首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Encoding of temporal stimulus parameters by inferior collicular (IC) neurons of Eptesicus fuscus was studied by recording their responses to a wide range of repetition rates (RRs) and durations at several stimulus intensities under free field stimulus conditions. 2. The response properties of 424 IC neurons recorded were similar to those reported in previous studies of this species. 3. IC neurons were classified as low-pass, band-pass, and high-pass according to their preference for RRs and/or durations characteristic of, respectively, search, approach, or terminal phases of echolocation. These neurons selectively process stimuli characteristic of the various phases of hunting. 4. Best RRs and best durations were not correlated with either the BFs or recording depths This suggests that each isofrequency lamina is capable of processing RRs and durations of all hunting phases. 5. Responses of one half of IC neurons studied were correlated with the stimulus duty cycle. These neurons may preferentially process terminal phase information when the bat's pulse emission duty cycle increases. 6. While the stimulus RR affected the dynamic range and overall profile of the intensity rate function, only little effect was observed with different stimulus durations.  相似文献   

2.
To understand how information is coded in the primary somatosensory cortex (S1) we need to decipher the relationship between neural activity and tactile stimuli. Such a relationship can be formally measured by mutual information. The present study was designed to determine how S1 neuronal populations code for the multidimensional kinetic features (i.e. random, time-varying patterns of force) of complex tactile stimuli, applied at different locations of the rat forepaw. More precisely, the stimulus localization and feature extraction were analyzed as two independent processes, using both rate coding and temporal coding strategies. To model the process of stimulus kinetic feature extraction, multidimensional stimuli were projected onto lower dimensional subspace and then clustered according to their similarity. Different combinations of stimuli clustering were applied to differentiate each stimulus identification process. Information analyses show that both processes are synergistic, this synergy is enhanced within the temporal coding framework. The stimulus localization process is faster than the stimulus feature extraction process. The latter provides more information quantity with rate coding strategy, whereas the localization process maximizes the mutual information within the temporal coding framework. Therefore, combining mutual information analysis with robust clustering of complex stimuli provides a framework to study neural coding mechanisms related to complex stimuli discrimination.  相似文献   

3.
The clustering of membrane‐bound receptors plays an essential role in various biological systems. A notable model system for studying this phenomenon is the bacterial chemosensory cluster that allows motile bacteria to navigate along chemical gradients in their environment. While the basic structure of these chemosensory clusters is becoming clear, their dynamic nature and operation are not yet understood. By measuring the fluorescence polarization of tagged receptor clusters in live Escherichia coli cells, we provide evidence for stimulus‐induced dynamics in these sensory clusters. We find that when a stimulus is applied, the packing of the receptors slowly decreases and that the process reverses when the stimulus is removed. Consistent with these physical changes we find that the effective cooperativity of the kinase response slowly evolves in the presence of a stimulus. Time‐lapse fluorescence imaging indicates that, despite these changes, the receptor clusters do not generally dissociate upon ligand binding. These data reveal stimulus‐dependent plasticity in chemoreceptor clusters.  相似文献   

4.
In chronic experiments on waking rabbits, the foci of heightened excitability in the sensorimotor cortex and mesencephalic reticular formation affected in a similar way the background neuronal activity in the superior colliculi and that evoked by light stimuli. The effect was manifested in elimination of inhibitory pauses in the neuronal response to light stimulus and in a general increase of discharge frequency. Similarity of the cortical and reticular influences is due to their possible mediation by the same collicular interneurones participating in inhibitory pauses formation in the process of backward inhibition. Increased neuronal activity in the superior colliculi under the action of local foci in the sensorimotor cortex and mesencephalic reticular formation correlated with appearance of forelimb motor reaction to isolated light stimulus testifying to a formation of a functional connection between the visual and motor analyzers. Possible role of the superior colliculi in this process and their participation in the formation of a visually controlled reaction is discussed.  相似文献   

5.
Crickets are able to extract directional information about a wind stimulus through the filiform hairs located on their cerci. This paper describes the design and testing of a neuromorphic sensor that aims to achieve a close correlation with both the physical and functional properties of these hairs. An integrate and fire neural network is used to process the sensory information in real time. The resulting system is shown to be capable of extracting directional information from a wind stimulus and producing an appropriate motor control pattern.  相似文献   

6.
Habituation is one of the most fundamental learning processes that allow animals to adapt to dynamic environments. It is ubiquitous and often thought of as a simple form of non-associative learning. Very little is known, though, about the rules that govern habituation and their significance under natural conditions. Questions about how animals incorporate habituation into their daily behaviour and how they can assure only to habituate to non-relevant stimuli are still unanswered. Animals under threat of predation should be particularly selective about which stimuli they habituate to, since ignoring a real threat could be fatal. In this study, we tested the response of fiddler crabs, Uca vomeris, to repeatedly approaching dummy predators to find out whether these animals habituate to potential predators and to test the selectivity of the habituation process. The crabs habituated to model predators, even though they were confronted with real predators during the same habituation process. They showed remarkable selectivity towards the stimulus: a simple change in the approach distance of the stimulus led to a recovery in their responses. The results strongly indicate that in the context of predator avoidance, habituation under natural conditions is highly selective and a stimulus is not defined just by its current sensory signature, but also its spatio-temporal history.  相似文献   

7.
We simultaneously perturbed visual, vestibular and proprioceptive modalities to understand how sensory feedback is re-weighted so that overall feedback remains suited to stabilizing upright stance. Ten healthy young subjects received an 80 Hz vibratory stimulus to their bilateral Achilles tendons (stimulus turns on-off at 0.28 Hz), a ±1 mA binaural monopolar galvanic vestibular stimulus at 0.36 Hz, and a visual stimulus at 0.2 Hz during standing. The visual stimulus was presented at different amplitudes (0.2, 0.8 deg rotation about ankle axis) to measure: the change in gain (weighting) to vision, an intramodal effect; and a change in gain to vibration and galvanic vestibular stimulation, both intermodal effects. The results showed a clear intramodal visual effect, indicating a de-emphasis on vision when the amplitude of visual stimulus increased. At the same time, an intermodal visual-proprioceptive reweighting effect was observed with the addition of vibration, which is thought to change proprioceptive inputs at the ankles, forcing the nervous system to rely more on vision and vestibular modalities. Similar intermodal effects for visual-vestibular reweighting were observed, suggesting that vestibular information is not a “fixed” reference, but is dynamically adjusted in the sensor fusion process. This is the first time, to our knowledge, that the interplay between the three primary modalities for postural control has been clearly delineated, illustrating a central process that fuses these modalities for accurate estimates of self-motion.  相似文献   

8.
Categorical judgments can systematically bias the perceptual interpretation of stimulus features. However, it remained unclear whether categorical judgments directly modify working memory representations or, alternatively, generate these biases via an inference process down-stream from working memory. To address this question we ran two novel psychophysical experiments in which human subjects had to reverse their categorical judgments about a stimulus feature, if incorrect, before providing an estimate of the feature. If categorical judgments indeed directly altered sensory representations in working memory, subjects’ estimates should reflect some aspects of their initial (incorrect) categorical judgment in those trials. We found no traces of the initial categorical judgment. Rather, subjects seemed to be able to flexibly switch their categorical judgment if needed and use the correct corresponding categorical prior to properly perform feature inference. A cross-validated model comparison also revealed that feedback may lead to selective memory recall such that only memory samples that are consistent with the categorical judgment are accepted for the inference process. Our results suggest that categorical judgments do not modify sensory information in working memory but rather act as top-down expectations in the subsequent sensory recall and inference process.  相似文献   

9.
《Behavioural processes》1988,17(2):117-129
Waiting schedules do not impose temporal regulation but condition the animal to give the operant response during a given time. At the end of the required delay, a positive discriminative stimulus is presented. The suspension of the response while the discriminative stimulus is being given suspension of the response while the discriminative stimulus is being given is accompanied by reinforcement. The transformation of a waiting schedule into a temporal regulation schedule is generally achieved by suppressing the external facilitating factors or by physically modifying them. Our study reveals that a similar transformation can be achieved in the dog by the addition of a further stimulus. This stimulus, which is physically exactly the same as the excitatory stimulus and which punctuates the waiting period, is randomly introduced into the temporal delay. The absence of reinforcement in response to the added stimulus should force the animal to regulate its behavior in time and the additional negative discriminative stimulus favours the expression of the active nature of the inhibation. The results show that subjects can differentiate their response durations according to stimuli that only differ according to temporal location. Thus this pattern resembles a DRRD schedule. The peak of responses at the time of the inhibition stimulus reveals considerable behavioral conflict : either the response must be maintained or the inhibition suppressed. The positive or negative resolution of this conflict reveals noteworthy aspects of the behavioural inhibition process.  相似文献   

10.
The detection of novel stimuli is a memory-dependent process. The presented stimulus has to be compared with memory contents to judge its novelty. In addition, the novelty of stimuli activates attention-related processes that facilitate memory formation. To determine the involvement of limbic and neocortical brain structures in novelty detection, we exposed mice to a novel gustatory stimulus (0.5% saccharin) added to their drinking fluid. We then compared the novelty-induced expression of the two immediate-early genes (IEGs) c-fos and arg 3.1, with their expression in mice familiarized with the same stimulus or mice not exposed to that stimulus. Exposure to taste novelty increased expression of c-fos and arg 3.1 mRNA in the cingulate cortex and deep layers of the parietal cortex. In addition, c-fos mRNA expression was increased in the amygdala and arg 3.1 mRNA was increased in the dentate gyrus. Expression of c-fos and arg 3.1 was elevated 30 min after the exposure to novelty. For arg 3.1, a second peak of expression was found 4.5 h after presentation of the novel stimulus. Our results indicate that the amygdala, the dentate gyrus, and the cingulate and parietal cortices may be involved in novelty detection and associated cognitive events, and suggest that c-fos and arg 3.1 play distinct roles in these processes.  相似文献   

11.
The responses of mechanoreceptor neurons in the antennal chordotonal organ have been examined in cockroaches by intracellular recording methods. The chordotonal organ was mechanically stimulated by sinusoidal movement of the flagellum. Stimulus frequencies were varied between 0.5 and 150 Hz. Receptor neurons responded with spike discharges to mechanical stimulation, and were classed into two groups from plots of their average spike frequencies against stimulus frequency. Neurons in one group responded to stimulation over a wide frequency range (from 0.5 to 150 Hz), whereas those in a second group were tuned to higher frequency stimuli. The peak stimulus frequency at which receptor neurons showed maximum responses differed from cell to cell. Some had a peak response at a stimulus frequency given in the present study (from 0.5 to 150 Hz), whereas others were assumed to have peak responses beyond the highest stimulus frequency examined. The timing for the initiation of spikes or of a burst of spikes plotted against each stimulus cycle revealed that spike generation was phase-locked in most cells. Some cells showed phase-independent discharges to stimulation at lower frequency, but increasing stimulus frequencies spike initiation began to assemble at a given phase of the stimulus cycle. The response patterns observed are discussed in relation to the primary process of mechanoreception of the chordotonal organ.  相似文献   

12.
Franks DW  Ruxton GD 《Bio Systems》2008,92(2):175-181
Artificial feed-forward neural networks are commonly used as a tool for modelling stimulus selection and animal signalling. A key finding of stimulus selection research has been generalization: if a given behaviour has been established to one stimulus, perceptually similar novel stimuli are likely to induce a similar response. Stimulus generalization, in feed-forward neural networks, automatically arises as a property of the network. This network property raises understandable concern regarding the sensitivity of the network to variation in its internal parameter values used in relation to its structure and to its training process. Researchers must have confidence that the predictions of their model follow from the underlying biology that they deliberately incorporated in the model, and not from often arbitrary choices about model implementation. We study how network training and parameter perturbations influence the qualitative and quantitative behaviour of a simple but general network. Specifically, for models of stimulus control we study the effect that parameter variation has on the shape of the generalization curves produced by the network. We show that certain network and training conditions produce undesirable artifacts that need to be avoided (or at least understood) when modelling stimulus selection.  相似文献   

13.
Four groups of rats received stimulus pre-exposure under conditions intended to produce different opportunities for stimulus comparison to occur. Groups AX/BX-L and AX/BX-S received alternating presentations of two compound flavors (AX and BX); the interval between these presentations was long (24 h) for group AX/BX-L, and short (5 min) for group AX/BX-S. Groups AX-L and AX-S matched groups AX/BX-L and AX/BX-S in their pre-exposure conditions except that they received presentations of water rather than presentations of BX. The effective salience of one of the unique stimulus features (A) was then assessed by using this flavor as a conditioned stimulus in a flavor-aversion procedure. It was found that aversion to A was learned about more readily after pre-exposure to AX and BX than after pre-exposure just to AX. However, there was no indication that the rate of conditioning to A was affected by the temporal interval between the presentations of AX and BX. These findings challenge the notion that stimulus comparison engages a process responsible for an increase in the salience of the unique stimulus features, but can be accommodated by the salience modulation mechanism proposed by Hall [Hall, G., 2003. Learned changes in the sensitivity of stimulus representations: associative and nonassociative mechanisms. Q. J. Exp. Psychol. 56, 43-55].  相似文献   

14.
Category ratings are a popular device for assessing preferences and for guiding efforts in the development of new products. They are frequently misinterpreted or misused, however, because their use is so closely analogized to the process of fundamental measurement. Unlike physical measures, psychological scales such as category ratings are strongly affected by situational or contextual factors which must be carefully controlled and fully understood for proper use of the scale. Category ratings are affected by stimulus range and frequency, number of stimuli and number of categories, as well as by stimulus sequence. Implications for appropriate use of the scale in sensory evaluation are addressed.  相似文献   

15.
Developmental physiology of floral initiation in Nicotiana tabacum L.   总被引:4,自引:0,他引:4  
The central process in the making of a multicellular organismis the fating of cells and tissues for their terminal phenotypes.The formation of a flower from a shoot apical meristem completesa sequence of fating processes initiated in embryogenesis. Thefating of a vegetative meristem of Nicotiana tabacum L. to initiatea flower involves at least two signals and two developmentalstates. A signal from the roots maintains vegetative growth,or prevents flowering, in the young seedling. As the plant grows,the vegetative meristem gains greater competence to respondto the floral stimulus from the leaves until it is evoked, byfloral stimulus, into a florally determined state. The florallydetermined state is then expressed. These developmental processesnot only establish the time of floral initiation, but also regulateplant size as measured by the number of nodes produced. Key words: Plant size, floral stimulus, competence, floral determination, induction  相似文献   

16.
Thrombin treated with phenylmethanesulphonyl fluoride, like active enzyme, promotes modifications to human platelet cytoskeleton. The removal of active thrombin by hirudin partially reverses this process. Chymotrypsin-treated platelets do not modify their cytoskeleton after thrombin stimulus, but are still able to increase their adhesiveness to collagen. It is concluded that thrombin influences the cytoskeleton and adhesion by non-enzymic mechanisms which may be mediated by different modulators.  相似文献   

17.
Responses to innocuous stimuli often habituate with repeated stimulation, but the mechanisms involved in dishabituation are less well studied. Chan et al. (2010b) found that hermit crabs were quicker to perform an anti-predator withdrawal response in the presence of a short-duration white noise relative to a longer noise stimulus. In two experiments, we examined whether this effect could be explicable in terms of a non-associative learning process. We delivered repeated presentations of a simulated visual predator to hermit crabs, which initially caused the crabs to withdraw into their shells. After a number of trials, the visual stimulus lost the ability to elicit the withdrawal response. We then presented the crabs with an auditory stimulus prior to an additional presentation of the visual predator. In Experiment 1, the presentation of a 10-s, 89-dB SPL noise produced no significant dishabituation of the response. In Experiment 2 we increased the duration (50 s) and intensity (95 dB) of the noise, and found that the crabs recovered their withdrawal response to the visual predator. This finding illustrates dishabituation of an antipredator response and suggests two distinct processes—distraction and sensitization—are influenced by the same stimulus parameters, and interact to modulate the strength of the anti-predator response.  相似文献   

18.
Orientation sensitive properties of extrastriate area 21a neurons were investigated. Special attention was paid to the qualitative characteristics of neuron responses to the different orientations of visual stimulus motion across neuron classical receptive fields (CRF). The results of experiments have shown that a group of neurons (31%) in area 21a with specialized responses to moving visual stimuli changed their direction selective (DS) characteristics depending on the orientation of the stimulus movement. Some neurons reveal an abrupt drop of the direction sensitivity index (DI) to certain orientation (58%), and some show significant increase of DI at one of applied orientations of stimulus motion (22%). Detailed investigation of response patterns of non-directional neurons to different orientations of stimulus motion have revealed clear-cut qualitative differences, such as different regularities in the distribution of inter-peak inhibitory intervals in the response pattern in dependence of the orientation of stimulus motion. The investigation of neuron CRF stationary functional organization did not reveal correlations between RF's spatial functional organization, and that of qualitative modulations of neuron response patterns. A suggestion was put forward, that visual information central processing of orientation discrimination is a complex integrative process that includes quantitative as well as qualitative transformations of neuron activity.  相似文献   

19.
Flux detectors versus concentration detectors: two types of chemoreceptors   总被引:6,自引:3,他引:3  
Kaissling  KE 《Chemical senses》1998,23(1):99-111
Dose-response curves relating the external stimulus concentration to receptor occupancy differ in two types of chemoreceptor organs. In 'concentration detectors' the receptor molecules at the receptor cell membrane are directly exposed to the external stimulus concentration; these organs exhibit the well-known hyperbolic dose-response relationship reflecting the association-dissociation of stimulus and receptor molecules. In contrast, 'flux detectors' accumulate the stimulus molecules in a perireceptor compartment. In flux detectors, deactivation of stimulus molecules may be in balance with arrival, as a prerequisite for producing a constant effective stimulus concentration at constant adsorptive flux of stimulus molecules. In a simple model of a flux detector in which receptor molecules themselves catalyze the deactivation, the dose-response relationship is linear. It reflects the rate of stimulus deactivation. If the deactivation is catalyzed by a separate enzyme, the dose-response relationship can be close to hyperbolic, or linear. In all cases, the receptor molecules are maximally occupied if the adsorptive flux equals or exceeds the maximum rate of stimulus deactivation. The time course of the receptor potential recorded from moths' pheromone receptors depends on the odor compound, which suggests that a peripheral process, possibly the stimulus deactivation, is the slowest, rate-limiting process of the transduction cascade. Further evidence comes from experiments with stimuli oversaturating the mechanism responsible for the decline of the receptor potential.   相似文献   

20.
The detection of novel stimuli is a memory‐dependent process. The presented stimulus has to be compared with memory contents to judge its novelty. In addition, the novelty of stimuli activates attention‐related processes that facilitate memory formation. To determine the involvement of limbic and neocortical brain structures in novelty detection, we exposed mice to a novel gustatory stimulus (0.5% saccharin) added to their drinking fluid. We then compared the novelty‐induced expression of the two immediate‐early genes (IEGs) c‐fos and arg 3.1, with their expression in mice familiarized with the same stimulus or mice not exposed to that stimulus. Exposure to taste novelty increased expression of c‐fos and arg 3.1 mRNA in the cingulate cortex and deep layers of the parietal cortex. In addition, c‐fos mRNA expression was increased in the amygdala and arg 3.1 mRNA was increased in the dentate gyrus. Expression of c‐fos and arg 3.1 was elevated 30 min after the exposure to novelty. For arg 3.1, a second peak of expression was found 4.5 h after presentation of the novel stimulus. Our results indicate that the amygdala, the dentate gyrus, and the cingulate and parietal cortices may be involved in novelty detection and associated cognitive events, and suggest that c‐fos and arg 3.1 play distinct roles in these processes. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 234–246, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号