首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kimple ME  Sondek J 《BioTechniques》2002,33(3):578, 580, 584-578, 8 passim
Affinity tags are not only used for the expression and purification of recombinant proteins but also for the detection of protein-protein interactions. Common problems with many affinity tags are excessive length, which may interfere with the structure and function of tagged proteins, and low affinity and/or specificity for primary detection and purification agents. Preliminary results suggest that the C-terminalfive residues of the Drosophila protein NorpA, based on the short, covalent interaction they make with the N-terminal PDZ domain (PDZI) of InaD, are useful as a general affinity tag. First, a PDZI-alkaline phosphatase fusion protein specifically detects both its physiological ligand and a heterologous protein expressing the NorpA C-terminal five residues. The interaction of PDZI with a NorpA-tagged protein is reversible by a reducing agent, which allows nitrocellulose membranes to be stripped completely and reused. In addition, a NorpA-tagged protein can specifically bind to immobilized PDZI resin, while other cellular proteins are washed through. After washing, the NorpA-tagged protein is eluted by a reducing buffer. The NorpA tag's short length makes it the smallest affinity tag available, and its specific and high-affinity interaction with PDZI could yield a powerful system that improves on currently available technology.  相似文献   

2.
Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG‐binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin‐binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three‐tag system comprised of CBP, streptavidin‐binding peptide (SBP) and hexa‐histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP‐His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems.  相似文献   

3.
4.
Fusion of peptide‐based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram‐range amounts of proteins. IMAC‐Ni(II) columns have become the natural partners of 6xHis‐tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His‐tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur‐containing molecules. In this work, we evaluated two different cysteine‐ and histidine‐containing six amino acid tags linked to the N‐terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine‐containing tagged GFPs were able to bind to IMAC‐Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC‐Ni(II) system reaches less than 20% recovery of the cysteine‐containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC‐Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The widespread success of affinity tags throughout the biological sciences has prompted interest in developing new and convenient labeling strategies. Affinity tags are well-established tools for recombinant protein immobilization and purification. More recently these tags have been utilized for selective biological targeting towards multiplexed protein detection in numerous imaging applications as well as for drug-delivery. Recently, we discovered a phage-display selected cyclic peptide motif that was shown to bind selectively to NeutrAvidin and avidin but not to the structurally similar streptavidin. Here, we have exploited this selectivity to develop an affinity tag based on the evolved DRATPY moiety that is orthogonal to known Strep-tag technologies. As proof of principle, the divalent AviD-tag (Avidin-Di-tag) was expressed as a Green Fluorescent Protein variant conjugate and exhibited superior immobilization and elution characteristics to the first generation Strep-tag and a monovalent DRATPY GFP-fusion protein analogue. Additionally, we demonstrate the potential for a peptide based orthogonal labeling strategy involving our divalent AviD-tag in concert with existing streptavidin-based affinity reagents. We believe the AviD-tag and its unique recognition properties will provide researchers with a useful new affinity reagent and tool for a variety of applications in the biological and chemical sciences.  相似文献   

6.
Affinity tags have become highly popular tools for purifying recombinant proteins from crude extracts by affinity chromatography. Besides, short peptides are excellent ligands for affinity chromatography, as they are not likely to cause an immune response in case of leakage into the product, they are more stable than antibodies to elution and cleaning conditions and they usually have very acceptable selectivity. Hydropathically complementary peptides designed de novo show enough selectivity to be used successfully as peptide ligands for protein purification from crude extracts. Recognition specificity and selectivity in the interaction between the complementary peptide pair His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu and Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe have been demonstrated by other authors. In this work, we designed a recombinant protein purification method using a peptide affinity tag that binds to a peptide-binding partner immobilized on a chromatographic matrix. The enhanced green fluorescent protein expressed (EGFP) in Escherichia coli was used as the model. The peptide Gly-Gly-Gly-His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu was synthesized by solid phase using the Fmoc chemistry and immobilized in NHS-Sepharose (PC-Sepharose). Gly residues were added as a spacer arm at the N terminus. The EGFP was expressed either with the fusion tag Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe on the C terminus (EGFP-CPTag) or without any fusion tag. After cell disruption, the extract was directly applied to the PC-Sepharose column equilibrated with 20mM sodium phosphate buffer, pH 7.0. The adsorbed EGFP-CPTag was then eluted with 1M Tris. The yield was 98% and the purification factor 4.6. By contrast, EGFP without tag pass through without interacting with the PC-Sepharose column. The method designed can be applied for the purification of other recombinant proteins.  相似文献   

7.
Tsai A  Carstens RP 《Nature protocols》2006,1(6):2820-2827
This protocol describes a method that we developed to adapt the tandem affinity purification (TAP) approach for use in mammalian cells. The protocol involves fusing a protein of interest with a tandem tag consisting of two FLAG tags (FF) followed by two protein-A immunoglobulin G (IgG) binding domains (ZZ). The protocol improves upon previously published TAP approaches by employing FLAG in place of calmodulin binding peptide (CBP) with resulting higher recovery during purification. In addition, we use a bicistronic expression system that ensures recovery of stably transfected cell lines expressing easily detectable levels of the protein of interest. A method is also presented for generating cytoplasmic and nuclear extracts, which extends use of this protocol to identify protein-protein interactions occurring specifically in the cytoplasm or nucleus. This protocol facilitates the preparation of partially purified recombinant protein and identification of protein-protein interactions in mammalian cell culture models. The protocol can be completed in 34 h.  相似文献   

8.
A conventional affinity protein purification system often requires a separate protease to separate the target protein from the affinity tag. This paper describes a unique protein purification system in which the target protein is fused to the C-terminus of a modified protein splicing element (intein). A small affinity tag is inserted in a loop region of the endonuclease domain of the intein to allow affinity purification. Specific mutations at the C-terminal splice junction of the intein allow controllable C-terminal peptide bond cleavage. The cleavage is triggered by addition of thiols such as dithiothreitol or free cysteine, resulting in elution of the target protein while the affinity-tagged intein remains immobilized on the affinity column. This system eliminates the need for a separate protease and allows purification of a target protein without the N-terminal methionine. We have constructed general cloning vectors and demonstrated single-column purification of several proteins. In addition, we discuss several factors that may affect the C-terminal peptide bond cleavage activity.  相似文献   

9.
The detection and purification of proteins are often time-consuming and frequently involve complicated protocols. The addition of a peptide tag to recombinant proteins can make this process more efficient. Many of the commonly used tags, such as Flag™, Myc, HA and V5 are recognized by specific monoclonal antibodies and therefore, allow immunoaffinity-based purification. Enhancing the current scope of flexibility in using diverse peptide tags, we report here the development of a novel, short polypeptide tag (Tab2) for detection and purification of recombinant proteins. The Tab2 epitope corresponds to the NH2-terminal seven amino acid residues of human TGF. A monoclonal anti-Tab2 antibody was raised and characterized. To investigate the potential of this peptide sequence as a novel tag for recombinant proteins, we expressed several different recombinant proteins containing this tag in E. coli, baculovirus, and mammalian cells. The data presented demonstrates the Tab2 tag–anti-Tab2 antibody combination is a reliable tool enabling specific Western blot detection, FACS analysis, and immunoprecipitation as well as non-denaturing protein affinity purification.  相似文献   

10.
Protein chip technology is essential for high-throughput functional proteomics. We developed a novel protein tag consisting of five tandem cysteine repeats (Cys-tag) at termini of proteins. The Cys-tag was designed to allow covalent attachment of proteins to the surface of a maleimide-modified, diamond-like, carbon-coated silicon substrate. As model proteins, we created an enhanced green fluorescent protein (EGFP) and an EGFP-stathmin fusion protein, both of which contained a Cys-tag. We also included an oligo-histidine tag to allow its purification by the use of Ni beads, and we expressed the protein in Escherichia coli. The purified Cys-tagged EGFP could be captured on the maleimide-coated substrate efficiently so that 50 pg of the fusion protein was detected by fluorescence, and as little as 5 pg was immunodetected by combination with enhanced chemiluminescence. This highly sensitive immunodetection may be due to the strong covalent binding of the Cys-tag to the substrate combined with efficient exposure of the protein to the surrounding solution. Thus, the Cys-tag should be useful for developing a novel protein printing method for protein chips that requires very low amounts of protein and can be used for high-performance analysis of protein-ligand interactions.  相似文献   

11.
Affinity tags are highly efficient tools for protein purification. They allow the purification of virtually any protein without any prior knowledge of its biochemical properties. The use of affinity tags has therefore become widespread in several areas of research e.g., high throughput expression studies aimed at finding a biological function to large numbers of yet uncharacterized proteins. In some cases, the presence of the affinity tag in the recombinant protein is unwanted or may represent a disadvantage for the projected application of the protein, like for clinical use. Therefore, an increasing number of approaches are available at present that are designed for the removal of the affinity tag from the recombinant protein. Most of these methods employ recombinant endoproteases that recognize a specific sequence. These process enzymes can subsequently be removed from the process by affinity purification, since they also include a tag. Here, a survey of the most common affinity tags and the current methods for tag removal is presented, with special emphasis on the removal of N-terminal histidine tags using TAGZyme, a system based on exopeptidase cleavage. In the quest to reduce the significant costs associated with protein purification at large scale, relevant aspects involved in the development of downstream processes for pharmaceutical protein production that incorporate a tag removal step are also discussed. A comparison of the yield of standard vs. affinity purification together with an example of tag removal using TAGZyme is also included.  相似文献   

12.
The Strep tag is a peptide sequence that is able to mimic biotin's ability to bind to streptavidin. Sequences of Strep tags from 0 to 5 have been appended to the N-terminus of a model protein, the Stefin A Quadruple Mutant (SQM) peptide aptamer scaffold, and the recombinant fusion proteins expressed. The affinities of the proteins for streptavidin have been assessed as a function of the number of tags inserted using a variety of labelled and label-free bioanalytical and surface based methods (Western blots, microarray assays and surface plasmon resonance spectroscopy). The binding affinity increases with the number of tags across all assays, reaching nanomolar levels with 5 inserts, an observation assigned to a progressive increase in the probability of a binding interaction occurring. In addition a novel interfacial FRET based assay has been developed for generic Strep tag interactions, which utilises a conventional microarray scanner and bypasses the requirement for expensive lifetime imaging equipment. By labelling both the tagged StrepX-SQM(2) and streptavidin targets, the conjugate is primed for label-free FRET based displacement assays.  相似文献   

13.
Although the physiological function of the prion protein remains unknown, in vitro experiments suggest that the protein may bind copper (II) ions and play a role in copper transport or homoeostasis in vivo. The unstructured N-terminal region of the prion protein has been shown to bind up to six copper (II) ions, with each of these ions co-ordinated by a single histidine imidazole and nearby backbone amide nitrogen atoms. Individually, these sites have micromolar affinities, which is weaker than would be expected of a true cuproprotein. In the present study, we show that with subsaturating levels of copper, different forms of co-ordination will occur, which have higher affinity. We have investigated the copper-binding properties of two peptides representing the known copper-binding regions of the prion protein: residues 57-91, which contains four tandem repeats of the octapeptide GGGWGQPH, and residues 91-115. Using equilibrium dialysis and spectroscopic methods, we unambiguously demonstrate that the mode of copper co-ordination in both of these peptides depends on the number of copper ions bound and that, at low copper occupancy, copper ions are co-ordinated with sub-micromolar affinity by multiple histidine imidazole groups. At pH 7.4, three different modes of copper co-ordination are accessible within the octapeptide repeats and two within the peptide comprising residues 91-115. The highest affinity copper (II)-binding modes cause self-association of both peptides, suggesting a role for copper (II) in controlling prion protein self-association in vivo.  相似文献   

14.
Genetically encoded tags attached to proteins of interest are widely exploited for proteome analysis. Here, we present Tb(3+)-binding peptides (TBPs) which can be used for both luminescent measurements and affinity purification of proteins. TBPs consist of acidic amino acid residues and tryptophan residues which serve as Tb(3+)-binding sites and sensitizers for Tb(3+) luminescence, respectively. The Tb(3+) complexes of TBPs fused to a target protein exhibited luminescence characteristic of Tb(3+) by excitation of the tryptophan residue, and fusion proteins fused to one of the TPBs were successfully isolated from Escherichia coli cell lysate by affinity chromatography with a Tb(3+)-immobilized solid support.  相似文献   

15.
Small peptide tags are often fused to proteins to allow their affinity purification in high-throughput structure analysis schemes. To assess the compatibility of small peptide tags with protein crystallization and to examine if the tags alter the three-dimensional structure, the N-terminus of the chicken alpha-spectrin SH3 domain was labeled with a His6 tag and the C-terminus with a StrepII tag. The resulting protein, His6-SH3-StrepII, consists of 83 amino-acid residues, 23 of which originate from the tags. His6-SH3-StrepII is readily purified by dual affinity chromatography, has very similar biophysical characteristics as the untagged protein domain and crystallizes readily from a number of sparse-matrix screen conditions. The crystal structure analysis at 2.3 A resolution proves native-like structure of His6-SH3-StrepII and shows the entire His6 tag and part of the StrepII tag to be disordered in the crystal. Obviously, the fused affinity tags did not interfere with crystallization and structure analysis and did not change the protein structure. From the extreme case of His6-SH3-StrepII, where affinity tags represent 27% of the total fusion protein mass, we extrapolate that protein constructs with N- and C-terminal peptide tags may lend themselves to biophysical and structural investigations in high-throughput regimes.  相似文献   

16.
A large variety of fusion tags have been developed to improve protein expression, solubilization, and purification. Nevertheless, these tags have been combined in a rather limited number of composite tags and usually these composite tags have been dictated by traditional commercially‐available expression vectors. Moreover, most commercially‐available expression vectors include either N‐ or C‐terminal fusion tags but not both. Here, we introduce TSGIT, a fusion‐tag system composed of both N‐ and a C‐terminal composite fusion tags. The system includes two affinity tags, two solubilization tags and two cleavable tags distributed at both termini of the protein of interest. Therefore, the N‐ and the C‐terminal composite fusion tags in TSGIT are fully orthogonal in terms of both affinity selection and cleavage. For using TSGIT, we streamlined the cloning, expression, and purification procedures. Each component tag is selected to maximize its benefits toward the final construct. By expressing and partially purifying the protein of interest between the components of the TSGIT fusion, the full‐length protein is selected over truncated forms, which has been a long‐standing problem in protein purification. Moreover, due to the nature of the cleavable tags in TSGIT, the protein of interest is obtained in its native form without any additional undesired N‐ or C‐terminal amino acids. Finally, the resulting purified protein is ready for efficient ligation with other proteins or peptides for downstream applications. We demonstrate the use of this system by purifying a large amount of native fluorescent mRuby3 protein and bacteriophage T7 gp2.5 ssDNA‐binding protein.  相似文献   

17.
目的:开发一种既能用于亲和纯化目标蛋白,又可介导不能自主进入细胞的药物蛋白跨膜转运到细胞内发挥活性的双功能标签。方法:从已有文献资料中挑选四种富含碱性氨基酸的钙调蛋白结合肽(calmodulin binding peptide,CBP),将其与绿色荧光蛋白(EGFP)融合表达,然后采用与钙调蛋白(calmodulin,CaM)亲和结合过程来筛选与CaM具有最高亲和力的CBP;随后采用荧光显微镜检测、激光共聚焦显微镜检测以及流式细胞术等技术来分析测定和比较候选CBP序列将EGFP重组蛋白自主转运进入细胞的能力。最后将筛选到的新型CBP双功能标签与凋亡蛋白融合表达,考察其与CaM亲和结合后纯化重组凋亡蛋白的能力,以MTT法分析此重组蛋白进入肿瘤细胞抑制生长的能力。结果:通过CaM-CBP亲和层析筛选出与CaM具高有亲和力的三种CBP序列;从重组蛋白胞内荧光检测结果得知,带有野生型骨骼肌肌球蛋白轻链激酶CBP序列(MLCK)的重组EGFP蛋白具有最佳跨膜转运效率,且显著高于来源于艾滋病毒的经典穿膜肽TAT的穿膜效率。以此MLCK新型双功能标签成功地通过CaM-CBP亲和结合纯化得到重组凋亡蛋白,并可将重组凋亡蛋白转运进入细胞内发挥抗肿瘤作用。重组凋亡蛋白对MGC-803、H460、HeLa三种肿瘤细胞生长的24h半抑制浓度(IC50)分别为:1. 18μmol/L、1. 23μmol/L、1. 23μmol/L。结论:筛选得到一种新型双功能标签MLCK,其可通过与CaM高亲和作用进行亲和纯化;同时标签本身还具有和典型穿膜肽一样的高效跨膜转运功能,可将药物蛋白自主转运进入细胞,发挥药物的生物活性。因此,新型双功能标签既可用于药物蛋白的亲和纯化,又兼具体内跨膜运输作用,可广泛用于各种新型药物的开发。  相似文献   

18.
《Gene》1997,192(2):271-281
A novel protein purification system has been developed which enables purification of free recombinant proteins in a single chromatographic step. The system utilizes a modified protein splicing element (intein) from Saccharomyces cerevisiae (Sce VMA intein) in conjunction with a chitin-binding domain (CBD) from Bacillus circulans as an affinity tag. The concept is based on the observation that the modified Sce VMA intein can be induced to undergo a self-cleavage reaction at its N-terminal peptide linkage by 1,4-dithiothreitol (DTT), β-mercaptoethanol (β-ME) or cysteine at low temperatures and over a broad pH range. A target protein is cloned in-frame with the N-terminus of the intein-CBD fusion, and the stable fusion protein is purified by adsorption onto a chitin column. The immobilized fusion protein is then induced to undergo self-cleavage under mild conditions, resulting in the release of the target protein while the intein-CBD fusion remains bound to the column. No exogenous proteolytic cleavage is needed. Furthermore, using this procedure, the purified free target protein can be specifically labeled at its C-terminus.  相似文献   

19.
The combination of affinity purification and tandem mass spectrometry (MS) has emerged as a powerful approach to delineate biological processes. In particular, the use of epitope tags has allowed this approach to become scaleable and has bypassed difficulties associated with generation of antibodies. Single epitope tags and tandem affinity purification (TAP) tags have been used to systematically map protein complexes generating protein interaction data at a near proteome-wide scale. Recent developments in the design of tags, optimisation of purification conditions, experimental design and data analysis have greatly improved the sensitivity and specificity of this approach. Concomitant developments in MS, including high accuracy and high-throughput instrumentation together with quantitative MS methods, have facilitated large-scale and comprehensive analysis of multiprotein complexes.  相似文献   

20.
A novel multiple affinity purification (MAFT) or tandem affinity purification (TAP) tag has been constructed. It consists of the calmodulin binding peptide, six histidine residues, and three copies of the hemagglutinin epitope. This 'CHH' MAFT tag allows two or three consecutive purification steps, giving high purity. Active Clb2-Cdc28 kinase complex was purified from yeast cells after inserting the CHH tag into Clb2. Associated proteins were identified using mass spectrometry. These included the known associated proteins Cdc28, Sic1 and Cks1. Several other proteins were found including the 70 kDa chaperone, Ssa1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号