Escherichia coli. Inhibition by stringent factors of polyphosphatase interrupts the dynamic balance between the synthesis and degradation of polyP, accounting for polyP accumulation. Polyphosphate kinase is required for activation of intracellular protein degradation, which is required for adaptation at the onset of amino acid starvation. The adaptation to amino acid starvation is mediated by the network of stringent response and polyP metabolism. PolyP accumulation independent of stringent response has also been observed. Novobiocin, an inhibitor for DNA gyrase, stimulated accumulation of polyP but not that of stringent factors. However, a temperature-sensitive DNA gyrase mutant did not exhibit polyP accumulation at the non-permissive temperature. Antagonistic relationship of polyP to nucleic acid synthesis, explored by Harold, appears to be more complicated. We discuss relationship of Pi regulation to polyP accumulation in E. coli and Klebsiella aerogenes. A function of polyP as an in vivo phosphagen affecting polyP accumulation is also discussed.  相似文献   

6.
The synthesis and degradation of polyphosphate (polyP) are influenced by the energy state of the cell and extracellular phosphate levels. The import of excess phosphate and its incorporation into polyP under phosphate- and energy-rich growth conditions allows organisms to survive when phosphate or energy are depleted. Under phosphate-starvation conditions, phosphate can be recovered from polyP by hydrolysis. When the organism is energy starved, energy can be recovered either by regenerating the high-energy phosphoanhydride bond donor (ATP in most cases) or by hydrolysis of polyP and subsequent secretion of orthophosphate to recharge the transmembrane proton gradient. Understanding how the energy state of the cell and environmental phosphate levels affect polyP metabolism is essential to improving such environmental processes as enhanced biological phosphorus removal, a treatment process that is widely used to remove excess phosphate from wastewater. Manipulation of the genes responsible for polyP metabolism can also be used to improve gene expression from phosphate-starvation promoters and to remove heavy metals from contaminated environments.  相似文献   

7.
Isolated mitochondria of Saccharomyces cerevisiae cells grown on glucose possess acid-soluble inorganic polyphosphate (polyP). Its level strongly depends on phosphate (P(i)) concentration in the culture medium. The polyP level in mitochondria showed 11-fold decrease under 0.8 mM P(i) as compared with 19.3 mM P(i). When spheroplasts isolated from P(i)-starved cells were incubated in the P(i)-complete medium, they accumulated polyP and exhibited a phosphate overplus effect. Under phosphate overplus the polyP level in mitochondria was two times higher than in the complete medium without preliminary P(i) starvation. The average chain length of polyP in mitochondria was of <15 phosphate residues at 19.3 mM P(i) in the culture medium and increased at phosphate overplus. Deoxyglucose inhibited polyP accumulation in spheroplasts, but had no effect on polyP accumulation in mitochondria. Uncouplers (FCCP, dinitrophenol) and ionophores (monensin, nigericin) inhibited polyP accumulation in mitochondria more efficiently than in spheroplasts. Fast hydrolysis of polyP was observed after sonication of isolated mitochondria. Probably, the accumulation of polyP in mitochondria depended on the proton-motive force of their membranes.  相似文献   

8.
9.
The transport of P(i) was characterized in Acinetobacter johnsonii 210A, which is able to accumulate an excessive amount of phosphate as polyphosphate (polyP) under aerobic conditions. P(i) is taken up against a concentration gradient by energy-dependent, carrier-mediated processes. A. johnsonii 210A, grown under P(i) limitation, contains two uptake systems with Kt values of 0.7 +/- 0.2 microM and 9 +/- 1 microM. P(i) uptake via the high-affinity component is drastically reduced by N,N'-dicyclohexylcarbodiimide, an inhibitor of H(+)-ATPase, and by osmotic shock. Together with the presence of P(i)-binding activity in concentrated periplasmic protein fractions, these results suggest that the high-affinity transport system belongs to the group of ATP-driven, binding-protein-dependent transport systems. Induction of this transport system upon transfer of cells grown in the presence of excess P(i) to P(i)-free medium results in a 6- to 10-fold stimulation of the P(i) uptake rate. The constitutive low-affinity uptake system for P(i) is inhibited by uncouplers and can mediate counterflow of P(i), indicating its reversible, secondary nature. The presence of an inducible high-affinity uptake system for P(i) and the ability to decrease the free internal P(i) pool by forming polyP enable A. johnsonii 210A to reduce the P(i) concentration in the aerobic environment to micromolar levels. Under anaerobic conditions, polyP is degraded again and P(i) is released via the low-affinity secondary transport system.  相似文献   

10.
phoU mutants of bacteria are potentially useful for the removal of inorganic phosphate (Pi) from sewage because they can accumulate a large amounts of polyphosphate (polyP). However, the growth of phoU mutants is severely defective and is easily outgrown by revertant(s) that have lost the ability to accumulate polyP during growth in a nutrient-rich medium. We found that a pseudo-revertant, designated LAP[+], that appeared in a culture of an Escherichia coli phoU mutant that could accumulate polyP even after ten serial passages. Reduction in the expression of the Pi-specific transporter Pst in LAP[+] may contribute to relieving stresses such as excess Pi incorporation that could stimulate reversions. The discovery of a LAP[+] provides a clue to generate phoU mutants that accumulate polyP in a stable manner.  相似文献   

11.
Polyphosphate (polyP) is the form in which phosphorus (P) is transferred from extraradical hyphae into arbuscles in the symbiotic stage of arbuscular mycorrhizal fungi. However, polyP dynamics in the presymbiotic stage are less understood. In this study, we aimed to investigate polyP accumulation in Gigaspora margarita as influenced by nitrogen (N) and/or P supply during germination. Spores of G. margarita were incubated on medium with or without P or N addition. PolyP content in the fungal tissue was monitored using a polyP kinase/luciferase system, and polyP synthetic activity was determined with 32P labeling. The results showed that both N and P were necessary for polyP accumulation in germ tubes. Nitrate increased the polyP content in germ tubes, but ammonium did not. Along with germination, polyP content decreased in spores, but increased in germ tubes. 32P labeling indicated that polyP synthetic activity increased in germ tubes along with germination, but was negligible in spores. Our results suggest that, in the presymbiotic stage of G. margarita, uptake of environmental N and P increases polyP content in germ tubes, and that polyP synthesis occurs mainly therein, leading to polyP accumulation. The possible mechanism of transfer of polyP from spores to hyphae remains to be elucidated.  相似文献   

12.
Danielle Davelaar 《Hydrobiologia》1993,253(1-3):179-192
The purpose of this study was to find theoretical evidence that bacteria, in particular those capable of polyphosphate (polyP) metabolism, are directly implicated in sediment phosphorus (P) dynamics and control P metabolism of freshwater ecosystems. The specific attributes and functional role of such bacteria were investigated on successive levels of ecological organization: individual microorganism, microbial community, freshwater ecosystem. The results of this systematic approach have been formulated as a number of hypotheses.
  1. PolyP metabolism is the mechanism which enables individual polyP bacteria to survive and grow under the fluctuating redox conditions characteristic of their habitat at the sediment-water interface.
  2. PolyP metabolism together with anaerobic Mn and/or Fe respiration is the mechanism that confers upon polyP bacteria the advantage required to fill a unique ecological niche within the microbial community to which they belong.
  3. To the freshwater ecosystem as a whole bacterial polyP metabolism is a homeostatic mechanism which limits P availability and makes ecosystem productivity self-correcting as a function of oxygen availability. Bacterial polyP pools in the sediment are vital components of the P cycle. It was suggested that the impact of this bacterial mechanism should be tested with regard to the eutrophication issue.
  相似文献   

13.
Toxoplasma gondii tachyzoites were fractionated by modification of an iodixanol density gradient method previously used for acidocalcisome isolation from Trypanosoma cruzi epimastigotes. Fractions were characterized using electron microscopy, x-ray microanalysis, and enzymatic markers, and it was demonstrated that the heaviest (pellet) fraction contains electron-dense vacuoles rich in phosphorus, calcium, and magnesium, as found before for acidocalcisomes. Staining with 4',6-diamidino-2-phenylindole (DAPI) indicated that poly- phosphate (polyP) was preferentially localized in this fraction together with pyrophosphate (PP(i)). Using an enzyme-based method, millimolar levels (in terms of P(i) residues) of polyP chains of less than 50 residues long and micromolar levels in polyP chains of about 700-800 residues long were found to be preferentially localized in this fraction. The fraction also contained the pyrophosphatase and polyphosphatase activities characteristic of acidocalcisomes. Western blot analysis using antibodies against proteins from micronemes, dense granules, rhoptries, and plasma membrane showed that the acidocalcisomal fraction was not contaminated by these other organelles. T. gondii polyP levels rapidly decreased upon exposure of the parasites to a calcium ionophore (ionomycin), to an inhibitor of the V-H(+)-ATPase (bafilomycin A(1)), or to the alkalinizing agent NH(4)Cl. These changes were in parallel to an increase in intracellular Ca(2+) concentration, suggesting a close association between polyP hydrolysis and Ca(2+) release from the acidocalcisome. These results provide a useful method for the isolation and characterization of acidocalcisomes, showing that they are distinct from other previously recognized organelles present in T. gondii, and provide evidence for the role of polyP metabolism in response to cellular stress.  相似文献   

14.
Hardoyo  K Yamada  H Shinjo  J Kato    H Ohtake 《Applied microbiology》1994,60(10):3485-3490
A recombinant strain of Escherichia coli MV1184, which contains plasmid-borne genes encoding the phosphate-specific transport (Pst) system and polyphosphate (polyP) kinase, accumulated high levels of Pi and released polyP into the medium. PolyP could be separated from the culture supernatant by DEAE-Toyopearl 650M chromatography and identified by high-resolution 31P nuclear magnetic resonance spectroscopy. Once E. coli recombinants accumulated high levels of polyP, they released polyP concomitantly with Pi uptake. PolyP release did not accompany the decrease in the cell density, indicating that it is not simply a result of cell lysis. PolyP release ceased when Pi became depleted in the medium and resumed upon addition of Pi to the medium. When Pi uptake was inhibited by 0.1 mM carbonyl cyanide m-chlorophenylhydrazone (CCCP), no polyP release was observed. Furthermore, neither Pi uptake nor polyP release occurred when cells were incubated at 4 degrees C. These findings suggest that the occurrence of polyP release is a possible mechanism that limits a further increase in the cellular polyP concentration in E. coli recombinants. High-resolution 31P nuclear magnetic resonance spectroscopy also detected a surface pool of polyP in intact cells of the E. coli recombinant. The polyP resonance increased when cells were treated with EDTA and broadened upon the addition of a shift reagent, praseodymium. Although the mechanism of surface polyP accumulation is unclear, surface polyP seems to serve as the source for polyP release.  相似文献   

15.
We report the functional characterization of a soluble pyrophosphatase (TbVSP1), which localizes to acidocalcisomes, a vesicular acidic compartment of Trypanosoma brucei. Depending on the pH and the cofactors Mg(2+) or Zn(2+), both present in the compartment, the enzyme hydrolyzes either inorganic pyrophosphate (PP(i)) (k(cat) = 385 s(-1)) or tripolyP (polyP(3)) and polyphosphate (polyP) of 28 residues (polyP(28)) with k(cat) values of 52 and 3.5 s(-1), respectively. An unusual N-terminal domain of 160 amino acids, containing a putative calcium EF-hand-binding domain, is involved in protein oligomerization. Using double-stranded RNA interference methodology, we produced an inducible bloodstream form (BF) deficient in the TbVSP1 protein (BFiVSP1). The long-chain polyP levels of these mutants were reduced by 60%. Their phenotypes revealed a deficient polyP metabolism, as indicated by their defective response to phosphate starvation and hyposmotic stress. BFiVSP1 did not cause acute virulent infection in mice, demonstrating that TbVSP1 is essential for growth of bloodstream forms in the mammalian host.  相似文献   

16.
Inorganic polyphosphate (polyP) has been identified and measured in human platelets. Millimolar levels (in terms of Pi residues) of short chain polyP were found. The presence of polyP of approximately 70-75 phosphate units was identified by 31P NMR and by urea-polyacrylamide gel electrophoresis of platelet extracts. An analysis of human platelet dense granules, purified using metrizamide gradient centrifugation, indicated that polyP was preferentially located in these organelles. This was confirmed by visualization of polyP in the dense granules using 4',6-diamidino-2-phenylindole and by its release together with pyrophosphate and serotonin upon thrombin stimulation of intact platelets. Dense granules were also shown to contain large amounts of calcium and potassium and both bafilomycin A1-sensitive ATPase and pyrophosphatase activities. In agreement with these results, when human platelets were loaded with the fluorescent calcium indicator Fura-2 acetoxymethyl ester to measure their intracellular Ca2+ concentration ([Ca2+]i), they were shown to possess a significant amount of Ca2+ stored in an acidic compartment. This was indicated by the following: 1) the increase in [Ca2+]i induced by nigericin, monensin, or the weak base, NH4Cl, in the nominal absence of extracellular Ca2 and 2) the effect of ionomycin, which could not take Ca2+ out of acidic organelles and was more effective after alkalinization of this compartment by the previous addition of nigericin, monensin, or NH4Cl. All of these characteristics of the platelet dense granules, together with their known acidity and high density (both by weight and by electron microscopy), are similar to those of acidocalcisomes (volutin granules, polyP bodies) of bacteria and unicellular eukaryotes. The results suggest that acidocalcisomes have been conserved during evolution from bacteria to humans.  相似文献   

17.
The phoU gene is one of the negative regulatory genes of the pho regulon of Escherichia coli. The DNA fragment carrying phoU has been cloned on pBR322 (Amemura et al., J. Bacteriol. 152:692-701, 1982). Further subcloning, Tn1000 insertion inactivation, and complementation tests localized the phoU gene within a 1.1-kilobase region on the cloned DNA fragment. The gene product of phoU was identified by the maxicell method as a protein with an approximate molecular weight of 27,000. A hybrid plasmid that contains a phoU'-lac'Z fused gene was constructed in vitro. This plasmid enabled us to study phoU gene expression by measuring the beta-galactosidase level in the cells. The plasmid was introduced into various regulatory mutants related to the pho regulon, and phoU gene expression in these strains was studied under limited and excess phosphate conditions. It was found that phoU is expressed at a higher level when the cells are cultured under the excess phosphate condition. The higher phoU expression was observed in a phoB mutant and a phoR-phoM double mutant. The implications of these findings for the regulation of pho genes are discussed.  相似文献   

18.
19.
Polyphosphate (polyP) is a ubiquitous biopolymer whose function and metabolism are incompletely understood. The polyphosphate kinase (PPK) of Acinetobacter sp. strain ADP1, an organism that accumulates large amounts of polyP, was purified to homogeneity and characterized. This enzyme, which adds the terminal phosphate from ATP to a growing chain of polyP, is a 79-kDa monomer. PPK is sensitive to magnesium concentrations, and optimum activity occurs in the presence of 3 mM MgCl(2). The optimum pH was between pH 7 and 8, and significant reductions in activity occurred at lower pH values. The greatest activity occurred at 40 degrees C. The half-saturation ATP concentration for PPK was 1 mM, and the maximum PPK activity was 28 nmol of polyP monomers per microg of protein per min. PPK was the primary, although not the sole, enzyme responsible for the production of polyP in Acinetobacter sp. strain ADP1. Under low-phosphate (P(i)) conditions, despite strong induction of the ppk gene, there was a decline in net polyP synthesis activity and there were near-zero levels of polyP in Acinetobacter sp. strain ADP1. Once excess phosphate was added to the P(i)-starved culture, both the polyP synthesis activity and the levels of polyP rose sharply. Increases in polyP-degrading activity, which appeared to be mainly due to a polyphosphatase and not to PPK working in reverse, were detected in cultures grown under low-P(i) conditions. This activity declined when phosphate was added.  相似文献   

20.
J Kato  Y Sakai  T Nikata    H Ohtake 《Journal of bacteriology》1994,176(18):5874-5877
Pseudomonas aeruginosa PAO1 exhibited a positive chemotactic response to P(i). The chemotactic response was induced by P(i) limitation. An alkaline phosphatase (AP) constitutive mutant showed a chemotactic response to P(i), regardless of whether the cells were starved for P(i). Sequence analysis and complementation studies showed that the P. aeruginosa phoU gene was involved both in the regulation of AP expression and in the induction of P(i) taxis. However, unlike AP expression, P(i) taxis was not regulated by the phoB gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号