首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
MS/MS and database searching has emerged as a valuable technology for rapidly analyzing protein expression, localization, and post-translational modifications. The probability-based search engine Mascot has found widespread use as a tool to correlate tandem mass spectra with peptides in a sequence database. Although the Mascot scoring algorithm provides a probability-based model for peptide identification, the independent peptide scores do not correlate with the significance of the proteins to which they match. Herein, we describe a heuristic method for organizing proteins identified at a specified false-discovery rate using Mascot-matched peptides. We call this method PROVALT, and it uses peptide matches from a random database to calculate false-discovery rates for protein identifications and reduces a complex list of peptide matches to a nonredundant list of homologous protein groups. This method was evaluated using Mascot-identified peptides from a Trypanosoma cruzi epimastigote whole-cell lysate, which was separated by multidimensional LC and analyzed by MS/MS. PROVALT was then compared with the two traditional methods of protein identification when using Mascot, the single peptide score and cumulative protein score methods, and was shown to be superior to both in regards to the number of proteins identified and the inclusion of lower scoring nonrandom peptide matches.  相似文献   

2.
Reliable statistical validation of peptide and protein identifications is a top priority in large-scale mass spectrometry based proteomics. PeptideProphet is one of the computational tools commonly used for assessing the statistical confidence in peptide assignments to tandem mass spectra obtained using database search programs such as SEQUEST, MASCOT, or X! TANDEM. We present two flexible methods, the variable component mixture model and the semiparametric mixture model, that remove the restrictive parametric assumptions in the mixture modeling approach of PeptideProphet. Using a control protein mixture data set generated on an linear ion trap Fourier transform (LTQ-FT) mass spectrometer, we demonstrate that both methods improve parametric models in terms of the accuracy of probability estimates and the power to detect correct identifications controlling the false discovery rate to the same degree. The statistical approaches presented here require that the data set contain a sufficient number of decoy (known to be incorrect) peptide identifications, which can be obtained using the target-decoy database search strategy.  相似文献   

3.
Tyrosine nitration is the consequence of a complex machinery of formation and merging of oxygen and nitrogen radicals, and has been associated with both physiological pathways as well as with several human diseases. The latter turned this posttranslational protein modification into an interesting biomarker, being either a consequence of the disease or a factor contributing to the disease onset. However, the interpretation of MS and MS/MS data of peptides containing nitrotyrosine has proven to be very challenging and consequently, the risk of linking MS/MS spectra to incorrect peptide sequences exists and has been reported. Here, we discuss the causes of data misinterpretation and describe a general method to avoid mistakes of MS/MS spectrum misinterpretation. Central in our approach is the reduction of nitrotyrosine into aminotyrosine and the use of the Peptizer algorithm to inspect MS/MS quality-related assumptions.  相似文献   

4.
PRIDE: the proteomics identifications database   总被引:2,自引:0,他引:2  
The advent of high-throughput proteomics has enabled the identification of ever increasing numbers of proteins. Correspondingly, the number of publications centered on these protein identifications has increased dramatically. With the first results of the HUPO Plasma Proteome Project being analyzed and many other large-scale proteomics projects about to disseminate their data, this trend is not likely to flatten out any time soon. However, the publication mechanism of these identified proteins has lagged behind in technical terms. Often very long lists of identifications are either published directly with the article, resulting in both a voluminous and rather tedious read, or are included on the publisher's website as supplementary information. In either case, these lists are typically only provided as portable document format documents with a custom-made layout, making it practically impossible for computer programs to interpret them, let alone efficiently query them. Here we propose the proteomics identifications (PRIDE) database (http://www.ebi.ac.uk/pride) as a means to finally turn publicly available data into publicly accessible data. PRIDE offers a web-based query interface, a user-friendly data upload facility, and a documented application programming interface for direct computational access. The complete PRIDE database, source code, data, and support tools are freely available for web access or download and local installation.  相似文献   

5.
For bottom‐up proteomics, there are wide variety of database‐searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid‐search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection‐–referred to as STEPS‐–utilizes user‐defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal “parameter set” for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true‐positive identifications are demonstrated using datasets derived from immunoaffinity‐depleted blood serum and a bacterial cell lysate, two common proteomics sample types.  相似文献   

6.
Protein phosphorylation, one of the most important protein post-translational modifications, is involved in various biological processes, and the identification of phosphorylation peptides (phosphopeptides) and their corresponding phosphorylation sites (phosphosites) will facilitate the understanding of the molecular mechanism and function of phosphorylation. Mass spectrometry (MS) provides a high-throughput technology that enables the identification of large numbers of phosphosites. PhoPepMass is designed to assist human phosphopeptide identification from MS data based on a specific database of phophopeptide masses and a multivariate hypergeometric matching algorithm. It contains 244,915 phosphosites from several public sources. Moreover, the accurate masses of peptides and fragments with phosphosites were calculated. It is the first database that provides a systematic resource for the query of phosphosites on peptides and their corresponding masses. This allows researchers to search certain proteins of which phosphosites have been reported, to browse detailed phosphopeptide and fragment information, to match masses from MS analyses with defined threshold to the corresponding phosphopeptide, and to compare proprietary phosphopeptide discovery results with results from previous studies. Additionally, a database search software is created and a “two-stage search strategy” is suggested to identify phosphopeptides from tandem mass spectra of proteomics data. We expect PhoPepMass to be a useful tool and a source of reference for proteomics researchers. PhoPepMass is available at https://www.scbit.org/phopepmass/index.html.  相似文献   

7.
Zhang J  Li J  Xie H  Zhu Y  He F 《Proteomics》2007,7(22):4036-4044
Based on the randomized database method and a linear discriminant function (LDF) model, a new strategy to filter out false positive matches in SEQUEST database search results is proposed. Given an experiment MS/MS dataset and a protein sequence database, a randomized database is constructed and merged with the original database. Then, all MS/MS spectra are searched against the combined database. For each expected false positive rate (FPR), LDFs are constructed for different charge states and used to filter out the false positive matches from the normal database. In order to investigate the error of FPR estimation, the new strategy was applied to a reference dataset. As a result, the estimated FPR was very close to the actual FPR. While applied to a human K562 cell line dataset, which is a complicated dataset from real sample, more matches could be confirmed than the traditional cutoff-based methods at the same estimated FPR. Also, though most of the results confirmed by the LDF model were consistent with those of PeptideProphet, the LDF model could still provide complementary information. These results indicate that the new method can reliably control the FPR of peptide identifications and is more sensitive than traditional cutoff-based methods.  相似文献   

8.
The SwePep database is designed for endogenous peptides and mass spectrometry. It contains information about the peptides such as mass, pl, precursor protein and potential post-translational modifications. Here, we have improved and extended the SwePep database with tandem mass spectra, by adding a locally curated version of the global proteome machine database (GPMDB). In peptidomic experiment practice, many peptide sequences contain multiple tandem mass spectra with different quality. The new tandem mass spectra database in SwePep enables validation of low quality spectra using high quality tandem mass spectra. The validation is performed by comparing the fragmentation patterns of the two spectra using algorithms for calculating the correlation coefficient between the spectra. The present study is the first step in developing a tandem spectrum database for endogenous peptides that can be used for spectrum-to-spectrum identifications instead of peptide identifications using traditional protein sequence database searches.  相似文献   

9.
Proteomics, or the direct analysis of the expressed protein components of a cell, is critical to our understanding of cellular biological processes in normal and diseased tissue. A key requirement for its success is the ability to identify proteins in complex mixtures. Recent technological advances in tandem mass spectrometry has made it the method of choice for high-throughput identification of proteins. Unfortunately, the software for unambiguously identifying peptide sequences has not kept pace with the recent hardware improvements in mass spectrometry instruments. Critical for reliable high-throughput protein identification, scoring functions evaluate the quality of a match between experimental spectra and a database peptide. Current scoring function technology relies heavily on ad-hoc parameterization and manual curation by experienced mass spectrometrists. In this work, we propose a two-stage stochastic model for the observed MS/MS spectrum, given a peptide. Our model explicitly incorporates fragment ion probabilities, noisy spectra, and instrument measurement error. We describe how to compute this probability based score efficiently, using a dynamic programming technique. A prototype implementation demonstrates the effectiveness of the model.  相似文献   

10.
Confident identification of peptides via tandem mass spectrometry underpins modern high-throughput proteomics. This has motivated considerable recent interest in the postprocessing of search engine results to increase confidence and calculate robust statistical measures, for example through the use of decoy databases to calculate false discovery rates (FDR). FDR-based analyses allow for multiple testing and can assign a single confidence value for both sets and individual peptide spectrum matches (PSMs). We recently developed an algorithm for combining the results from multiple search engines, integrating FDRs for sets of PSMs made by different search engine combinations. Here we describe a web-server and a downloadable application that makes this routinely available to the proteomics community. The web server offers a range of outputs including informative graphics to assess the confidence of the PSMs and any potential biases. The underlying pipeline also provides a basic protein inference step, integrating PSMs into protein ambiguity groups where peptides can be matched to more than one protein. Importantly, we have also implemented full support for the mzIdentML data standard, recently released by the Proteomics Standards Initiative, providing users with the ability to convert native formats to mzIdentML files, which are available to download.  相似文献   

11.
Data produced from the MudPIT analysis of yeast (S. cerevisiae) and rice (O. sativa) were used to develop a technique to validate single-peptide protein identifications using complementary database search algorithms. This results in a considerable reduction of overall false-positive rates for protein identifications; the overall false discovery rates in yeast are reduced from near 25% to less than 1%, and the false discovery rate of yeast single-peptide protein identifications becomes negligible. This technique can be employed by laboratories utilizing a SEQUEST-based proteomic analysis platform, incorporating the XTandem algorithm as a complementary tool for verification of single-peptide protein identifications. We have achieved this using open-source software, including several data-manipulation software tools developed in our laboratory, which are freely available to download.  相似文献   

12.
Liquid chromatography coupled tandem mass spectrometry (LC‐MS/MS) is an important technique for detecting peptides in proteomics studies. Here, we present an open source software tool, termed IPeak, a peptide identification pipeline that is designed to combine the Percolator post‐processing algorithm and multi‐search strategy to enhance the sensitivity of peptide identifications without compromising accuracy. IPeak provides a graphical user interface (GUI) as well as a command‐line interface, which is implemented in JAVA and can work on all three major operating system platforms: Windows, Linux/Unix and OS X. IPeak has been designed to work with the mzIdentML standard from the Proteomics Standards Initiative (PSI) as an input and output, and also been fully integrated into the associated mzidLibrary project, providing access to the overall pipeline, as well as modules for calling Percolator on individual search engine result files. The integration thus enables IPeak (and Percolator) to be used in conjunction with any software packages implementing the mzIdentML data standard. IPeak is freely available and can be downloaded under an Apache 2.0 license at https://code.google.com/p/mzidentml‐lib/ .  相似文献   

13.
False positive control/estimate in peptide identifications by MS is of critical importance for reliable inference at the protein level and downstream bioinformatics analysis. Approaches based on search against decoy databases have become popular for its conceptual simplicity and easy implementation. Although various decoy search strategies have been proposed, few studies have investigated their difference in performance. With datasets collected on a mixture of model proteins, we demonstrate that a single search against the target database coupled with its reversed version offers a good balance between performance and simplicity. In particular, both the accuracy of the estimate of the number of false positives and sensitivity is at least comparable to other procedures examined in this study. It is also shown that scrambling while preserving frequency of amino acid words can potentially improve the accuracy of false positive estimate, though more studies are needed to investigate the optimal scrambling procedure for specific condition and the variation of the estimate across repeated scrambling.  相似文献   

14.
The white rot basidiomycete, Phanerochaete chrysosporium, employs an array of extracellular enzymes to completely degrade the major polymers of wood: cellulose, hemicellulose and lignin. Towards the identification of participating enzymes, 268 likely secreted proteins were predicted using SignalP and TargetP algorithms. To assess the reliability of secretome predictions and to evaluate the usefulness of the current database, we performed shotgun LC-MS/MS on cultures grown on standard cellulose-containing medium. A total of 182 unique peptide sequences were matched to 50 specific genes, of which 24 were among the secretome subset. Underscoring the rich genetic diversity of P. chrysosporium, identifications included 32 glycosyl hydrolases. Functionally interconnected enzyme groups were recognized. For example, the multiple endoglucanases and processive exocellobiohydrolases observed quite probably attack cellulose in a synergistic manner. In addition, a hemicellulolytic system included endoxylanases, alpha-galactosidase, acetyl xylan esterase, and alpha-l-arabinofuranosidase. Glucose and cellobiose metabolism likely involves cellobiose dehydrogenase, glucose oxidase, and various inverting glycoside hydrolases, all perhaps enhanced by an epimerase. To evaluate the completeness of the current database, mass spectroscopy analysis was performed on a larger and more inclusive dataset containing all possible ORFs. This allowed identification of a previously undetected hypothetical protein and a putative acid phosphatase. The expression of several genes was supported by RT-PCR amplification of their cDNAs.  相似文献   

15.
Proteins are extensively modified after translation due to cellular regulation, signal transduction, or chemical damage. Peptide tandem mass spectrometry can discover post-translational modifications, as well as sequence polymorphisms. Recent efforts have studied modifications at the proteomic scale. In this context, it becomes crucial to assess the accuracy of modification discovery. We discuss methods to quantify the false discovery rate from a search and demonstrate how several features can be used to distinguish valid modifications from search artifacts. We present a tool, PTMFinder, which implements these methods. We summarize the corpus of post-translational modifications identified on large data sets. Thousands of known and novel modification sites are identified, including site-specific modifications conserved over vast evolutionary distances.  相似文献   

16.
Somatic variant analysis of a tumour sample and its matched normal has been widely used in cancer research to distinguish germline polymorphisms from somatic mutations. However, due to the extensive intratumour heterogeneity of cancer, sequencing data from a single tumour sample may greatly underestimate the overall mutational landscape. In recent studies, multiple spatially or temporally separated tumour samples from the same patient were sequenced to identify the regional distribution of somatic mutations and study intratumour heterogeneity. There are a number of tools to perform somatic variant calling from matched tumour-normal next-generation sequencing (NGS) data; however none of these allow joint analysis of multiple same-patient samples. We discuss the benefits and challenges of multisample somatic variant calling and present multiSNV, a software package for calling single nucleotide variants (SNVs) using NGS data from multiple same-patient samples. Instead of performing multiple pairwise analyses of a single tumour sample and a matched normal, multiSNV jointly considers all available samples under a Bayesian framework to increase sensitivity of calling shared SNVs. By leveraging information from all available samples, multiSNV is able to detect rare mutations with variant allele frequencies down to 3% from whole-exome sequencing experiments.  相似文献   

17.
Many software tools have been developed for the automated identification of peptides from tandem mass spectra. The accuracy and sensitivity of the identification software via database search are critical for successful proteomics experiments. A new database search tool, PEAKS DB, has been developed by incorporating the de novo sequencing results into the database search. PEAKS DB achieves significantly improved accuracy and sensitivity over two other commonly used software packages. Additionally, a new result validation method, decoy fusion, has been introduced to solve the issue of overconfidence that exists in the conventional target decoy method for certain types of peptide identification software.  相似文献   

18.
19.

Background

Early diagnosis and treatment of Mycobacterium tuberculosis infection can prevent most deaths resulting from this pathogen; however, multidrug-resistant strains present serious threats to global tuberculosis control and prevention efforts. In this study, we identified antigens that could be used for the serodiagnosis of drug-resistant M. tuberculosis strains, using a proteomics-based analysis.

Results

Serum from patients infected with drug-resistant or drug-susceptible M. tuberculosis strains and healthy controls was subjected to two-dimensional gel electrophoresis using a western blot approach. This procedure identified nine immunoreactive proteins, which were subjected to MALDI-TOF-MS analysis. Six recombinant proteins, namely rRv2031c, rRv0444c, rRv2145c, rRv3692, rRv0859c, and rRv3040, were expressed and used to determine the immuno-reactivity of 100 serum samples. Antibody reactivity against rRv2031c, rRv3692, and rRv0444c was consistently observed. Among them, the best sensitivity and specificity of rRv3692 were 37% and 95% respectively. Furthermore, when rRv2031c and rRv3692 or rRv2031c, rRv3692, and rRv0444c were combined in 2:1 or equal amounts, the assay sensitivity and specificity were improved to 56.7% and 100% respectively.

Conclusions

These results suggest that Rv2031c, Rv3692, and Rv0444c are possible candidate biomarkers for effective use in the serodiagnosis of drug-resistant tuberculosis infections, and a combined formula of these antigens should be considered when designing a subunit assay kit.  相似文献   

20.
Shotgun proteomics yields tandem mass spectra of peptides that can be identified by database search algorithms. When only a few observed peptides suggest the presence of a protein, establishing the accuracy of the peptide identifications is necessary for accepting or rejecting the protein identification. In this protocol, we describe the properties of peptide identifications that can differentiate legitimately identified peptides from spurious ones. The chemistry of fragmentation, as embodied in the 'mobile proton' and 'pathways in competition' models, informs the process of confirming or rejecting each spectral match. Examples of ion-trap and tandem time-of-flight (TOF/TOF) mass spectra illustrate these principles of fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号