首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
β-Transducin repeat-containing protein (β-TrCP), an E3 ligase, promotes the degradation of substrate proteins in response to various stimuli. Even though several β-TrCP substrates have been identified to date, limited information of its upstream regulators is available. Here, we showed that SIRT1 suppresses β-TrCP protein synthesis via post-translational degradation. SIRT1 depletion led to a significant increase in the β-TrCP accumulation without affecting the mRNA level. Consistently, β-TrCP protein accumulation induced by resveratrol was further enhanced upon SIRT1 depletion. Rescue of SIRT1 reversed the effect of resveratrol, leading to reduced β-TrCP protein levels. Proteasomal inhibition led to recovery of β-TrCP in cells with SIRT1 overexpression. Notably, the recovered β-TrCP colocalized mostly with SIRT1. Thus, SIRT1 acts as a negative regulator of β-TrCP synthesis via promoting protein degradation.  相似文献   

3.
The critical tumor suppressor PTEN is regulated by numerous post-translational modifications including phosphorylation, acetylation and ubiquitination. Ubiquitination of PTEN was reported to control both PTEN stability and nuclear localization. Notably, the HECT E3-ligase NEDD4–1 was identified as the ubiquitin ligase for PTEN, mediating its degradation and down-stream events. However, the mechanisms how NEDD4–1 is regulated by up-stream signaling pathways or interaction with other proteins in promoting PTEN degradation remain largely unclear. In the present study, we identified that the adaptor protein Numb, which is demonstrated to be a novel binding partner of NEDD4–1, plays important roles in controlling PTEN ubiquitination through regulating NEDD4–1 activity and the association between PTEN and NEDD4–1. Furthermore, we provided data to show that Numb regulates cell proliferation and glucose metabolism in a PTEN-dependent manner. Overall, our study revealed a novel regulation of the well-documented NEDD4–1/PTEN pathway and its oncogenic behavior.  相似文献   

4.
5.
6.
Bcl-2-interacting mediator of cell death (Bim) is a pro-apoptotic B-cell lymphoma 2 family member implicated in numerous apoptotic stimuli. In particular, Bim is required for cell death mediated by antimitotic agents, however, mitotic regulation of Bim remains poorly understood. Here, we show that the major splice variant of Bim, BimEL, is regulated during mitosis by the Aurora A kinase and protein phosphatase 2A (PP2A). We observed that BimEL is phosphorylated by Aurora A early in mitosis and reversed by PP2A after mitotic exit. Aurora A phosphorylation stimulated binding of BimEL to the F-box protein beta-transducin repeat containing E3 ubiquitin protein ligase and promoted ubiquitination and degradation of BimEL. These findings describe a novel mechanism by which the oncogenic kinase Aurora A promotes cell survival during mitosis by downregulating proapoptotic signals. Notably, we observed that knockdown of Bim significantly increased resistance of cells to the Aurora A inhibitor MLN8054. Inhibitors of Aurora A are currently under investigation as cancer chemotherapeutics and our findings suggest that efficacy of this class of drugs may function in part by enhancing apoptotic activity of BimEL.  相似文献   

7.
8.
9.
Receptor-like tyrosine kinase (RYK) functions as a transmembrane receptor for the Wnt family of secreted protein ligands. Although RYK undergoes endocytosis in response to Wnt, the mechanisms that regulate its internalization and concomitant activation of Wnt signaling are unknown. We discovered that RYK both physically and functionally interacts with the E3 ubiquitin ligase Mindbomb 1 (MIB1). Overexpression of MIB1 promotes the ubiquitination of RYK and reduces its steady-state levels at the plasma membrane. Moreover, we show that MIB1 is sufficient to activate Wnt/β-catenin (CTNNB1) signaling and that this activity depends on endogenous RYK. Conversely, in loss-of-function studies, both RYK and MIB1 are required for Wnt-3A-mediated activation of CTNNB1. Finally, we identify the Caenorhabditis elegans orthologue of MIB1 and demonstrate a genetic interaction between ceMIB and lin-18/RYK in vulva development. These findings provide insights into the mechanisms of Wnt/RYK signaling and point to novel targets for the modulation of Wnt signaling.  相似文献   

10.
It has been known that p53 can be induced and activated by hypoxia, an abnormal condition that often occurs in rapidly growing solid tumors or when normal tissues undergo ischemia. Although the ATR-Chk1 kinase cascade was associated with hypoxia-induced p53 activation, molecules that directly link this hypoxia-ATR-Chk1 pathway to p53 activation have been elusive. Here, we showed that hypoxia could induce phosphorylation of MDMX at Ser-367 and enhance the binding of this phosphorylated MDMX to 14-3-3γ, consequently leading to p53 activation. A Chk1 inhibitor or knockdown of ATR and Chk1 inhibited the phosphorylation of MDMX at Ser-367 and impaired the binding of MDMX to 14-3-3γ in addition to p53 activation in response to hypoxia. In primary mouse embryonic fibroblast cells that harbor a mutant MDMX, including the S367A mutation, hypoxia also failed to induce the binding of this mutant MDMX to 14-3-3γ and to activate p53 and its direct targets. These results demonstrate that hypoxia can activate p53 through inactivation of MDMX by the ATR-Chk1-MDMX-14-3-3γ pathway.  相似文献   

11.
12.
Accurate DNA replication requires a complex interplay of many regulatory proteins at replication origins. The CMG (Cdc45·Mcm2-7·GINS) complex, which is composed of Cdc45, Mcm2-7, and the GINS (Go-Ichi-Ni-San) complex consisting of Sld5 and Psf1 to Psf3, is recruited by Cdc6 and Cdt1 onto origins bound by the heterohexameric origin recognition complex (ORC) and functions as a replicative helicase. Trypanosoma brucei, an early branched microbial eukaryote, appears to express an archaea-like ORC consisting of a single Orc1/Cdc6-like protein. However, unlike archaea, trypanosomes possess components of the eukaryote-like CMG complex, but whether they form an active helicase complex, associate with the ORC, and regulate DNA replication remains unknown. Here, we demonstrated that the CMG complex is formed in vivo in trypanosomes and that Mcm2-7 helicase activity is activated by the association with Cdc45 and the GINS complex in vitro. Mcm2-7 and GINS proteins are confined to the nucleus throughout the cell cycle, whereas Cdc45 is exported out of the nucleus after DNA replication, indicating that nuclear exclusion of Cdc45 constitutes one mechanism for preventing DNA re-replication in trypanosomes. With the exception of Mcm4, Mcm6, and Psf1, knockdown of individual CMG genes inhibits DNA replication and cell proliferation. Finally, we identified a novel Orc1-like protein, Orc1b, as an additional component of the ORC and showed that both Orc1b and Orc1/Cdc6 associate with Mcm2-7 via interactions with Mcm3. All together, we identified the Cdc45·Mcm2-7·GINS complex as the replicative helicase that interacts with two Orc1-like proteins in the unusual origin recognition complex in trypanosomes.  相似文献   

13.
PR-Set7/Set8/KMT5a is the sole histone H4 lysine 20 monomethyltransferase (H4K20me1) in metazoans and is essential for proper cell division and genomic stability. We unexpectedly discovered that normal cellular levels of monomethylated histone H3 lysine 9 (H3K9me1) were also dependent on PR-Set7, but independent of its catalytic activity. This observation suggested that PR-Set7 interacts with an H3K9 monomethyltransferase to establish the previously reported H4K20me1-H3K9me1 trans-tail ‘histone code’. Here we show that PR-Set7 specifically and directly binds the C-terminus of the Riz1/PRDM2/KMT8 tumor suppressor and demonstrate that the N-terminal PR/SET domain of Riz1 preferentially monomethylates H3K9. The PR-Set7 binding domain was required for Riz1 nuclear localization and maintenance of the H4K20me1-H3K9me1 trans-tail ‘histone code’. Although Riz1 can function as a repressor, Riz1/H3K9me1 was dispensable for the repression of genes regulated by PR-Set7/H4K20me1. Frameshift mutations resulting in a truncated Riz1 incapable of binding PR-Set7 occur frequently in various aggressive cancers. In these cancer cells, expression of wild-type Riz1 restored tumor suppression by decreasing proliferation and increasing apoptosis. These phenotypes were not observed in cells expressing either the Riz1 PR/SET domain or PR-Set7 binding domain indicating that Riz1 methyltransferase activity and PR-Set7 binding domain are both essential for Riz1 tumor suppressor function.  相似文献   

14.
Lafora disease (LD, OMIM254780, ORPHA501) is a rare neurodegenerative form of epilepsy related to mutations in two proteins: laforin, a dual specificity phosphatase, and malin, an E3-ubiquitin ligase. Both proteins form a functional complex, where laforin recruits specific substrates to be ubiquitinated by malin. However, little is known about the mechanism driving malin–laforin mediated ubiquitination of its substrates. In this work we present evidence indicating that the malin–laforin complex interacts physically and functionally with the ubiquitin conjugating enzyme E2-N (UBE2N). This binding determines the topology of the chains that the complex is able to promote in the corresponding substrates (mainly K63-linked polyubiquitin chains). In addition, we demonstrate that the malin–laforin complex interacts with the selective autophagy adaptor sequestosome-1 (p62). Binding of p62 to the malin–laforin complex allows its recognition by LC3, a component of the autophagosomal membrane. In addition, p62 enhances the ubiquitinating activity of the malin–laforin E3-ubiquitin ligase complex. These data enrich our knowledge on the mechanism of action of the malin–laforin complex as an E3-ubiquitin ligase and reinforces the role of this complex in targeting substrates toward the autophagy pathway.  相似文献   

15.
16.
TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis. Our overexpression and knockdown experiments demonstrate that TRIM32 sensitizes cells to TNFα-induced apoptosis. The RING domain is necessary for this pro-apoptotic function of TRM32 as well as being responsible for its E3 ligase activity. TRIM32 colocalizes and directly interacts with X-linked inhibitor of apoptosis (XIAP), a well known cancer therapeutic target, through its coiled-coil and NHL domains. TRIM32 overexpression enhances XIAP ubiquitination and subsequent proteasome-mediated degradation, whereas TRIM32 knockdown has the opposite effect, indicating that XIAP is a substrate of TRIM32. In vitro reconstitution assay reveals that XIAP is directly ubiquitinated by TRIM32. Our novel results collectively suggest that TRIM32 sensitizes TNFα-induced apoptosis by antagonizing XIAP, an anti-apoptotic downstream effector of TNFα signaling. This function may be associated with TRIM32-mediated tumor suppressive mechanism.  相似文献   

17.
18.
19.
20.
A phosphoinositide signalling cycle is present in the nucleus, independent of that which occurs at the plasma membrane. The key enzyme involved in this cycle is phospholipase (PLC) β1. This nuclear cycle has been shown to be involved in both cell proliferation and differentiation. Here, we report that nuclear PLCβ1 activity is upregulated during differentiation of 3T3-L1 adipocytes. During differentiation there are two phases of PLCβ1 activity; the first occurs within 5 min of treatment with differentiation media, does not require new PLCβ1 to enter the nucleus and is regulated by pERK and PKC α while the second phase occurs from day 2 of differentiation, requires new PLCβ1 protein to enter the nucleus and is independent of regulation by pERK and PKC α. Over-expression with the PLC mutants, Δmk (which lacks the ERK phosphorylation site) and M2B (which lacks the nuclear localisation sequence), revealed that both phases of PLCβ1 activity are required for terminal differentiation to occur. Inhibition of PLCβ1 activity prevents the upregulation of cyclinD3 and cdk4 protein, suggesting that PLCβ1 plays a role in the control of the cell cycle during differentiation. These results indicate nuclear PLCβ1 as a key regulator of adipocyte differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号