首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast, Candida guilliermondii, has been widely studied due to its biotechnological interest as well as its biological control potential. It integrates foreign DNA predominantly via ectopic events, likely through the well-known non-homologous end-joining (NHEJ) pathway involving the Ku70p/Ku80p heterodimer, Lig4p, Nej1p and Lif1p. This phenomenon remains highly deleterious for targeted gene knock-out strategies that require the homologous recombination process. Here, we have constructed a ku70 mutant strain derived from the ATCC 6260 reference strain of C. guilliermondii. Following a series of disruption attempts of various genes (FCY1, ADE2 and TRP5), using several previously described dominant selectable markers (URA5, SAT-1 and HPH # ), we demonstrated that the efficiencies of homologous gene targeting in such a NHEJ-deficient strain was very high compared to the wild type strain. The C. guilliermondii ku70 deficient mutant thus represents a powerful recipient strain to knock-out genes efficiently in this yeast.  相似文献   

2.
We investigated the yeast species associated with rotting wood samples obtained from Brazilian ecosystems, with a special focus on cellobiose-fermenting species. About 647 yeast strains were isolated from rotting wood samples collected from the areas of Atlantic rainforest, Cerrado, and Amazonian forest. Eighty-six known species and 47 novel species of yeasts were isolated. Candida boidinii, Cyberlindnera subsufficiens, Meyerozyma guilliermondii, Schwanniomyces polymorphus, Candida natalensis, and Debaryomyces hansenii were the most frequently isolated species. Among the cellobiose-fermenting yeasts, 14 known and three novel yeast species were identified. Scheffersomyces queiroziae, Sc. amazonensis, Yamadazyma sp.1, Hanseniaspora opuntiae, C. jaroonii, and Candida tammaniensis were the main ethanol-producing yeasts. These species also produced an intracellular β-glucosidase responsible for cellobiose hydrolysis. In fermentation assays using a culture medium containing 50 g L?1 cellobiose, ethanol production was observed in all cases; Sc. queiroziae and Sc. amazonensis showed the highest yield, efficiency, and productivity. Candida jaroonii and Yamadazyma sp.1 strains also showed high efficiency in cellobiose fermentation, while C. tammaniensis and H. opuntiae strains produced low amounts of ethanol. This study shows the potential of rotting wood samples from Brazilian ecosystems as a source of yeasts, including new species as well as those with promising biotechnological properties.  相似文献   

3.
The use of new transgenic yeasts in industry carries a potential environmental risk because their dispersal, introducing new artificial genetic combinations into nature, could have unpredictable consequences. This risk could be avoided by using sterile transgenic yeasts that are unable to sporulate and mate with wild yeasts. These sterile yeasts would not survive the annual cyclic harvesting periods, being condemned to disappear in the wineries and vineyards in less than a year. We have constructed new ime1Delta wine yeasts that are unable to sporulate and mate, bear easy-to-detect genetic markers, and quickly disappear in grape must fermentation immediately after sporulation of the yeast population. These sterile yeasts maintained the same biotechnological properties as their parent yeasts without any detectable deleterious effect of the ime1Delta mutation. These yeasts are therefore interesting biotechnologically for food industry applications and for genetically modified microorganism environmental monitoring studies.  相似文献   

4.
5.
Molecular tools for the production of heterologous proteins and metabolic engineering applications of the non-conventional yeast Zygosaccharomyces bailii were developed. The combination of Z. bailii's resistance to relatively high temperature, osmotic pressure and low pH values, with a high specific growth rate renders this yeast potentially interesting for exploitation for biotechnological purposes as well as for the understanding of the biological phenomena and mechanisms underlying the respective resistances. Looking forward to these potential applications, here we present the tools required for the production and the secretion of different heterologous proteins, and one example of a metabolic engineering application of this non-conventional yeast, employing the newly developed molecular tools.  相似文献   

6.
Fermentation and aerobic metabolism of cellodextrins by yeasts.   总被引:1,自引:1,他引:0       下载免费PDF全文
The fermentation and aerobic metabolism of cellodextrins by 14 yeast species or strains was monitored. When grown aerobically, Candida wickerhamii, C. guilliermondii, and C. molischiana metabolized cellodextrins of degree of polymerization 3 to 6. C. wickerhamii and C. molischiana also fermented these substrates, while C. guilliermondii fermented only cellodextrins of degree of polymerization less than or equal to 3. Debaryomyces polymorphus, Pichia guilliermondii, Clavispora lusitaniae, and one of two strains of Kluyveromyces lactis metabolized glucose, cellobiose, and cellotriose when grown aerobically. These yeasts also fermented these substrates, except for K. lactis, which fermented only glucose and cellobiose. The remaining species/strains tested, K. lactis, Brettano-myces claussenii, B. anomalus, K. dobzhanskii, Rhodotorula minuta, and Dekkera intermedia, both fermented and aerobically metabolized glucose and cellobiose. Crude enzyme preparations from all 14 yeast species or strains were tested for ability to hydrolyze cellotriose and cellotretose. Most of the yeasts produced an enzyme(s) capable of hydrolyzing cellotriose. However, with two exceptions, R. minuta and P. guilliermondii, only the yeasts that metabolized cellodextrins of degree of polymerization greater than 3 produced an enzyme(s) that hydrolyzed cellotretose.  相似文献   

7.
The fermentation and aerobic metabolism of cellodextrins by 14 yeast species or strains was monitored. When grown aerobically, Candida wickerhamii, C. guilliermondii, and C. molischiana metabolized cellodextrins of degree of polymerization 3 to 6. C. wickerhamii and C. molischiana also fermented these substrates, while C. guilliermondii fermented only cellodextrins of degree of polymerization less than or equal to 3. Debaryomyces polymorphus, Pichia guilliermondii, Clavispora lusitaniae, and one of two strains of Kluyveromyces lactis metabolized glucose, cellobiose, and cellotriose when grown aerobically. These yeasts also fermented these substrates, except for K. lactis, which fermented only glucose and cellobiose. The remaining species/strains tested, K. lactis, Brettano-myces claussenii, B. anomalus, K. dobzhanskii, Rhodotorula minuta, and Dekkera intermedia, both fermented and aerobically metabolized glucose and cellobiose. Crude enzyme preparations from all 14 yeast species or strains were tested for ability to hydrolyze cellotriose and cellotretose. Most of the yeasts produced an enzyme(s) capable of hydrolyzing cellotriose. However, with two exceptions, R. minuta and P. guilliermondii, only the yeasts that metabolized cellodextrins of degree of polymerization greater than 3 produced an enzyme(s) that hydrolyzed cellotretose.  相似文献   

8.
AIMS: The purpose of this study was to select autochthonous glycosidase producer yeasts with potential use in industrial production of Patagonian red wines. METHODS AND RESULTS: The study was carried out in oenological autochthonous yeasts from Comahue region (Argentinean North Patagonia). A set of screenable yeast phenotypic characteristics indicative of their potential usefulness in more aromatic red wine production was defined and tested in both, Saccharomyces and non-Saccharomyces populations. Twelve isolates showing six different glycosidase phenotypes were selected and they were characterized at species and strain levels using molecular methods. A close correlation between molecular and phenotypic characteristics was observed. Five strains belonging to Candida guilliermondii, C. pulcherrima and Kloeckera apiculata with highest constitutive beta-glucosidase activity levels without anthocyanase activity were discriminated. Some of them also showed constitutive beta-xylosidase and inductive alpha-rhamnosidase activities. CONCLUSIONS: The extension of the selection of oenological yeast to non-Saccharomyces species provided strains possessing novel and interesting oenological characteristics which could have significant implications in the production of more aromatic young red wine. SIGNIFICANCE AND IMPACT OF THE STUDY: As these non-Saccharomyces are indigenous to wine, they can be used in mixed starters at the beginning or as pure cultures at the end fermentation to contribute in enhancing the wine nuance that is typical of this specific area.  相似文献   

9.
Pichia guilliermondii is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B(2)) in response to iron limitation. Using insertion mutagenesis, we isolated P. guilliermondii mutants overproducing riboflavin. Analysis of nucleotide sequence of recombination sites revealed that insertion cassettes integrated into the genome disrupting P. guilliermondii genes similar to the VMA1 gene of Ashbya gossypii and Saccharomyces cerevisiae and FES1 and FRA1 genes of S. cerevisiae. The constructed P. guilliermondiiΔvma1-17 mutant possessed five- to sevenfold elevated riboflavin production and twofold decreased iron cell content as compared with the parental strain. Pichia guilliermondiiΔfra1-45 mutant accumulated 1.8-2.2-fold more iron in the cells and produced five- to sevenfold more riboflavin as compared with the parental strain. Both Δvma1-17 and Δfes1-77 knockout strains could not grow at 37 °C in contrast to the wild-type strain and the Δfra1-45 mutant. Increased riboflavin production by the wild-type strain was observed at 37 °C. Although the Δfes1-77 mutant did not overproduce riboflavin, it showed partial complementation when crossed with previously isolated P. guilliermondii riboflavin-overproducing mutant rib80-22. Complementation analysis revealed that Δvma1-17 and Δfra1-45 mutants are distinct from previously reported riboflavin-producing mutants hit1-1, rib80-22 and rib81-31 of this yeast.  相似文献   

10.
Pichia anomala is a most interesting yeast species, from a number of environmental, industrial and medical aspects. This yeast has been isolated from very diverse natural habitats (e.g. in foods, insects, wastewaters etc.) and it also exhibits wide metabolic and physiological diversity. Some of the activities of P. anomala, particularly its antimicrobial action, make it a very attractive organism for biological control applications in the agri-food sectors of industry. Being a ‘robust’ organism, it additionally has potential to be exploited in bioremediation of environmental pollutants. This paper provides an overview of cell physiological characteristics (growth, metabolism, stress responses) and biotechnological potential (e.g. as a novel biocontrol agent) of P. anomala and compares such properties with other yeast species, notably Saccharomyces cerevisiae, which remains the most exploited industrial microorganism. We await further basic knowledge of P. anomala cell physiology and genetics prior to its fuller commercial exploitation, but the exciting biotechnological potential of this yeast is highlighted in this paper.  相似文献   

11.
12.
Summary The growth kinetics and fermentation behaviour of five non-Saccharomyces yeast species associated with wine-making were evaluated.The results showed that the Candida stellata and Torulspora delbrueckii species are interesting for biotechnological applications in wine-making, whereas small-size apiculate yeasts could be profitably used in the production of wine for vinegar manufacture.  相似文献   

13.
Marine microorganisms play key roles in every marine ecological process, hence the growing interest in studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and aquatic ecosystems. Furthermore, because these microorganisms interact with algae in multiple, complex ways, they constitute an interesting source of novel bioactive compounds with biotechnological potential, such as dehalogenases, antimicrobials, and alga-specific polysaccharidases (e.g., agarases, carrageenases, and alginate lyases). Here, to demonstrate the huge potential of alga-associated organisms and their metabolites in developing future biotechnological applications, we first describe the immense diversity and density of these microbial biofilms. We further describe their complex interactions with algae, leading to the production of specific bioactive compounds and hydrolytic enzymes of biotechnological interest. We end with a glance at their potential use in medical and industrial applications.  相似文献   

14.
Cell wall lytic enzymes are valuable tools for the biotechnologist, with many applications in medicine, the food industry, and agriculture, and for recovering of intracellular products from yeast or bacteria. The diversity of potential applications has conducted to the development of lytic enzyme systems with specific characteristics, suitable for satisfying the requirements of each particular application. Since the first time the lytic enzyme of excellence, lysozyme, was discovered, many investigations have contributed to the understanding of the action mechanisms and other basic aspects of these interesting enzymes. Today, recombinant production and protein engineering have improved and expanded the area of potential applications. In this review, some of the recent advances in specific enzyme systems for bacteria and yeast cells rupture and other applications are examined. Emphasis is focused in biotechnological aspects of these enzymes.  相似文献   

15.
Diabetes mellitus and candidiases   总被引:1,自引:0,他引:1  
Patients in various clinical states of diabetes mellitus (according to the recommendation of the American Diabetes Association) as a primary diagnosis were examined for fungal infections by Candida species. Candida spp. were detected in urine, in the material taken from the mouth cavity, nails, skin lesions, ears and eyes, by cultivation on the Sabouraud agar, CHROMagar Candida, and by saccharide assimilation. In the group of diabetics with symptoms of oral candidiasis and denture stomatitis C. albicans was identified in 8 cases, C. tropicalis in 3, C. parapsilosis in 2; 1 strain of C. guilliermondii was also isolated. In patients with urinary tract infections the presence of C. albicans was shown in 12 cases; C. parapsilosis was detected in 6 cases and two strains of each C. tropicalis and C. krusei were also isolated. In patients with leg ulcers C. albicans (25 cases), C. parapsilosis (5), C. tropicalis (3) and one strain of each C. krusei and C. robusta were isolated. Otomycosis was associated with one strain of C. albicans, C. parapsilosis, C. tropicalis and C. guilliermondii. C. albicans was most frequently associated with onychomycosis, paronychia and endophthalmitis; C. parapsilosis was the second most rated yeast.  相似文献   

16.
Non-albicans Candida species cause 35-65% of all candidemias in the general population, especially in immunosuppressed individuals. Here, we describe a case of a 19-year-old HIV-infected man with pneumonia due to a yeast-like organism. This clinical yeast isolate was identified as Candida guilliermondii through mycological tests. C. guilliermondii was cultivated in brain heart infusion medium for 48 h at 37 degrees C. After sequential centrifugation and concentration steps, the free-cell culture supernatant was obtained and extracellular proteolytic activity was assayed firstly using gelatin-SDS-PAGE. A 50 kDa proteolytic enzyme was detected with activity at physiological pH. This activity was completely blocked by 10 mM phenylmethylsulphonyl fluoride (PMSF), a serine proteinase inhibitor, suggesting that this extracellular proteinase belongs to the serine proteinase class. E-64, a strong cysteine proteinase inhibitor, and pepstatin A, a specific aspartic proteolytic inhibitor, did not interfere with the 50 kDa proteinase. Conversely, a zinc-metalloproteinase inhibitor (1,10-phenanthroline) restrained the proteinase activity released by C. guilliermondii by approximately 50%. Proteinases are a well-known class of enzymes that participate in a vast context of yeast-host interactions. In an effort to establish a functional implication for this extracellular serine-type enzyme, we investigated its capacity to hydrolyze some serum proteins and extracellular matrix components. We demonstrated that the 50 kDa exocellular serine proteinase cleaved human serum albumin, non-immune human immunoglobulin G, human fibronectin and human placental laminin, generating low molecular mass polypeptides. Collectively, these results showed for the first time the ability of an extracellular proteolytic enzyme other than aspartic-type proteinases in destroying a broad spectrum of relevant host proteins by a clinical species of non-albicans Candida.  相似文献   

17.
The hotspots of meiotic recombination in the human genome can be localized by genetic techniques. The resolution of these techniques is in the range of kilobases and depends on the density of the physical markers identifying allelic variants of the chromosomal loci. We thought it would be interesting to localize these sites with higher resolution. Assuming that some human chromosomal sites conserve their propensity for recombination when cloned in yeast, we localized the hotspots of recombination in several yeast artificial chromosomes (YACs) carrying human DNA. A number of potential recombination hotspots could be identified in the clones studied. Among them there are two classes of sites that are particularly recombination prone also in human meiotic cells: sites associated with CpG islands and sites located in the vicinity of long minisatellite sequences.Communicated by G. P. Georgiev  相似文献   

18.
Chitosan, a natural biopolymer presents antifungal activity that seems to be dependent on the interaction of its cationic amino groups and yeast cell surface. In this work we used ion-exchange chromatography to assess the surface charge density of Candida species and subsequently to relate this with their sensitivity profile to chitosan. The ability of several strains from distinct Candida species to interact with strong anionic and cationic exchangers was tested and the yeasts charge surface was assessed by measuring the zeta potential. Our results showed that all the yeast cells tested presented no interaction with the cationic resin and a species-related pattern of interaction was observed with the anionic resin. Specifically, regarding the Q-Sepharose support, Candida glabrata showed the lower retention affinity, followed by Candida albicans, presenting Candida tropicalis an intermediate profile; Candida parapsilosis and Candida guilliermondii revealed a stronger ionic interaction. The yeasts retention synergy in the anionic resin corroborates with the zeta potential outcomes. The behavior observed fit with sensitivity patterns to chitosan as the most susceptible species to chitosan presented higher affinity to the anionic resin in contrast to the less sensitive ones (C. albicans and C. glabrata). This data confirms and reinforces that chitosan activity is probably mediated by an ionic reaction between its amino free groups and ionic charges at the cell surface.  相似文献   

19.
The search for novel biologically active molecules has extended to the screening of organisms associated with less explored environments. In this sense, Oceans, which cover nearly the 67% of the globe, are interesting ecosystems characterized by a high biodiversity that is worth being explored. As such, marine microorganisms are highly interesting as promising sources of new bioactive compounds of potential value to humans. Some of these microorganisms are able to survive in extreme marine environments and, as a result, they produce complex molecules with unique biological interesting properties for a wide variety of industrial and biotechnological applications. Thus, different marine microorganisms (fungi, myxomycetes, bacteria, and microalgae) producing compounds with antioxidant, antibacterial, apoptotic, antitumoral and antiviral activities have been already isolated. This review compiles and discusses the discovery of bioactive molecules from marine microorganisms reported from 2018 onwards. Moreover, it highlights the huge potential of marine microorganisms for obtaining highly valuable bioactive compounds.  相似文献   

20.
E N Makarova 《Mikrobiologiia》1975,44(6):1025-1029
The effect of thiamine and biotin on the processes of cell division, assimilation of glucose, and accumulation of the biomass and nitrogen in the cells was studied with the Candida yeast. The action of the vitamins depended on the source of nitrogen. In some strains, asparagine can substitute for biotin. Biotin has different effect on the production of gamma-aminobutyric acid in Candida pulcherrima, C. guilliermondii. C. tropicalis K3-10. High concentrations of arginine were found in C. guilliermondii var. membranaefaciens in the presence of biotin. The vitamins did not favour the assimilation of nitrate nitrogen in species which were not adapted to this source of nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号