首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiological and biochemical studies have suggested that the plant plasma membrane H+-ATPase controls many important aspects of plant physiology, including growth, development, nutrient transport, and stomata movements. We have started the genetic analysis of this enzyme by isolating both genomic and cDNA clones of an H+-ATPase gene from Arabidopsis thaliana. The cloned gene is interrupted by 15 introns, and there is partial conservation of exon boundaries with respect to animal (Na+/K+)- and Ca2+-ATPases. In general, the relationship between exons and the predicted secondary and transmembrane structure of different ATPases with phosphorylated intermediate support a somewhat degenerate correspondence between exons and structural modules. The predicted amino acid sequence of the plant H+-ATPase is more closely related to fungal and protozoan H+-ATPases than to bacterial K+-ATPases or to animal (Na+/K+)-, (H+/K+)-, and Ca2+-ATPases. There is evidence for the existence of at least three isoforms of the plant H+-ATPase gene. These results open the way for a molecular approach to the structure and function of the plant proton pump.  相似文献   

2.
3.
The molecular structures of animal and human plasma membrane (Ca(2+)+Mg2+)-ATPases are not completely understood in part due to the fact that no suitable single crystal is available. The elucidation of the two-dimensional structure is in progress. The amino acid sequences of human erythrocyte and rat plasma membrane Ca2+ pump isoforms as well as of the pig smooth muscle plasma membrane Ca2+ pump are already known. This article reviews the present state of the knowledge in (Ca(2+)+Mg2+)-ATPase research of animal and human plasma membranes performed in the past few years, concerning in particular arrangements of proteolytically cleaved fragments, and relations between the erythrocyte (Ca(2+)+Mg2+)-ATPase in situ and the purified red cell enzyme, oxidative changes. Results of different experimental approaches concerning the structure of (Ca(2+)+Mg2+)-ATPases rather than the applications of the methods used are emphasized.  相似文献   

4.
Recent genomic data in the model plant Arabidopsis thaliana reveal the existence of at least 11 Ca(2+)-ATPase genes, and an analysis of expressed sequence tags suggests that the number of calcium pumps in this organism might be even higher. A phylogenetic analysis shows that 11 Ca(2+)-ATPases clearly form distinct groups, type IIA (or ECA for ER-type Ca(2+)-ATPase) and type IIB (ACA for autoinhibited Ca(2+)-ATPase). While plant IIB calcium pumps characterized so far are localized to internal membranes, their animal homologues are exclusively found in the plasma membrane. However, Arabidopsis type IIB calcium pump isoforms ACA8, ACA9 and ACA10 form a separate outgroup and, based on the high molecular masses of the encoded proteins, are good candidates for plasma membrane bound Ca(2+)-ATPases. All known plant type IIB calcium ATPases seem to employ an N-terminal calmodulin-binding autoinhibitor. Therefore it appears that the activity of type IIB Ca(2+)-ATPases in plants and animals is controlled by N-terminal and C-terminal autoinhibitory domains, respectively. Possible functions of plant calcium pumps are described and - beside second messenger functions directly linked to calcium homeostasis - new data on a putative involvement in secretory and salt stress functions are discussed.  相似文献   

5.
Although several Ca(2+)-ATPase isoforms have been described in vertebrates, little is known about Ca(2+)-transport in the muscle of invertebrates. In the microsomal fraction obtained from the sea cucumber (Ludwigothurea grisea) longitudinal body wall smooth muscle, we identified a Ca(2+)-transport ATPase that is able to transport Ca(2+) at the expense of ATP hydrolysis. This enzyme has a high affinity for both Ca(2+) and ATP, an optimum pH around 7.0, and - different from the vertebrate sarcoplasmic reticulum Ca(2+)-ATPases isoforms so far described - is activated 3- to 5-fold by K(+) but not by Li(+), at all temperatures, Ca(2+) and ATP concentrations tested. Calcium accumulation by the sea cucumber microsomes is inhibited by Mg/ATP concentrations >1 mM and the accumulated Ca(2+) is released to the medium when the ATP concentration is raised from 0.1 to 4.0 mM.  相似文献   

6.
Nitric oxide (NO*) is produced endogenously from NOS isoforms bound to sarcolemmal (SL) and sarcoplasmic reticulum (SR) membranes. To investigate whether locally generated NO* directly affects the activity of enzymes mediating ion active transport, we studied whether knockout of selected NOS isoforms would affect the functions of cardiac SL (Na+ + K+)-ATPase and SR Ca2+-ATPase. Cardiac SL and SR vesicles containing either SL (Na+ + K+)-ATPase or SR Ca2+-ATPase were isolated from mice lacking either nNOS or eNOS, or both, and tested for enzyme activities. Western blot analysis revealed that absence of single or double NOS isoforms did not interrupt the protein expression of SL (Na+ + K+)-ATPase and SR Ca2+-ATPase in cardiac muscle cells. However, lack of NOS isoforms in cardiac muscle significantly altered both (Na+ + K+)-ATPase activity and SR Ca2+-ATPase function. Our experimental results suggest that disrupted endogenous NO* production may change local redox conditions and lead to an unbalanced free radical homeostasis in cardiac muscle cells which, in turn, may affect key enzyme activities and membrane ion active transport systems in the heart.  相似文献   

7.
Several isoforms of organellar Ca(2+)-ATPases have been identified, each of which is expressed in a tissue-specific manner. In order to examine the functional properties of fast-twitch (SERCA 1a), cardiac/slow-twitch (SERCA 2a), and non-muscle (SERCA 3) isoforms of the Ca(2+)-ATPase, cDNAs of each type were expressed transiently in COS-1 cells. A study of the Ca2+ dependence of Ca2+ uptake showed that SERCA 1 and SERCA 2 have identical Ca2+ dependences (K0.5 = pCa 6.87 +/- 0.03 and pCa 6.87 +/- 0.02, respectively), but SERCA 3 has a lower Ca2+ dependence (K0.5 = pCa 6.32 +/- 0.03). A study of the ATP dependence of Ca2+ uptake showed that SERCA 1, 2, and 3 have almost identical ATP dependences. Average Hill coefficients derived from Ca2+ uptake curves ranged from 1.7 to 1.8 for the three isoforms. In order to identify which regions of the linear sequence determine this difference in Ca2+ dependence, chimeric Ca(2+)-ATPases between SERCA 2 and SERCA 3 were constructed. Chimeric Ca(2+)-ATPases containing the nucleotide binding/hinge domain of SERCA 2 had SERCA 2 type Ca2+ dependence, but both nucleotide binding/hinge and COOH-terminal transmembrane domains of SERCA 3 were required for SERCA 3 type Ca2+ dependence. Accordingly, structural interactions between the nucleotide binding/hinge and COOH-terminal transmembrane domains appear to determine isoform-specific Ca2+ dependences.  相似文献   

8.
The discovery and biochemical characterization of the secretory pathway Ca(2+)-ATPase, PMR1, in Saccharomyces cerevisiae, has paved the way for identification of PMR1 homologues in many species including rat, Caenorhabditis elegans, and Homo sapiens. In yeast, PMR1 has been shown to function as a high affinity Ca(2+)/Mn(2+) pump and has been localized to the Golgi compartment where it is important for protein sorting, processing, and glycosylation. However, little is known about PMR1 homologues in higher organisms. Loss of one functional allele of the human gene, hSPCA1, has been linked to Hailey-Hailey disease, characterized by skin ulceration and improper keratinocyte adhesion. We demonstrate that expression of hSPCA1 in yeast fully complements pmr1 phenotypes of hypersensitivity to Ca(2+) chelators and Mn(2+) toxicity. Similar to PMR1, epitope-tagged hSPCA1 also resides in the Golgi when expressed in yeast or in chinese hamster ovary cells. (45)Ca(2+) transport by hSPCA1 into isolated yeast Golgi vesicles shows an apparent Ca(2+) affinity of 0.26 microm, is inhibitable by Mn(2+), but is thapsigargin-insensitive. In contrast, heterologous expression of vertebrate sarcoplasmic reticulum and plasma membrane Ca(2+)-ATPases in yeast complement the Ca(2+)- but not Mn(2+)-related phenotypes of the pmr1-null strain, suggesting that high affinity Mn(2+) transport is a unique feature of the secretory pathway Ca(2+)-ATPases.  相似文献   

9.
A Ca(2+)-ATPase was purified from plasma membranes (PM) isolated from Arabidopsis cultured cells by calmodulin (CaM)-affinity chromatography. Three tryptic fragments from the protein were microsequenced and the corresponding cDNA was amplified by polymerase chain reaction using primers designed from the microsequences of the tryptic fragments. At-ACA8 (Arabidopsis-autoinhibited Ca(2+)-ATPase, isoform 8, accession no. AJ249352) encodes a 1,074 amino acid protein with 10 putative transmembrane domains, which contains all of the characteristic motifs of Ca(2+)-transporting P-type Ca(2+)-ATPases. The identity of At-ACA8p as the PM Ca(2+)-ATPase was confirmed by immunodetection with an antiserum raised against a sequence (valine-17 through threonine-31) that is not found in other plant CaM-stimulated Ca(2+)-ATPases. Confocal fluorescence microscopy of protoplasts immunodecorated with the same antiserum confirmed the PM localization of At-ACA8. At-ACA8 is the first plant PM localized Ca(2+)-ATPase to be cloned and is clearly distinct from animal PM Ca(2+)-ATPases due to the localization of its CaM-binding domain. CaM overlay assays localized the CaM-binding domain of At-ACA8p to a region of the N terminus of the enzyme around tryptophan-47, in contrast to a C-terminal localization for its animal counterparts. Comparison between the sequence of At-ACA8p and those of endomembrane-localized type IIB Ca(2+)-ATPases of plants suggests that At-ACA8 is a representative of a new subfamily of plant type IIB Ca(2+)-ATPases.  相似文献   

10.
B Vilsen  J P Andersen 《FEBS letters》1992,306(2-3):213-218
The cDNA encoding a Ca(2+)-transport ATPase of frog (Rana esculenta) skeletal muscle was isolated and characterized. The deduced amino acid sequence, consisting of 994 residues, showed 89% identity to the fast twitch muscle sarcoplasmic reticulum Ca(2+)-ATPases of chicken and rabbit. Northern blot analysis using a fragment of this cDNA as probe detected a 5.0 kb message in frog skeletal muscle but did not detect any mRNA encoding sarcoplasmic reticulum Ca(2+)-ATPase in frog cardiac muscle. The enzymatic properties of the amphibian skeletal muscle Ca(2+)-ATPase were compared with those of the rabbit fast twitch muscle Ca(2+)-ATPase by functional expression of the cDNAs in COS-1 cells. The amphibian Ca(2+)-ATPase displayed a reduced apparent affinity for Ca2+ and an increased apparent affinity for the inhibitors, vanadate and thapsigargin, relative to the mammalian enzyme. This may be explained by a mechanism in which relatively more of the E2 conformation accumulated in the frog Ca(2+)-ATPase than in the mammalian enzyme.  相似文献   

11.
12.
The biochemical functions of intracellular and plasma membrane Ca2+-transporting ATPases in the control of cytosolic and organellar Ca2+ levels are well established, but the physiological roles of specific isoforms are less well understood. There appear to be three different types of Ca2+ pumps in mammalian tissues: the sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), which sequester Ca2+ within the endoplasmic or sarcoplasmic reticulum, the plasma membrane Ca2+-ATPases (PMCAs), which extrude Ca2+ from the cell, and the putative secretory pathway Ca2+-ATPase (SPCA), the function of which is poorly understood. This review describes the results of recent analyses of mouse models with null mutations in the genes encoding SERCA and PMCA isoforms and genetic studies of SERCA and SPCA dysfunction in both humans and model organisms. These studies are yielding important insights regarding the physiological functions of individual Ca2+-transporting ATPases in vivo.  相似文献   

13.
This study was conducted to identify plasma membrane Ca(2+)-transporting ATPases present in rat kidney. Characterization of the cDNAs of the plasma membrane Ca(2+)-ATPases revealed a family of proteins with regions of highly conserved amino acid sequence. To examine the extent of the diversity of rat renal plasma membrane Ca(2+)-ATPases, we used the polymerase chain reaction to detect additional gene products in rat kidney mRNA that shared these conserved regions. Sequences corresponding to three previously known rat plasma membrane Ca(2+)-ATPases were obtained. In addition, we found sequence corresponding to a new putative plasma membrane Ca(2+)-ATPase. Our results demonstrate that the rat kidney contains at least four different plasma membrane Ca(2+)-ATPases and the complexity of this multigene family is greater than previously thought.  相似文献   

14.
Fluoroaluminate, known modulator of G-proteins, inhibits ATP-hydrolase activity of purified solubilized Ca2+, Mg(2+)-ATPase from myometrium cell plasma membranes and Ca(2+)-transporting activity of this enzyme reconstituted into azolectin liposomes: 10 mM NaF plus 10 microM AlCl3 inhibited the primary activity by 95% and--by 81%. Inhibition of purified both solubilized and reconstituted Ca2+, Mg(2+)-ATPases by fluoroaluminate evidences for the possibility of direct interaction AlF4- with this enzyme without involvement of G-protein. The sensitivity to fluoroaluminate of sarcolemmal Ca2+, Mg(2+)-ATPase from myometrium is similar to that of Ca2+, Mg(2+)-ATPase from stomach smooth muscle.  相似文献   

15.
16.
The control of the Ca(2+)-ATPase gene (LCA1) that encodes two different membrane-located isoforms by two antagonic phytohormones, ABA and IAA, has been investigated. Strikingly both the growth regulators induce the LCA1 expression. By using a protoplast transient system, the cis-acting DNA elements responding to both, abiotic stress (ABA) and normal development (IAA), are dissected. ABA triggered a 4-fold increase in the GUS-activity. A single ACGT motif responsible for most of the LCA1 mRNA induction was localized at an unexpectedly large distance (1577 bp) upstream of the translational start. In the case of IAA, although there is a TGTCTC sequence that is known to be an important cis-acting element, two TGA motifs play a more critical role. It is proposed that the Ca(2+)-ATPase isoforms might intervene in the generation of specific Ca(2+) signals by restoring steady-state Ca(2+) levels, modulating both frequency and amplitude of Ca(2+) waves via wave interference.  相似文献   

17.
Chung WS  Lee SH  Kim JC  Heo WD  Kim MC  Park CY  Park HC  Lim CO  Kim WB  Harper JF  Cho MJ 《The Plant cell》2000,12(8):1393-1407
Ca(2)+-ATPases are key regulators of Ca(2+) ion efflux in all eukaryotes. Animal cells have two distinct families of Ca(2+) pumps, with calmodulin-stimulated pumps (type IIB pumps) found exclusively at the plasma membrane. In plants, no equivalent type IIB pump located at the plasma membrane has been identified at the molecular level, although related isoforms have been identified in non-plasma membrane locations. Here, we identify a plant cDNA, designated SCA1 (for soybean Ca(2+)-ATPase 1), that encodes Ca(2+)-ATPase and is located at the plasma membrane. The plasma membrane localization was determined by sucrose gradient and aqueous two-phase membrane fractionations and was confirmed by the localization of SCA1p tagged with a green fluorescent protein. The Ca(2+)-ATPase activity of the SCA1p was increased approximately sixfold by calmodulin (K(1/2) approximately 10 nM). Two calmodulin binding sequences were identified in the N-terminal domain. An N-terminal truncation mutant that deletes sequence through the two calmodulin binding sites was able to complement a yeast mutant (K616) that was deficient in two endogenous Ca(2+) pumps. Our results indicate that SCA1p is structurally distinct from the plasma membrane-localized Ca(2+) pump in animal cells, belonging instead to a novel family of plant type IIB pumps found in multiple subcellular locations. In plant cells from soybean, expression of this plasma membrane pump was highly and rapidly induced by salt (NaCl) stress and a fungal elicitor but not by osmotic stress.  相似文献   

18.
Although all muscle cells generate contractile forces by means of organized filament systems, isoform expression patterns of contractile and regulatory proteins in heart are not identical compared to developing, conditioned or mature skeletal muscles. In order to determine biochemical parameters that may reflect functional variations in the Ca(2+)-regulatory membrane systems of different muscle types, we performed a comparative immunoblot analysis of key membrane proteins involved in ion homeostasis. Cardiac isoforms of the alpha(1)-dihydropyridine receptor, Ca(2+)-ATPase and calsequestrin are also present in skeletal muscle and are up-regulated in chronic low-frequency stimulated fast muscle. In contrast, the cardiac RyR2 isoform of the Ca(2+)-release channel was not found in slow muscle but was detectable in neonatal skeletal muscle. Up-regulation of RyR2 in conditioned muscle was probably due to degeneration-regeneration processes. Fiber type-specific differences were also detected in the abundance of auxiliary subunits of the dihydropyridine receptor, the ryanodine receptor and the Ca(2+)-ATPase, as well as triad markers and various Ca(2+)-binding and ion-regulatory proteins. Hence, the variation in innervation of different types of muscle appears to have a profound influence on the levels and pattern of isoform expression of Ca(2+)-regulatory membrane proteins reflecting differences in the regulation of Ca(2+)-homeostasis. However, independent of the muscle cell type, key Ca(2+)-regulatory proteins exist as oligomeric complexes under native conditions.  相似文献   

19.
Two low molecular mass proteins (13 kDa which inhibits Na+,K(+)-ATPase and 12 kDa which modulates Ca2+, Mg(2+)- and Ca(2+)-ATPases), purified from rat brain cytosol form complexes with chlorpromazine (CPZ) on incubation. The conformational characteristics of the proteins and their complex have been studied by comparing the fluorescence and CD spectra. The tryptophan fluorescence data show that the inhibitor-CPZ complex does not quench the fluorescence of NA+,K(+)-ATPase significantly. CD spectra indicate that the structure of the inhibitor is changed on formation of the complex. The inhibitor-CPZ complex significantly changes the conformation of Na+,K(+)-ATPase. The regulator protein-CPZ complex does not have any appreciable effect on Ca2+, Mg(2+)- and Ca(2+)-ATPase activities. The Trp-fluorescence of Ca2+,Mg(2+)- and Ca(2+)-ATPase are not significantly affected in presence of the complex. CD spectra indicate that the structure of the regulator is abruptly affected on formation of the complex. The conformations of Ca2+,Mg(2+)- and Ca(2+)-ATPases are found to be altered in presence of the complex.  相似文献   

20.
High affinity Ca(2+)-ATPases play a central role in calcium homeostasis by catalysing the active efflux of calcium from the cytoplasm. This study reports the identification of two additional type IIA (SERCA-type) Ca(2+)-ATPases from Arabidopsis (AtECA2 and AtECA3), and describes the detailed sequence analysis of these genes in comparison with AtECA1 and other plant and animal Ca(2+)-ATPases. Southern analysis suggests that each of these genes is present as a single copy and also that there may be a small family of moderately related genes that encode type IIA Ca(2+)-ATPases in Arabidopsis. Evidence is also provided from RT-PCR that these genes are expressed in Arabidopsis. Hydropathy analysis predicts that the topology of the Arabidopsis type IIA proteins is similar to the animal SERCA proteins. Sequence and phylogenetic analyses suggest that the type IIA Ca(2+)-ATPases can be further divided into sub-groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号