首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
Several GTPases are required for ribosome biogenesis and assembly. We recently identified rice (Oryza sativa) nuclear/nucleolar GTPase 2 (OsNug2), a YlqF/YawG family GTPase, as having a role in pre-60S ribosomal subunit maturation. To investigate the potential factors involved in regulating OsNug2 function, yeast two-hybrid screens were performed using OsNug2 as bait. Rice serine/threonine kinase 1 (OsSTK1) was identified as a candidate interacting protein. OsSTK1 appeared to interact with OsNug2 both in vitro and in vivo. OsSTK1 was found to have no effect on the GTP-binding activity of OsNug2; however, the presence of recombinant OsSTK1 in OsNug2 assay reaction mixtures increased OsNug2 GTPase activity. A kinase assay showed that OsSTK1 had weak autophosphorylation activity and strongly phosphorylated serine 209 of OsNug2. Using yeast complementation testing, we identified a GAL::OsNug2(S209N) mutation-harboring yeast strain that exhibited a growth-defective phenotype on galactose medium at 39 °C, which was divergent from that of a yeast strain harboring GAL::OsNug2. The intrinsic GTPase activity of OsNug2(S209N), which was found to be similar to that of OsNug2, was not fully enhanced upon weak binding of OsSTK1. Our findings indicate that OsSTK1 functions as a positive regulator of OsNug2 by enhancing OsNug2 GTPase activity. In addition, phosphorylation of OsNug2 serine 209 is essential for its complete function in biological functional pathway.  相似文献   

2.
The circularly permuted GTPase YlqF is essential for cell viability and is broadly conserved from Gram-positive bacteria to eukaryotes. We previously reported that YlqF participates in the late step of 50 S ribosomal subunit assembly in Bacillus subtilis. Here, we demonstrate that an N-terminal deletion mutant of YlqF (YlqFDeltaN10) inhibits cell growth even in the presence of wild-type YlqF. In contrast to the wild-type protein, the GTPase activity of this mutant was not stimulated by the 50 S subunit and did not dissociate from the premature 50 S subunit. Thus, YlqFDeltaN10 acts as a competitive inhibitor of wild-type YlqF. Premature 50 S subunit lacking ribosomal protein L27 and with a reduced amount of L16 accumulated in YlqFDeltaN10-overexpressing cells and in YlqF-depleted cells, suggesting that YlqFDeltaN10 binds to the premature 50 S subunit. Moreover, premature 50 S subunit from both YlqFDeltaN10-overexpressing and YlqF-depleted cells more strongly enhanced the GTPase activity of YlqF than the mature 50 S subunit of the 70 S ribosome. Collectively, our results indicate that YlqF is targeted to the premature 50 S subunit lacking ribosomal proteins L16 and L27 to assemble functional 50 S subunit through a GTPase activity-dependent conformational change of 23 S rRNA.  相似文献   

3.
In this paper the essential GTPase YlqF is shown to participate in the biogenesis of the 50S ribosomal subunit in Bacillus subtilis. Cells depleted of YlqF displayed gene expression profiles and nucleoid morphologies that were consistent with a function for YlqF in translation. In addition, YlqF is evolutionarily linked to two eukaryotic GTPases, Nog2p and Nug1p, that are involved in the biogenesis and the nuclear export of the 60S ribosomal subunit. Analysis of ribosomes from cells depleted of YlqF demonstrated that the formation of 70S ribosomes was greatly reduced and the large subunit sedimented at 45S. Cells grown with varying depleted levels of YlqF, yielding doubling times ranging from 38 min to 150 min, all displayed the 45S intermediate. Purified YlqF-His(6) protein associates with the 45S intermediate, but not the mature 50S subunit in vitro. Analysis of proteins from the 45S intermediate indicated that ribosomal protein L16, which is added late during in vitro Escherichia coli 50S ribosome biogenesis, was missing from the 45S intermediate. These results support a model in which YlqF participates in the formation of active 70S ribosomes in the cell by functioning in a late step of 50S subunit biogenesis. Based on these results we propose to rename the ylqF gene rbgA (ribosome biogenesis GTPase A).  相似文献   

4.
Bacillus subtilis YlqF belongs to the Era/Obg subfamily of small GTP-binding proteins and is essential for bacterial growth. Here we report that YlqF participates in the late step of 50 S ribosomal subunit assembly. YlqF was co-fractionated with the 50 S subunit, depending on the presence of noncleavable GTP analog. Moreover, the GTPase activity of YlqF was stimulated specifically by the 50 S subunit in vitro. Dimethyl sulfate footprinting analysis disclosed that YlqF binds to a unique position in 23 S rRNA. Yeast two-hybrid data revealed interactions between YlqF and the B. subtilis L25 protein (Ctc). The interaction was confirmed by the pull-down assay of the purified proteins. Specifically, YlqF is positioned around the A-site and P-site on the 50 S subunit. Proteome analysis of the abnormal 50 S subunits that accumulated in YlqF-depleted cells showed that L16 and L27 proteins, located near the YlqF-binding domain, are missing. Our results collectively indicate that YlqF will organize the late step of 50 S ribosomal subunit assembly.  相似文献   

5.
Ssf1p and Ssf2p are two nearly identical and functionally redundant nucleolar proteins. In the absence of Ssf1p and Ssf2p, the 27SA(2) pre-rRNA was prematurely cleaved, inhibiting synthesis of the 27SB and 7S pre-rRNAs and the 5.8S and 25S rRNA components of the large ribosomal subunit. On sucrose gradients, Ssf1p sedimented with pre-60S ribosomal particles. The 27SA(2), 27SA(3), and 27SB pre-rRNAs were copurified with tagged Ssf1p, as were 23 large subunit ribosomal proteins and 21 other proteins implicated in ribosome biogenesis. These included four Brix family proteins, Ssf1p, Rpf1p, Rpf2p, and Brx1p, indicating that the entire family functions in ribosome synthesis. This complex is distinct from recently reported pre-60S complexes in RNA and protein composition. We describe a multistep pathway of 60S preribosome maturation.  相似文献   

6.
Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process.  相似文献   

7.
Ribosomal proteins play important roles in ribosome biogenesis and function. Here, we study the evolutionarily conserved L26 in Saccharomyces cerevisiae, which assembles into pre-60S ribosomal particles in the nucle(ol)us. Yeast L26 is one of the many ribosomal proteins encoded by two functional genes. We have disrupted both genes; surprisingly, the growth of the resulting rpl26 null mutant is apparently identical to that of the isogenic wild-type strain. The absence of L26 minimally alters 60S ribosomal subunit biogenesis. Polysome analysis revealed the appearance of half-mers. Analysis of pre-rRNA processing indicated that L26 is mainly required to optimize 27S pre-rRNA maturation, without which the release of pre-60S particles from the nucle(ol)us is partially impaired. Ribosomes lacking L26 exhibit differential reactivity to dimethylsulfate in domain I of 25S/5.8S rRNAs but apparently are able to support translation in vivo with wild-type accuracy. The bacterial homologue of yeast L26, L24, is a primary rRNA binding protein required for 50S ribosomal subunit assembly in vitro and in vivo. Our results underscore potential differences between prokaryotic and eukaryotic ribosome assembly. We discuss the reasons why yeast L26 plays such an apparently nonessential role in the cell.  相似文献   

8.
9.
In Saccharomyces cerevisiae, a large variety of pre-ribosomal factors have been identified recently, a number of which are still of unknown function. The essential pre-ribosomal 30-kDa protein, Nsa2, was characterized as one of the most conserved proteins from yeast to human. We show here that the expression of the human orthologue TINP1 complements the repression of NSA2 in yeast. Nsa2 was co-purified in several pre-ribosomal complexes and found to be essential for the large ribosomal subunit biogenesis. Like several other factors of the pre-60 S particles, the absence of Nsa2 correlated with a decrease in the 25 S and 5.8 S ribosomal RNA levels, and with an accumulation of 27 SB pre-ribosomal RNA intermediates. We show that Nsa2 is a functional partner of the putative GTPase Nog1. In the absence of Nsa2, Nog1 was still able to associate with pre-ribosomal complexes blocked in maturation. In contrast, in the absence of Nog1, Nsa2 disappeared from pre-60 S complexes. Indeed, when ribosome biogenesis was blocked upstream of Nsa2, this short half-lived protein was largely depleted, suggesting that its cellular levels are tightly regulated.  相似文献   

10.
The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.  相似文献   

11.
60S ribosomes undergo initial assembly in the nucleolus before export to the cytoplasm and recent analyses have identified several nucleolar pre-60S particles. To unravel the steps in the pathway of ribosome formation, we have purified the pre-60S ribosomes associated with proteins predicted to act at different stages as the pre-ribosomes transit from the nucleolus through the nucleoplasm and are then exported to the cytoplasm for final maturation. About 50 non-ribosomal proteins are associated with the early nucleolar pre-60S ribosomes. During subsequent maturation and transport to the nucleoplasm, many of these factors are removed, while others remain attached and additional factors transiently associate. When the 60S precursor particles are close to exit from the nucleus they associate with at least two export factors, Nmd3 and Mtr2. As the 60S pre-ribosome reaches the cytoplasm, almost all of the factors are dissociated. These data provide an initial biochemical map of 60S ribosomal subunit formation on its path from the nucleolus to the cytoplasm.  相似文献   

12.
Ribosome biogenesis involves a large ensemble of trans‐acting factors, which catalyse rRNA processing, ribosomal protein association and ribosomal subunit assembly. The circularly permuted GTPase Lsg1 is such a ribosome biogenesis factor, which is involved in maturation of the pre‐60S ribosomal subunit in yeast. We identified two orthologues of Lsg1 in Arabidopsis thaliana. Both proteins differ in their C‐terminus, which is highly charged in atLSG1‐2 but missing in atLSG1‐1. This C‐terminus of atLSG1‐2 contains a functional nuclear localization signal in a part of the protein that also targets atLSG1‐2 to the nucleolus. Furthermore, only atLSG1‐2 is physically associated with ribosomes suggesting its function in ribosome biogenesis. Homozygous T‐DNA insertion lines are viable for both LSG1 orthologues. In plants lacking atLSG1‐2 18S rRNA precursors accumulate and a 20S pre‐rRNA is detected, while the amount of pre‐rRNAs that lead to the 25S and 5.8S rRNA is not changed. Thus, our results suggest that pre‐60S subunit maturation is important for the final steps of pre‐40S maturation in plants. In addition, the lsg1‐2 mutants show severe developmental defects, including triple cotyledons and upward curled leaves, which link ribosome biogenesis to early plant and leaf development.  相似文献   

13.
Assembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates.It is unknown how the highly intertwined structure of 60S large ribosomal subunits is established.Here,we report the structure of an early nucleolar pre-60S ribosome determined by cryo-electron microscopy at 3.7 A resolution,revealing a half-assembled subunit.DomainsⅠ,ⅡandⅣof 25S/5.8S rRNA pack tightly into a native-like substructure,but domains Ⅲ,ⅣandⅤare not assembled.The structure contains 12 assembly factors and 19 ribosomal proteins,many of which are required for early processing of large subunit rRNA.The Brx1-Ebp2 complex would interfere with the assembly of domains Ⅳ and Ⅴ.Rpf1,Mak16,Nsa1 and Rrp1 form a cluster that consolidates the joining of domainsⅠandⅡ.Our structure reveals a key intermediate on the path to establishing the global architecture of 60S subunits.  相似文献   

14.
15.
Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3′-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation.  相似文献   

16.
In all three domains of life ribosomal RNAs are extensively modified at functionally important sites of the ribosome. These modifications are believed to fine-tune the ribosome structure for optimal translation. However, the precise mechanistic effect of modifications on ribosome function remains largely unknown. Here we show that a cluster of methylated nucleotides in domain IV of 25S rRNA is critical for integrity of the large ribosomal subunit. We identified the elusive cytosine-5 methyltransferase for C2278 in yeast as Rcm1 and found that a combined loss of cytosine-5 methylation at C2278 and ribose methylation at G2288 caused dramatic ribosome instability, resulting in loss of 60S ribosomal subunits. Structural and biochemical analyses revealed that this instability was caused by changes in the structure of 25S rRNA and a consequent loss of multiple ribosomal proteins from the large ribosomal subunit. Our data demonstrate that individual RNA modifications can strongly affect structure of large ribonucleoprotein complexes.  相似文献   

17.
Insulin-like growth factor-I (IGF-I) signaling is strongly associated with cell growth and regulates the rate of synthesis of the rRNA precursor, the first and the key stage of ribosome biogenesis. In a screen for mediators of IGF-I signaling in cancer, we recently identified several ribosome-related proteins, including NEP1 (nucleolar essential protein 1) and WDR3 (WD repeat 3), whose homologues in yeast function in ribosome processing. The WDR3 gene and its locus on chromosome 1p12-13 have previously been linked with malignancy. Here we show that IGF-I induces expression of WDR3 in transformed cells. WDR3 depletion causes defects in ribosome biogenesis by affecting 18 S rRNA processing and also causes a transient down-regulation of precursor rRNA levels with moderate repression of RNA polymerase I activity. Suppression of WDR3 in cells expressing functional p53 reduced proliferation and arrested cells in the G1 phase of the cell cycle. This was associated with activation of p53 and sequestration of MDM2 by ribosomal protein L11. Cells lacking functional p53 did not undergo cell cycle arrest upon suppression of WDR3. Overall, the data indicate that WDR3 has an essential function in 40 S ribosomal subunit synthesis and in ribosomal stress signaling to p53-mediated regulation of cell cycle progression in cancer cells.  相似文献   

18.
Ribosomal precursor particles are initially assembled in the nucleolus prior to their transfer to the nucleoplasm and export to the cytoplasm. In a screen to identify thermosensitive (ts) mutants defective in the export of pre-60S ribosomal subunit, we isolated the rix16-1 mutant. In this strain, nucleolar accumulation of the Rpl25-eGFP reporter was complemented by UBA2 (a subunit of the E1 sumoylation enzyme). Mutations in UBC9 (E2 enzyme), ULP1 [small-ubiquitin-related modifier (SUMO) isopeptidase] and SMT3 (SUMO-1) caused 60S export defects. A directed analysis of the SUMO proteome revealed that many ribosome biogenesis factors are sumoylated. Importantly, preribosomal particles along both the 60S and the 40S synthesis pathways were decorated with SUMO, showing its direct involvement. Consistent with this, early 60S assembly factors were genetically linked to SUMO conjugation. Notably, the SUMO deconjugating enzyme Ulp1, which localizes to the nuclear pore complex (NPC), was functionally linked to the 60S export factor Mtr2. Together our data suggest that sumoylation of preribosomal particles in the nucleus and subsequent desumoylation at the NPC is necessary for efficient ribosome biogenesis and export in eukaryotes.  相似文献   

19.
Proteomic analyses in yeast have identified a large number of proteins that are associated with preribosomal particles. However, the product of the yeast ORF YJL010C, herein designated as Nop9, failed to be identified in any previous physical or genetic analysis of preribosomes. Here we report that Nop9 is a nucleolar protein, which is associated with 90S and 40S preribosomes. In cells depleted of Nop9p, early cleavages of the 35S pre-rRNA are inhibited, resulting in the nucleolar retention of accumulated precursors and a failure to synthesize 18S rRNA. Nop9 contains multiple pumilio-like putative RNA binding repeats and displays robust in vitro RNA binding activity. The identification of Nop9p as a novel, essential factor in the nuclear maturation of 90S and pre-40S ribosomal subunits shows that the complement of ribosome synthesis factors remains incomplete.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号