首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Validation of digital whole slide images is crucial to ensure that diagnostic performance is at least equivalent to that of glass slides and light microscopy. The College of American Pathologists Pathology and Laboratory Quality Center recently developed recommendations for internal digital pathology system validation. Following these guidelines we sought to validate the performance of a digital approach for routine diagnosis by using an iPad and digital control widescreen-assisted workstation through a pilot study.

Methods

From January 2014, 61 histopathological slides were scanned by ScanScope Digital Slides Scanner (Aperio, Vista, CA). Two independent pathologists performed diagnosis on virtual slides in front of a widescreen by using two computer devices (ImageScope viewing software) located to different Health Institutions (AOUI Verona) connected by local network and a remote image server using an iPad tablet (Aperio, Vista, CA), after uploading the Citrix receiver for iPad. Quality indicators related to image characters and work-flow of the e-health cockpit enterprise system were scored based on subjective (high vs poor) perception. The images were re-evaluated two weeks apart.

Results

The whole glass slides encountered 10 liver: hepatocarcinoma, 10 renal carcinoma, 10 gastric carcinoma and 10 prostate biopsies: adenocarcinoma, 5 excisional skin biopsies: melanoma, 5 lymph-nodes: lymphoma. 6 immuno- and 5 special stains were available for intra- and internet remote viewing. Scan times averaged two minutes and 54 seconds per slide (standard deviation 2 minutes 34 seconds). Megabytes ranged from 256 to 680 (mean 390) per slide storage. Reliance on glass slide, image quality (resolution and color fidelity), slide navigation time, simultaneous viewers in geographically remote locations were considered of high performance score. Side by side comparisons between diagnosis performed on tissue glass slides versus widescreen were excellent showing an almost perfect concordance (0.81, kappa index).

Conclusions

We validated our institutional digital pathology system for routine diagnostic facing with whole slide images in a cockpit enterprise digital system or iPad tablet. Computer widescreens are better for diagnosing scanned glass slide that iPad. For urgent requests, iPad may be used. Legal aspects have to be soon faced with to permit the clinical use of this technology in a manner that does not compromise patient care.
  相似文献   

2.

Background

Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening.

Results

Herein, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, and proteogenic and metabolic output analysis.

Conclusions

Taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.
  相似文献   

3.

Background

Automated image analysis on virtual slides is evolving rapidly and will play an important role in the future of digital pathology. Due to the image size, the computational cost of processing whole slide images (WSIs) in full resolution is immense. Moreover, image analysis requires well focused images in high magnification.

Methods

We present a system that merges virtual microscopy techniques, open source image analysis software, and distributed parallel processing. We have integrated the parallel processing framework JPPF, so batch processing can be performed distributed and in parallel. All resulting meta data and image data are collected and merged. As an example the system is applied to the specific task of image sharpness assessment. ImageJ is an open source image editing and processing framework developed at the NIH having a large user community that contributes image processing algorithms wrapped as plug-ins in a wide field of life science applications. We developed an ImageJ plug-in that supports both basic interactive virtual microscope and batch processing functionality. For the application of sharpness inspection we employ an approach with non-overlapping tiles. Compute nodes retrieve image tiles of moderate size from the streaming server and compute the focus measure. Each tile is divided into small sub images to calculate an edge based sharpness criterion which is used for classification. The results are aggregated in a sharpness map.

Results

Based on the system we calculate a sharpness measure and classify virtual slides into one of the following categories - excellent, okay, review and defective. Generating a scaled sharpness map enables the user to evaluate sharpness of WSIs and shows overall quality at a glance thus reducing tedious assessment work.

Conclusions

Using sharpness assessment as an example, the introduced system can be used to process, analyze and parallelize analysis of whole slide images based on open source software.
  相似文献   

4.

Introduction

Data processing is one of the biggest problems in metabolomics, given the high number of samples analyzed and the need of multiple software packages for each step of the processing workflow.

Objectives

Merge in the same platform the steps required for metabolomics data processing.

Methods

KniMet is a workflow for the processing of mass spectrometry-metabolomics data based on the KNIME Analytics platform.

Results

The approach includes key steps to follow in metabolomics data processing: feature filtering, missing value imputation, normalization, batch correction and annotation.

Conclusion

KniMet provides the user with a local, modular and customizable workflow for the processing of both GC–MS and LC–MS open profiling data.
  相似文献   

5.

Background

The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications.

Results

We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478× speedup.

Conclusion

Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets.
  相似文献   

6.

Introduction

Processing delays after blood collection is a common pre-analytical condition in large epidemiologic studies. It is critical to evaluate the suitability of blood samples with processing delays for metabolomics analysis as it is a potential source of variation that could attenuate associations between metabolites and disease outcomes.

Objectives

We aimed to evaluate the reproducibility of metabolites over extended processing delays up to 48 h. We also aimed to test the reproducibility of the metabolomics platform.

Methods

Blood samples were collected from 18 healthy volunteers. Blood was stored in the refrigerator and processed for plasma at 0, 15, 30, and 48 h after collection. Plasma samples were metabolically profiled using an untargeted, ultrahigh performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) platform. Reproducibility of 1012 metabolites over processing delays and reproducibility of the platform were determined by intraclass correlation coefficients (ICCs) with variance components estimated from mixed-effects models.

Results

The majority of metabolites (approximately 70% of 1012) were highly reproducible (ICCs?≥?0.75) over 15-, 30- or 48-h processing delays. Nucleotides, energy-related metabolites, peptides, and carbohydrates were most affected by processing delays. The platform was highly reproducible with a median technical ICC of 0.84 (interquartile range 0.68–0.93).

Conclusion

Most metabolites measured by the UPLC–MS/MS platform show acceptable reproducibility up to 48-h processing delays. Metabolites of certain pathways need to be interpreted cautiously in relation to outcomes in epidemiologic studies with prolonged processing delays.
  相似文献   

7.

Background

Steatosis is routinely assessed histologically in clinical practice and research. Automated image analysis can reduce the effort of quantifying steatosis. Since reproducibility is essential for practical use, we have evaluated different analysis methods in terms of their agreement with stereological point counting (SPC) performed by a hepatologist.

Methods

The evaluation was based on a large and representative data set of 970 histological images from human patients with different liver diseases. Three of the evaluated methods were built on previously published approaches. One method incorporated a new approach to improve the robustness to image variability.

Results

The new method showed the strongest agreement with the expert. At 20× resolution, it reproduced steatosis area fractions with a mean absolute error of 0.011 for absent or mild steatosis and 0.036 for moderate or severe steatosis. At 10× resolution, it was more accurate than and twice as fast as all other methods at 20× resolution. When compared with SPC performed by two additional human observers, its error was substantially lower than one and only slightly above the other observer.

Conclusions

The results suggest that the new method can be a suitable automated replacement for SPC. Before further improvements can be verified, it is necessary to thoroughly assess the variability of SPC between human observers.
  相似文献   

8.

Background

Automated image analysis, measurements of virtual slides, and open access electronic measurement user systems require standardized image quality assessment in tissue-based diagnosis.

Aims

To describe the theoretical background and the practical experiences in automated image quality estimation of colour images acquired from histological slides.

Theory, material and measurements

Digital images acquired from histological slides should present with textures and objects that permit automated image information analysis. The quality of digitized images can be estimated by spatial independent and local filter operations that investigate in homogenous brightness, low peak to noise ratio (full range of available grey values), maximum gradients, equalized grey value distribution, and existence of grey value thresholds. Transformation of the red-green-blue (RGB) space into the hue-saturation-intensity (HSI) space permits the detection of colour and intensity maxima/minima. The feature distance of the original image to its standardized counterpart is an appropriate measure to quantify the actual image quality. These measures have been applied to a series of H&;E stained, fluorescent (DAPI, Texas Red, FITC), and immunohistochemically stained (PAP, DAB) slides. More than 5,000 slides have been measured and partly analyzed in a time series.

Results

Analysis of H&;E stained slides revealed low shading corrections (10%) and moderate grey value standardization (10 – 20%) in the majority of cases. Immunohistochemically stained slides displayed greater shading and grey value correction. Fluorescent stained slides are often revealed to high brightness. Images requiring only low standardization corrections possess at least 5 different statistically significant thresholds, which are useful for object segmentation. Fluorescent images of good quality only posses one singular intensity maximum in contrast to good images obtained from H&;E stained slides that present with 2 – 3 intensity maxima.

Conclusion

Evaluation of image quality and creation of formally standardized images should be performed prior to automatic analysis of digital images acquired from histological slides. Spatial dependent and local filter operations as well as analysis of the RGB and HSI spaces are appropriate methods to reproduce evaluated formal image quality.
  相似文献   

9.

Introduction

Non-traumatic osteonecrosis of the femoral head (NTONFH) is a progressive disease, always leading to hip dysfunction if no early intervention was applied. The difficulty for early diagnosis of NTONFH is due to the slight symptoms at early stages as well as the high cost for screening patients by using magnetic resonance imaging.

Objective

The aim was to detect biomarkers of early-stage NTONFH, which was beneficial to the exploration of a cost-effective approach for the early diagnose of the disease.

Methods

Metabolomic approaches were employed in this study to detect biomarkers of early-stage NTONFH (22 patients, 23 controls), based on the platform of ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and the uses of multivariate statistic analysis, putative metabolite identification, metabolic pathway analysis and biomarker analysis.

Results

In total, 33 serum metabolites were found altered between NTONFH group and control group. In addition, glycerophospholipid metabolism and pyruvate metabolism were highly associated with the disease.

Conclusion

The combination of LysoPC (18:3), l-tyrosine and l-leucine proved to have a high diagnostic value for early-stage NTONFH. Our findings may contribute to the protocol for early diagnosis of NTONFH and further elucidate the underlying mechanisms of the disease.
  相似文献   

10.

Background

The finite element method (FEM) is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures) of interest (ROIs) may be irregular and fuzzy.

Methods

A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements.

Results

The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues.

Conclusion

The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information.
  相似文献   

11.

Objectives

To design and fabricate a 3D-printed cervical cage composite of polylactic acid (PLA)/nano-sized and β-tricalcium phosphate (β-TCP).

Results

CAD analysis provided a useful platform to design the preliminary cage. In vitro cell culture and in vivo animal results showed promising results in the biocompatibility of the constructs. Endplate matching evaluation showed better matching degree of 3D-printed cages than those of conventional cages. Biomechanical evaluation showed better mechanical properties of 3D-printed cages than those of conventional cages.

Conclusion

The novel 3D printed PLA/pβ-TCP cage showed good application potential, indicating a novel, feasible, and inexpensive method to manufacture cervical fusion cages.
  相似文献   

12.

Introduction

The surveillance of illegal anabolic practices in bovine meat production is necessary to guarantee consumers’ health. Screening strategies based on the recognition of indirect biological effects are considered by the community as promising tools to overcome some limitations of classical analytical methods and might therefore concur to ensure safer food for the consumer.

Objectives

The present work aims at characterizing the metabolic profile induced in liver by administration of anabolic steroids, and at identifying potential disturbances in the hepatic metabolism.

Methods

A total of 32 liver samples, 16 from untreated bulls and 16 from bulls treated with an ear implant (Revalor-XS®) containing trenbolone acetate (200 mg) and β-estradiol (40 mg), were analyzed following a LC–MS-based metabolomic analysis combining RP and HILIC chromatographic separations. Different multivariate statistical tools were applied to the datasets to select common metabolites that may be considered as potential markers based on their significant changes in concentrations after administration of sexual steroids.

Results

Eight candidate markers were identified. Moreover, a subset of four markers was also validated by a different laboratory that performed the same analysis using an independent instrumental and elaboration platform, confirming the robustness of the results achieved.

Conclusion

This study was performed mimicking experimental conditions that may be used during a potential misuse practice. It is promising in the objective of setting up an analytical strategy to highlight sexual steroids abuse in livestock animals.
  相似文献   

13.

Background

Since microscopic slides can now be automatically digitized and integrated in the clinical workflow, quality assessment of Whole Slide Images (WSI) has become a crucial issue. We present a no-reference quality assessment method that has been thoroughly tested since 2010 and is under implementation in multiple sites, both public university-hospitals and private entities. It is part of the FlexMIm R&D project which aims to improve the global workflow of digital pathology. For these uses, we have developed two programming libraries, in Java and Python, which can be integrated in various types of WSI acquisition systems, viewers and image analysis tools.

Methods

Development and testing have been carried out on a MacBook Pro i7 and on a bi-Xeon 2.7GHz server. Libraries implementing the blur assessment method have been developed in Java, Python, PHP5 and MySQL5. For web applications, JavaScript, Ajax, JSON and Sockets were also used, as well as the Google Maps API. Aperio SVS files were converted into the Google Maps format using VIPS and Openslide libraries.

Results

We designed the Java library as a Service Provider Interface (SPI), extendable by third parties. Analysis is computed in real-time (3 billion pixels per minute). Tests were made on 5000 single images, 200 NDPI WSI, 100 Aperio SVS WSI converted to the Google Maps format.

Conclusions

Applications based on our method and libraries can be used upstream, as calibration and quality control tool for the WSI acquisition systems, or as tools to reacquire tiles while the WSI is being scanned. They can also be used downstream to reacquire the complete slides that are below the quality threshold for surgical pathology analysis. WSI may also be displayed in a smarter way by sending and displaying the regions of highest quality before other regions. Such quality assessment scores could be integrated as WSI's metadata shared in clinical, research or teaching contexts, for a more efficient medical informatics workflow.
  相似文献   

14.

Introduction

Schizophrenia (SCH) is one of the most common psychiatric disorders, which involves impairments in motivation and cognition. The pathological mechanisms underlying SCH are still unknown, and no effective therapies can prevent or treat perfectly the cognitive impairments and deficit symptoms caused by SCH.

Objectives

We aimed to find the lipid expression change in plasma that underlie SCH onset and antipsychotics treatment.

Methods

We performed a data independent acquisition-based untargeted lipidomic approach on a quadrupole-time of flight liquid chromatography coupled to mass spectrometry platform. The plasma lipidomic profiles of SCH patients (n?=?20) pre- and post-antipsychotics treatment were acquired as well as healthy controls (n?=?29). Grouped or paired t-test were used to analyze the data.

Results

Over 1000 features were detected by our lipidomic analysis, of which 445 lipids belonging to 17 lipid species were reliably identified by tandem mass spectrometry. After statistical analysis, 47 lipids belonging to 9 lipid species were found to be dysregulated between naive SCH patients and healthy controls, and 50 lipids belonging to 9 lipid species were found to be dysregulated after antipsychotics treatment. These findings include several new SCH-relevant lipid species such as sphingomyelin, acylcarnitine and ceramide. Four types of lipid expression regulative patterns can be concluded from the above mentioned findings, revealing information about mechanism, side-effect and potential target of antipsychotics.

Conclusions

The work presented here have revealed several new lipid species which are significantly dysregulated in SCH disease development or antipsychotics treatment. These lipids provide new evidence for the pathological studies of SCH and new antipsychotics development, or can be considered as potentially candidate biomarkers for further validation.
  相似文献   

15.

Background

As a dual-modality contrast agent, magnetic microbubbles (MMBs) can not only improve contrast of ultrasound (US) image, but can also serve as a contrast agent of magnetic resonance image (MRI). With the help of MMBs, a new registration method between US image and MRI is presented.

Methods

In this method, MMBs were used in both ultrasound and magnetic resonance imaging process to enhance the most important information of interest. In order to reduce the influence of the speckle noise to registration, semi-automatic segmentations of US image and MRI were carried out by using active contour model. After that, a robust optical flow model between US image segmentation (floating image) and MRI segmentation (reference image) was built, and the vector flow field was estimated by using the Coarse-to-fine Gaussian pyramid and graduated non-convexity (GNC) schemes.

Results

Qualitative and quantitative analyses of multiple group comparison experiments showed that registration results using all methods tested in this paper without MMBs were unsatisfactory. On the contrary, the proposed method combined with MMBs led to the best registration results.

Conclusion

The proposed algorithm combined with MMBs contends with larger deformation and performs well not only for local deformation but also for global deformation. The comparison experiments also demonstrated that ultrasound-MRI registration using the above-mentioned method might be a promising method for obtaining more accurate image information.
  相似文献   

16.

Introduction

Metabolomics is a well-established tool in systems biology, especially in the top–down approach. Metabolomics experiments often results in discovery studies that provide intriguing biological hypotheses but rarely offer mechanistic explanation of such findings. In this light, the interpretation of metabolomics data can be boosted by deploying systems biology approaches.

Objectives

This review aims to provide an overview of systems biology approaches that are relevant to metabolomics and to discuss some successful applications of these methods.

Methods

We review the most recent applications of systems biology tools in the field of metabolomics, such as network inference and analysis, metabolic modelling and pathways analysis.

Results

We offer an ample overview of systems biology tools that can be applied to address metabolomics problems. The characteristics and application results of these tools are discussed also in a comparative manner.

Conclusions

Systems biology-enhanced analysis of metabolomics data can provide insights into the molecular mechanisms originating the observed metabolic profiles and enhance the scientific impact of metabolomics studies.
  相似文献   

17.

Introduction

The chemical sensitivity of urine metabolomics analysis is greatly compromised due to the large amounts of inorganic salts in urine (NaCl, KCl), which are detrimental to analytical instrumentation, e.g. chromatographic columns or mass spectrometers. Traditional desalting approaches applied to urine pretreatment suffer from the chemical losses, which reduce the information depth of analysis.

Objectives

We aimed to test a simple approach for the simultaneous preconcentration and desalting of organic solutes in urine based on the collection of induced bursting bubble aerosols above the surface of urine samples.

Method

Bursting bubbles were generated at ambient conditions by feeding gas through an air diffuser at the bottom of diluted (200 times in ultrapure water) urine solution (50–500 mL). Collected aerosols were analyzed by the direct-infusion electrospray ionization mass spectrometry (ESI–MS).

Results

The simultaneous preconcentration (ca. 6–12 fold) and desalting (ca. six–tenfold) of organic solutes in urine was achieved by the bursting bubble sample pretreatment, which allowed ca. three-times higher number of identified urine metabolites by high-resolution MS analysis. No chemical losses due to bubbling were observed. The increased degree of MS data clustering was demonstrated on the principal component analysis of data sets from the urine of healthy people and from the urine people with renal insufficiency. At least ten times higher sensitivity of trace drug detection in urine was demonstrated for clenbuterol and salbutamol.

Conclusion

Our results indicate the high versatility of bubble bursting as a simple pretreatment approach to enhance the chemical depth and sensitivity of urine analysis. The approach could be attractive for personalized medicine as well as for the diagnostics of renal disorders of different etiology (diabetic nephropathy, chronic renal failure, transplant-associated complications, oncological disorders).

Graphical Abstract

Urine desalting and preconcentration in bursting bubbles.
  相似文献   

18.

Background

Practical applications for data analysis may require combining multiple databases belonging to different owners, such as health centers. The analysis should be performed without violating privacy of neither the centers themselves, nor the patients whose records these centers store. To avoid biased analysis results, it may be important to remove duplicate records among the centers, so that each patient’s data would be taken into account only once. This task is very closely related to privacy-preserving record linkage.

Methods

This paper presents a solution to privacy-preserving deduplication among records of several databases using secure multiparty computation. It is build upon one of the fastest practical secure multiparty computation platforms, called Sharemind.

Results

The tests on ca 10 million records of simulated databases with 1000 health centers of 10000 records each show that the computation is feasible in practice. The expected running time of the experiment is ca. 30 min for computing servers connected over 100 Mbit/s WAN, the expected error of the results is 2?40, and no errors have been detected for the particular test set that we used for our benchmarks.

Conclusions

The solution is ready for practical use. It has well-defined security properties, implied by the properties of Sharemind platform. The solution assumes that exact matching of records is required, and a possible future research would be extending it to approximate matching.
  相似文献   

19.

Background

Hepatitis B infection caused by the hepatitis B virus is one of the most serious viral infections and a global health problem. In the transmission of hepatitis B infection, three different phases, i.e. acute infected, chronically infected, and carrier individuals, play important roles. Carrier individuals are especially significant, because they do not exhibit any symptoms and are able to transmit the infection. Here we assessed the transmissibility associated with different infection stages of hepatitis B and generated an epidemic model.

Methods

To demonstrate the transmission dynamic of hepatitis B, we investigate an epidemic model by dividing the infectious class into three subclasses, namely acute infected, chronically infected, and carrier individuals with both horizontal and vertical transmission.

Results

Numerical results and sensitivity analysis of some important parameters are presented to show that the proportion of births without successful vaccination, perinatally infected individuals, and direct contact rate are highest risk factors for the spread of hepatitis B in the community.

Conclusion

Our work provides a coherent platform for studying the full dynamics of hepatitis B and an effective direction for theoretical work.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号