首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In ovine pregnancy, as in human pregnancy, hypothalamus-pituitary-adrenal activity is chronically increased. These studies were designed to test the hypotheses that expression of serotonergic genes and responsiveness to serotonin are increased in pregnancy. We tested the stimulatory effect of an acute, intracerebroventricular injection of the serotonin reuptake inhibitor fluoxetine on plasma ACTH and cortisol in ewes during late pregnancy or postpartum. We also tested the effect of lower-dose, longer-term stimulation by intracerebroventricular infusion of fluoxetine in pregnant and nonpregnant ewes over 6 days. Overall, we found that the stimulatory effect of fluoxetine on ACTH and cortisol was not significantly different between late-gestation and nonpregnant ewes, although the effect of acute fluoxetine administration was inversely related to plasma progesterone concentrations. Also, there were no differences in hypothalamic expression of the glucocorticoid and mineralocorticoid receptors, corticotropin-releasing hormone, AVP, the serotonin reuptake transporter, or the serotonin [5-hydroxytryptamine (5-HT)] receptors 5-HT(1A) and 5-HT(2A) with pregnancy or fluoxetine treatment. However, chronic fluoxetine infusion reduced food intake in the nonpregnant, but not pregnant, ewes. Expression of proopiomelanocortin mRNA in the hypothalamus was reduced in pregnant compared with nonpregnant ewes. Our results indicate that pregnancy does not increase responsiveness of ACTH and cortisol to serotonergic stimulation but, rather, that progesterone reduces the ACTH response. In addition, we found a reduced ability of serotonin to inhibit feeding in the pregnant ewes, consistent with a reduction in anorexic mechanisms in the pregnant state.  相似文献   

2.
Pregnancy is characterized by increased plasma adrenocorticotropic hormone (ACTH) and cortisol. Studies suggest that progesterone acts as an antagonist at mineralocorticoid receptors. Therefore, we tested the hypothesis that chronic progesterone, produced by treatment of nonpregnant ewes or during pregnancy, will result in increased plasma ACTH relative to the plasma cortisol concentrations. We studied three groups of ewes: ovariectomized nonpregnant, nonpregnant treated with progesterone, and pregnant ewes. In two series of studies, ewes were adrenalectomized and replaced with 0.35 mg x kg(-1) x day(-1) or 0.5 mg x kg(-1) x day(-1) cortisol. In both studies, aldosterone was infused at 3 microg x kg(-1) x day(-1). In the first study, additional infusions of cortisol over 24 h were used to increase daily replacement doses to 0.5, 1, or 1.5 mg x kg(-1) x day(-1), and intact pregnant and nonpregnant ewes were studied with infusions of cortisol at 0, 0.5, and 1 mg x kg(-1) x day(-1). In adrenalectomized ewes chronically replaced to 0.35 mg x kg(-1) x day(-1) cortisol, plasma ACTH concentrations were decreased significantly in the nonpregnant progesterone-treated ewes compared with the ovariectomized nonpregnant ewes. With 0.5 mg x kg(-1) x day(-1) cortisol, plasma ACTH levels were greater in pregnant ewes than in nonpregnant ewes with or without progesterone. Overall plasma ACTH levels at 0.35 mg x kg(-1) x day(-1) were significantly related to the plasma protein concentration, suggesting that the ACTH levels in the hypocorticoid ewes are most closely related to plasma volume. Across all steroid doses, ACTH was positively related to plasma proteins and progesterone, and negatively related to cortisol. We conclude that increased progesterone does not alter the feedback relation of cortisol to ACTH, but may modulate ACTH indirectly through plasma volume.  相似文献   

3.
These studies test the hypothesis that pregnancy alters the feedback effects of cortisol on stimulated ACTH secretion. Ewes were sham-operated (Sham), or adrenalectomized (ADX) at approximately 108 days gestation and replaced with aldosterone (3 microg x kg(-1) x day(-1)) and with cortisol at either of two doses (ADX + 0.6 and ADX + 1 mg x kg(-1) x day(-1)); ewes were studied during pregnancy and postpartum. Mean cortisol levels produced in ADX ewes were similar to normal pregnant ewes (ADX+1) or nonpregnant ewes (ADX+0.6), respectively. Plasma ACTH concentrations in response to infusion of nitroprusside were significantly increased in the pregnant ADX+0.6 ewes (1,159 +/- 258 pg/ml) relative to pregnant Sham ewes (461 +/- 117 pg/ml) or the ADX+1 ewes (442 +/- 215 pg/ml) or the same ewes postpartum (151 +/- 69 pg/ml). Plasma ACTH concentrations were not significantly different among the groups postpartum. Increasing plasma cortisol to 20-30 ng/ml for 24 h before hypotension produced similar inhibition of ACTH in all groups. Pregnancy appears to decrease the effectiveness of low concentrations of cortisol to inhibit ACTH responses to hypotension.  相似文献   

4.
Term and preterm labor are associated with increased fetal hypothalamic-pituitary-adrenal (HPA) activation and synthesis of prostaglandins (PGs) generated through the increased expression of prostaglandin H synthase-II (PGHS-II) in the placenta. Inhibition of PGHS-II has been advocated as a means of producing uterine tocolysis, but the effects of such treatment on fetal endocrine functions have not been thoroughly examined. Because PGE(2) is known to activate the fetal HPA axis, we hypothesized that administration of meloxicam, a PGHS-II inhibitor, to sheep in induced labor would suppress fetal HPA function. Chronically catheterized pregnant ewes were treated with RU486, a progesterone receptor antagonist, to produce active labor, and then treated with either high-maintenance-dose meloxicam, graded-maintenance-dose meloxicam, or a saline infusion. Maternal uterine contraction frequency increased 24 h after the RU486 injection and the animals were in active labor by 48 +/- 4 h. RU486 injection led to increased concentrations of PGE(2), ACTH, and cortisol in the fetal circulation, and increased concentrations of 13,14 dihydro 15-ketoprostaglandin F(2 alpha) (PGFM) in the maternal circulation. Uterine activity was inhibited within 12 h of beginning meloxicam infusion at both infusion regimes. During meloxicam infusion there were significant decreases in fetal plasma PGE(2), ACTH, and cortisol concentrations, and PGFM concentrations in maternal plasma. In control animals, frequency of uterine contractions, maternal plasma PGFM, fetal plasma PGE(2), ACTH, and cortisol concentrations increased after RU486 administration, and continued to rise during saline infusion until delivery occurred. We conclude that RU486-provoked labor in sheep is associated with activation of fetal HPA function, and that this is attenuated during meloxicam treatment to a level considered compatible with pregnancy maintenance.  相似文献   

5.
Maternal administration of androstenedione produces a sustained fall in maternal plasma adrenocorticotropic hormone (ACTH) concentrations in the pregnant nonhuman primate. We hypothesize a negative feedback influence on the maternal hypothalamo-pituitary-adrenal (HPA) axis by androgens in primates. This may reflect an important maternal adaptation during pregnancy in primates preventing premature induction of labor by maternal stress. However, androstenedione is precursor for placental estradiol-17beta synthesis, and infusion of androstenedione into pregnant primates elevates maternal plasma estradiol-17beta to term concentrations. Thus, it could be argued that 1) the effects attributed to androstenedione on the maternal HPA axis are mediated by estrogen rather than by androgen and 2) the negative influence of androgens may be on placental ACTH rather than, or in addition to, pituitary ACTH. To discriminate between androgenic and estrogenic effects of androstenedione on pituitary and/or placental ACTH function in primates we measured plasma ACTH, cortisol, and dehydroepiandrosterone sulfate (DHEAS) concentrations in nonpregnant baboons after treatment with either androstenedione or estradiol-17beta. Nine female baboons were studied between 14 and 22 days postpartum prior to estrous cycling. After 2 days of baseline, a continuous i.v. infusion of androstenedione (1.5 mg/kg per h in 10% intralipid, IL) was started at 0900 h and maintained for 9 days in 3 baboons. A similar protocol was carried out in another 3 baboons that received a continuous i.v. infusion of estradiol-17beta (10 microg/kg per h in 10% IL) instead of androstenedione. Three additional baboons received continuous i.v. IL vehicle alone and served as controls. Arterial blood samples (0.5 ml) for measurement of plasma hormones were taken during baseline and after 1, 3, 5, 7, and 9 days of infusion. Baseline plasma ACTH, DHEAS, and cortisol concentrations were similar among all groups. Plasma ACTH did not change during IL, increased following estradiol-17beta, and fell during androstenedione treatment. Accordingly, plasma cortisol and DHEAS concentrations were also unaltered by IL, and both steroids increased during estradiol-17beta treatment. In contrast, plasma cortisol and DHEAS remained unaltered from baseline during androstenedione treatment, despite the fall in plasma ACTH measured at this time. These data in the nonpregnant baboon 1) are consistent with negative feedback on pituitary ACTH by androgens and 2) demonstrate a positive influence on pituitary-adrenal function by estrogen in primates.  相似文献   

6.
Our goal was to develop a model for the study of maternal adrenal gland regulation and the effects of maternal cortisol secretion on fetal homeostasis. At about 108 days of gestation, before the time of rapid fetal growth or fetal adrenocortical maturation, ewes, under halothane anesthesia with controlled ventilation and positioned in sternal recumbency, were adrenalectomized. Ewes were treated with aldosterone by intravenous infusion (3 micrograms/kg of body weight per day) to induce normal late-gestation aldosterone concentration. Ewes were also treated with cortisol; for 2 postoperative days, this infusion (1 to 2 micrograms/kg per min) induced plasma concentration similar to that associated with stress. Thereafter, the dosage of cortisol was reduced to induce plasma values similar to normal late-gestation cortisol concentration in ewes (1 mg/kg per day), or to values in nonpregnant ewes (0.6 mg/kg per day). Administration of cortisol and aldosterone was required to prevent electrolyte imbalance and signs of hypoadrenocorticism. With steroid replacement, plasma protein, electrolyte, and glucose concentrations in adrenalectomized ewes were not different from those in sham-operated pregnant ewes. Of 11 adrenalectomized ewes, one died as a result of failure of the infusion pump, and one died as a result of inappropriate treatment for hypoglycemia. Of the remaining ewes, two aborted fetuses, three ewes each delivered one live and one dead fetus, two delivered live singleton fetuses, and two delivered twins. Therefore, this model of relative hypoadrenocorticism in pregnancy is feasible and practical for studying the influence of maternal cortisol concentration on maternal and fetal homeostasis.  相似文献   

7.
The renin-angiotensin-aldosterone (RAA) system is markedly activated in pregnancy. We evaluated if mineralocorticoid receptors (MR), a major component of the RAA system, are involved in the reduced vascular reactivity associated with pregnancy. Canrenoate (MR antagonist; 20 mg·kg(-1)·day(-1)) was administered to nonpregnant (NP) rats for 7 days and to pregnant rats from day 15 to 22 of gestation. These were killed on day 17, 19, or 22 of gestation and, for NP rats, after 7 days treatment. Constrictor responses to phenylephrine (PhE) and KCl were measured in endothelium-denuded thoracic aortic rings under the influence of modulators of potassium (activators) and calcium (blocker) channels. Responses to the constrictors were blunted from days 17 to 22 of gestation. Although canrenoate increased responses to PhE and KCl, it did not reverse their blunted responses in gestation. NS-1619 and cromakalim (respectively, high-conductance calcium-activated potassium channels and ATP-sensitive potassium channel activators) diminished responses to both PhE and KCl. Inhibition by NS-1619 on responses to both agonists was decreased under canrenoate treatment in NP, but the reduced influence of NS-1619 during gestation was reversed by the mineralocorticoid antagonist. Cromakalim reduced the response to PhE significantly in the pregnant groups; this effect was enhanced by canrenoate. Finally, nifedipine (calcium channel blocker) markedly reduced KCl responses but to a lesser extent at the end of pregnancy, an inhibiting effect that was increased with canrenoate treatment. These data demonstrate that treating rats with a MR antagonist increased vascular reactivity but that it differentially affected potassium and calcium channel activity in aortas of NP and pregnant animals. This suggests that aldosterone is one of the components involved in vascular adaptations to pregnancy.  相似文献   

8.
Responsiveness of the hypothalamo-pituitary-adrenal axis is decreased during pregnancy. Therefore, the objective of the present study was to determine if responsiveness at the level of individual corticotrophs to corticotropin-releasing hormone (CRH) or arginine vasopressin (AVP) is decreased during pregnancy in sheep. Anterior pituitaries (APs) were collected from pregnant and nonpregnant ewes. Half of the APs were dispersed, and cells were placed on immobilon and treated with vehicle, CRH (10 nM), or AVP (100 nM) for 2 h. Cells were then fixed and incubated with ACTH or pro-opiomelanocortin (POMC) antibodies. The percentage of cells staining positive for immunoreactive (ir) ACTH or POMC, the percentage of cells secreting irACTH or POMC, and the area of irACTH or POMC secretion were measured. RNA was extracted from the other half of the APs to quantify CRH type 1 (CRH-R1) and vasopressin type 1b (V1b) receptor mRNA by ribonuclease protection assay. CRH treatment increased the percentage of corticotrophs with relatively large areas of irACTH and POMC secretion in nonpregnant, but not in pregnant, ewes. AVP treatment significantly increased the percentage of irACTH- and POMC-secreting cells in nonpregnant, but not in pregnant, ewes. V1b receptor mRNA, but not CRH-R1 receptor mRNA, was significantly decreased during pregnancy. These results suggest that corticotroph responsiveness to CRH and AVP is decreased during pregnancy in sheep. Therefore, reduced corticotroph responsiveness may contribute to stress hyporesponsivity during pregnancy.  相似文献   

9.
Whereas animal studies have shown a clear inhibitory effect of hippocampal mineralocorticoid receptors (MR) on hypothalamic-pituitary-adrenal (HPA) axis activity, investigations in humans revealed equivocal results. To further clarify the influence of MR in HPA activity we studied 10 healthy men during the circadian nadir of HPA activity (14:00 to 21:00) after pre-treatment with 3 g metyrapone to minimize the impact of basal endogenous cortisol secretion. On three separate occasions, in a placebo-controlled design, subjects received in a randomized order either 0.5 mg fludrocortisone p.o. or 0.2 mg aldosterone i.v. or placebo. Fludrocortisone exerted a significant inhibition of ACTH, cortisol and 11-desoxycortisol (p < 0.05), whereas no such effect was observed after aldosterone or placebo. These preliminary data suggest that MR are involved in the inhibition of the HPA axis during the circadian nadir of glucocorticoid concentrations in humans.  相似文献   

10.
The aim of this study was to investigate fast corticosteroid feedback of the hypothalamic-pituitary-adrenal (HPA) axis under basal conditions, in particular the role of the mineralocorticoid receptor. Blood samples were collected every 5 min from conscious rats at the diurnal peak, using an automated blood sampling system, and assayed for corticosterone. Feedback inhibition by rapidly increasing concentrations of ligand was achieved with an intravenous bolus of exogenous corticosteroid. This resulted in a significant reduction in plasma corticosterone concentrations within 23 min of the aldosterone bolus and 28 min of methylprednisolone. Evaluation of the pulsatile secretion of corticosterone revealed that the secretory event in progress at the time of administration of exogenous steroid was unaffected, whereas the next secretory event was inhibited by both aldosterone and methylprednisolone. The inhibitory effect of aldosterone was limited in duration (1 secretory event only), whereas that of methylprednisolone persisted for 4-5 h. Intravenous administration of canrenoate (a mineralocorticoid receptor antagonist) also had rapid effects on the HPA axis, with an elevation of ACTH within 10 min and corticosterone within 20 min. The inhibitory effect of aldosterone was unaffected by pretreatment with the glucocorticoid receptor antagonist RU-38486 but blocked by the canrenoate. These data imply an important role for the mineralocorticoid receptor in fast feedback of basal HPA activity and suggest that mineralocorticoids can dynamically regulate basal corticosterone concentrations during the diurnal peak, a time of day when there is already a high level of occupancy of the cytoplasmic mineralocorticoid receptor.  相似文献   

11.
Myometrial activity and plasma progesterone (P) and oxytocin (OT) were measured in early pregnant (n = 5) and cycling (n = 5) ewes. Electromyography (EMG) leads and jugular and inferior vena cava (IVC) catheters were surgically placed in ewes about 1 wk before data collection. When ewes returned to estrus, they were bred to either an intact or vasectomized ram. Continuous EMG data were collected, and blood samples were collected twice daily from day of estrus (Day 0) until Day 18. Ewes bred with an intact ram were checked surgically for pregnancy on Day 20. Computerized, quantitative analysis of EMG events showed no difference in signal from the right to left uterine horns, and no differences between pregnant and cycling ewes (p less than 0.05) until Days 14-18 when nonpregnant ewes returned to estrus and had increased EMG activity. The mean number of EMG events 180-900 s in length decreased in pregnant ewes, but this difference was not significant (p less than 0.05). Jugular plasma progesterone (P) levels confirmed corpus luteum (CL) formation in all ewes, and no differences in P between pregnant and nonpregnant ewes were measured until Days 14-18, when cycling ewes underwent luteolysis and pregnant ewes maintained CL. IVC plasma oxytocin concentrations were increased in pregnant ewes compared to concentrations in nonpregnant ewes on Days 5-13 (p less than 0.05), and the difference was largest at Day 6 (means +/- SEM pg/ml: pregnant = 68.7 +/- 13.9, nonpregnant = 30.9 +/- 19.9).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
During pregnancy, maternal plasma cortisol concentrations approximately double. Given that cortisol plays an important role in the regulation of vascular reactivity, the present study investigated the potential role of cortisol in potentiation of uterine artery (UA) contractility and tested the hypothesis that pregnancy downregulated the cortisol-mediated potentiation. In vitro cortisol treatment (3, 10, or 30 ng/ml for 24 h) produced a dose-dependent increase in norepinephrine (NE)-induced contractions in both nonpregnant and pregnant (138-143 days gestation) sheep UA. However, this cortisol-mediated response was significantly attenuated by approximately 50% in pregnant UA. The 11 beta-hydroxysteroid dehydrogenase (11-beta HSD) inhibitor carbenoxolone did not change the effect of cortisol in nonpregnant UA but abolished its effect in pregnant UA by increasing the NE pD(2) in control tissues from 6.20 +/- 0.05 to 6.59 +/- 0.11. The apparent dissociation constant value of NE alpha(1)-adrenoceptors was not changed by cortisol in pregnant UA but was decreased in nonpregnant UA. There was no difference in glucocorticoid receptor density between nonpregnant and pregnant UA. Cortisol significantly decreased endothelial nitric oxide (NO) synthase protein levels and NO release in both nonpregnant and pregnant UA, but the effect of cortisol was attenuated in pregnant UA by approximately 50%. Carbenoxolone alone had no effects on NO release in nonpregnant UA but was decreased in pregnant UA. These results suggest that cortisol potentiates NE-mediated contractions by decreasing NO release and increasing NE-binding affinity to alpha(1)-adrenoceptors in nonpregnant UA. Pregnancy attenuates UA sensitivity to cortisol, which may be mediated by increasing type-2 11-beta HSD activity in UA.  相似文献   

13.
Maternal infusion of dexamethasone for 48 h early in gestation results in upregulation of mRNA for mineralocorticoid and glucocorticoid (MR and GR) receptors and angiotensin II receptors in ovine fetal kidneys late in gestation. This study sought to determine whether dexamethasone exposure results in changes in renal function and blood pressure responsiveness to infused cortisol or aldosterone in the late-gestation fetus. Merino ewes carrying single fetuses were infused with isotonic saline (Sal; n = 9) or dexamethasone (Dex, 0.48 mg/h; n = 10) for 48 h between days 26 and 28 of gestation (term = 150 days). At 115-122 days, renal function and blood pressure were measured in fetuses during a 4-h infusion of saline, cortisol (100 microg/h), or aldosterone (5 microg/h). Infusions were given in random order at least 2 days apart. Basal blood pressure and renal function were similar in Sal and Dex groups and did not change over the course of saline infusion. Cortisol infusion caused similar increases in blood pressure, urine flow, and glomerular filtration rate (GFR) in the groups. Aldosterone infusion caused a significantly different GFR response between the groups [P(treatment x time) < 0.05], but increase in K excretion and decrease in Na-to-K ratio were similar in the groups. The similar results obtained with cortisol and aldosterone infusion suggest no increased renal functional maturity to those hormones after early prenatal dexamethasone exposure. This suggests that changes in mRNA for MR and GR in kidneys of dexamethasone-exposed fetuses do not result in functional differences and highlights the renin-angiotensin system, as reported previously, as more important in this model.  相似文献   

14.
The effect of pregnancy on concentrations of prostaglandins E2, F2 alpha and 6-keto-prostaglandin F1 alpha (PGE2, PGF2 alpha and 6-keto-PGF1 alpha) in utero-ovarian venous plasma was examined in ewes on Days 10 through 14 after estrus, an interval which includes the critical period for maternal recognition of pregnancy. The utero-ovarian vein ipsilateral to a corpus luteum was catheterized on Day 9 or 10 in 6 pregnant and 8 nonpregnant ewes. Five blood samples were collected at 30-min intervals for 2 h beginning at 0500 and 1700 h daily. Sampling began at 0500 h on the day after catheterization. The mean and variance within each 2-h collection period were calculated for each ewe. The natural logarithm of the variance in each collection period (ln variance) was used as an estimate of the fluctuations in secretory activity by the endometrial-conceptus complex. Patterns of the mean concentrations of PGE2 were different between pregnant and nonpregnant ewes (P less than 0.01); PGE2 being higher in the pregnant ewes beginning on Day 13. There was a trend for the patterns of ln variance in PGE2 to differ (P less than 0.1) with pregnancy status over the entire period; ln variance was greater in pregnant ewes beginning on Day 13. The patterns of the mean concentrations and ln variances for PGF2 alpha and 6-keto-PGF1 alpha did not differ between pregnant and nonpregnant ewes. There were significant increases in both of these prostaglandins over time, independent of pregnancy status (P less than 0.01). The association of higher concentrations of PGE2 in utero-ovarian venous plasma with early pregnancy is consistent with the hypothesis that PGE2, originating from the uterus and/or conceptus, is one factor involved in maintenance of the corpus luteum of pregnancy.  相似文献   

15.
In fetal sheep, plasma concentrations of both adrenocorticotropic hormone (ACTH) and cortisol increase at the end of gestation. The increase in fetal plasma cortisol concentration induces placental 17 alpha-hydroxylase and 17, 20 lyase activities and therefore stimulates the placenta to secrete relatively more estrogen and relatively less progesterone. The resultant increase in the estrogen-to-progesterone ratio is thought to increase uterine contractility and initiate labour. We had previously demonstrated that the efficacy of cortisol-induced suppression of ACTH secretion at the end of gestation was reduced. We hypothesized that cortisol-induced stimulation of placental steroidogenesis promoted the secretion of a steroid hormone which reduced negative feedback efficacy, and therefore allowed both ACTH and cortisol secretion to increase simultaneously. Others had proposed that cortisol stimulates the placental secretion of corticotrophin releasing factor, which might also stimulate fetal ACTH secretion. This study was designed to test the hypotheses that cortisol reduces its own feedback efficacy or stimulates CRF secretion. Five pregnant ewes with twin pregnancies were studied after chronic catheterization. One fetus was subjected to infusion of hydrocortisone sodium succinate (10 micrograms/min, iv) and the other to infusion of saline. After 5 and 53 h of infusion, each fetus was subjected to a period of hypotension produced by infusion of sodium nitroprusside. The infusion of hydrocortisone sodium succinate decreased plasma progesterone concentrations in the fetal circulation into which the steroid was infused, and in the maternal circulation. Fetal plasma CRF concentrations were increased on the third day of infusion, the day in which the fetuses went into labour.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study examined the effects of dexamethasone treatment on basal hypothalamo-pituitary-adrenal (HPA) axis function and HPA responses to subsequent acute hypoxemia in the ovine fetus during late gestation. Between 117 and 120 days (term: approximately 145 days), 12 fetal sheep and their mothers were catheterized under halothane anesthesia. From 124 days, 6 fetuses were continuously infused intravenously with dexamethasone (1.80 +/- 0.15 microg.kg(-1).h(-1) in 0.9% saline at 0.5 ml/h) for 48 h, while the remaining 6 fetuses received saline at the same rate. Two days after infusion, when dexamethasone had cleared from the fetal circulation, acute hypoxemia was induced in both groups for 1 h by reducing the maternal fraction of inspired O2. Fetal dexamethasone treatment transiently lowered fetal basal plasma cortisol, but not ACTH, concentrations. However, 2 days after treatment, fetal basal plasma cortisol concentration was elevated without changes in basal ACTH concentration. Despite elevated basal plasma cortisol concentration, the ACTH response to acute hypoxemia was enhanced, and the increment in plasma cortisol levels was maintained, in dexamethasone-treated fetuses. Correlation of fetal plasma ACTH and cortisol concentrations indicated enhanced cortisol output without a change in adrenocortical sensitivity. The enhancements in basal cortisol concentration and the HPA axis responses to acute hypoxemia after dexamethasone treatment were associated with reductions in pituitary and adrenal glucocorticoid receptor mRNA contents, which persisted at 3-4 days after the end of treatment. These data show that prenatal glucocorticoids alter the basal set point of the HPA axis and enhance HPA axis responses to acute stress in the ovine fetus during late gestation.  相似文献   

17.
This study tested the hypothesis that fetal plasma ACTH and cortisol concentrations vary diurnally, and the mean concentration and the amplitude of the rhythm vary as a function of fetal gestational age. Nine chronically-catheterized fetal sheep were studied between 120 and 142 days' gestation. All of the fetuses were born spontaneously and alive. The pregnant ewes were maintained in a room with a regular light cycle (on at 07.30, off at 17.30). Food and water were available ad libitum. Blood samples were drawn at 4-h intervals throughout a 24-h period. There were no significant daily variations in fetal plasma ACTH, cortisol, or progesterone concentrations, except in the last 3 days of fetal life. In these fetuses ACTH and cortisol concentrations were increased in the afternoon and evening. We conclude that there is no diurnal rhythm in ovine fetal hypothalamo-pituitary-adrenal axis activity, and that the increased plasma concentrations of ACTH and cortisol in the afternoon and evening hours of the last few days of fetal life might be a response to increased uterine contraction activity.  相似文献   

18.
Previous work from this laboratory demonstrated that the elevation of maternal plasma corticosteroid concentrations during pregnancy is important for the support of fetal development. Reducing ovine maternal plasma cortisol concentrations to nonpregnant levels stimulates homeostatic responses that defend fetal blood volume. The present study was designed to test the hypothesis that chronic decreases or increases in maternal plasma cortisol concentration alter uterine and placental blood flow and morphology. Three groups of pregnant ewes and their fetuses were chronically catheterized and studied: ewes infused with cortisol (1 mg.kg(-1).day(-1); high cortisol), ewes adrenalectomized and underreplaced with cortisol (0.5 mg.kg(-1).day(-1); low cortisol), and control ewes. The normal increment in uterine blood flow between 120 and 130 days was eliminated in the low-cortisol ewes; conversely, uterine blood flow was increased in the high-cortisol group compared with the control group. Fetal arterial blood pressure was increased in the high-cortisol group compared with controls, but there was no increase in fetal arterial pressure from 120 to 130 days of gestation in the low-cortisol group. The fetuses of both low-cortisol and high-cortisol groups had altered placental morphology, with increased proportions of type B placentomes, and overall reduced fetal placental blood flow. The rate of fetal somatic growth was impaired in both low-cortisol and high-cortisol groups compared with the fetuses in the intact group. The results of this study demonstrate that maternal plasma cortisol during pregnancy is an important contributor to the maternal environment supporting optimal conditions for fetal homeostasis and somatic growth.  相似文献   

19.
We previously demonstrated that cortisol regulated alpha(1)-adrenoceptor-mediated contractions differentially in nonpregnant and pregnant uterine arteries. Given that chronic hypoxia during pregnancy has profound effects on maternal uterine artery reactivity, the present study investigated the effects of chronic hypoxia on cortisol-mediated regulation of uterine artery contractions. Pregnant (day 30) and nonpregnant ewes were divided between normoxic control and chronically hypoxic [maintained at high altitude (3,820 m), arterial Po(2): 60 mmHg for 110 days] groups. Uterine arteries were isolated and contractions measured. In hypoxic animals, cortisol (10 ng/ml for 24 h) increased norepinephrine-induced contractions in pregnant, but not in nonpregnant, uterine arteries. The 11beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone did not change cortisol effects in nonpregnant uterine arteries, but abolished it in pregnant uterine arteries by increasing norepinephrine pD(2) (-log EC(50)) in control tissues. The dissociation constant of norepinephrine-alpha(1)-adrenoceptors was not changed by cortisol in nonpregnant, but decreased in pregnant uterine arteries. There were no differences in the density of glucocorticoid receptors between normoxic and hypoxic tissues. Cortisol inhibited the norepinephrine-induced increase in Ca(2+) concentrations in nonpregnant arteries, but potentiated it in pregnant arteries. In addition, cortisol attenuated phorbol 12,13-dibutyrate-induced contractions in normoxic nonpregnant and pregnant uterine arteries, but had no effect on the contractions in hypoxic arteries. The results suggest that cortisol differentially regulates alpha(1)-adrenoceptor- and PKC-mediated contractions in uterine arteries. Chronic hypoxia suppresses uterine artery sensitivity to cortisol, which may play an important role in the adaptation of uterine vascular tone and blood flow in response to chronic stress of hypoxia during pregnancy.  相似文献   

20.
In Experiment 1, an osmotic minipump containing oxytocin was implanted s.c. in ewes for 12 days beginning on Day 10 of the oestrous cycle, producing approximately 100 pg oxytocin/ml in the plasma. Two days after the start of infusion, all ewes were injected with 100 micrograms cloprostenol and placed with a fertile ram. At slaughter 22 days later, 9 (75%) of the 12 control (saline-infused) ewes were pregnant compared with 1 (11%) of the 9 ewes infused with oxytocin. In the control group, midcycle plasma concentrations of oxytocin were significantly higher in nonpregnant than in pregnant ewes. In Experiment 2, an infertile ram was used throughout to avoid any possible effects of pregnancy and oxytocin infusions were given at different stages of the oestrous cycle. Otherwise the protocol was similar to that in Exp. 1. Oxytocin infusion during luteolysis and the early follicular phase had no effect on the subsequent progesterone secretion pattern, but infusions beginning the day before cloprostenol-induced luteolysis and lasting for 7 or 12 days and infusions beginning on the day of oestrus for 4 days all delayed the subsequent rise in plasma progesterone by approximately 3-4 days. In these animals, the cycle tended to be longer. It was concluded that an appropriate oxytocin secretion pattern may be necessary for the establishment of pregnancy in ewes and that a high circulating oxytocin concentration during the early luteal phase delays the development of the young corpus luteum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号