首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peptide somatostatin exists as two different molecular species. In addition to the most common form, somatostatin-14, there is also a fourteen amino acid N-terminally extended form of the tetradecapeptide, somatostatin-28. Both peptides are synthesized as larger precursors containing paired basic and monobasic amino acids at their processing sites, which upon cleavage generate either somatostatin-14 or -28, respectively. In some species of fish two distinct, but homologous, precursors (prosomatostatin-I and -II) give rise to somatostatin-14 and -28, respectively. Whereas anglerfish prosomatostatin-II was previously shown to release exclusively somatostatin-28, the yeast Saccharomyces cerevisiae proteolytically matures the homologous prosomatostatin-I precursor to somatostatin-28 and -14 as well as to a lysine-extended form of somatostatin-14. The Kex2 endoprotease appears to be essential for the formation of lysine somatostatin-14 and is involved either directly or indirectly in the release of mature somatostatin-14. The isolation of yeast mutants defective in somatostatin-28 expression (sex mutant) allowed the cloning of a non-essential gene, which encodes an aspartyl protease, whose disruption severely affects the cleavage of mature somatostatin-28 from both somatostatin precursors. We conclude that two distinct endoproteases, which demonstrate some cross specificity in vivo, are involved in the proteolytic maturation of prosomatostatin at mono- and dibasic processing sites in yeast.  相似文献   

2.
Somatostatin (SRIF) is a peptide hormone that is synthesized as part of a larger precursor, prepro-SRIF, consisting of a signal peptide and a proregion of 80-90 amino acids. The mature hormone exists as two different bioactive species. In addition to the most common form, which is a 14-residue peptide, there is also a 14-amino acid NH2-terminally extended form of the tetradecapeptide, SRIF-28. In mammals a single prepro-SRIF molecule undergoes tissue-specific processing to generate the mature hormone, whereas in some species of fish separate genes encode two distinct but homologous precursors, prepro-SRIF-I and -II, that give rise to SRIF-14 and -28, respectively. To investigate the molecular basis for differential processing of the prohormones, we have expressed their cDNAs in heterologous cells. Previously, we demonstrated that prepro-SRIF-I was efficiently and accurately processed in rat pituitary growth hormone (GH3) cells to generate the same hormone as synthesized in pancreatic islet D-cells, namely SRIF-14 (Stoller, T., and Shields, D. (1989) J. Biol. Chem. 264, 6922-6928). We have now compared the proteolytic processing of pro-SRIF-II to that of pro-SRIF-I in these cells. In contrast to pro-SRIF-I, pro-SRIF-II was neither processed nor secreted. Instead, greater than 70% of the precursor was degraded intracellularly in a post-trans Golgi network compartment which was inhibited by weak bases. Brefeldin A treatment prevented degradation, suggesting that turnover of the remaining pro-SRIF-II occurred after exit from the endoplasmic reticulum/intermediate compartment and prior to arrival at the trans Golgi network. The intracellular degradation of the precursor was unexpected, since heterologous cells which do not cleave prohormones generally secrete the unprocessed precursor. We speculate that unique structural domains within each precursor are recognized by the sorting apparatus in GH3 cells, thereby targeting the molecules to different intracellular organelles.  相似文献   

3.
Somatostatin (SRIF or SS) is a phylogenetically ancient, multigene family of peptides. SRIF-14 is conserved with identical primary structure in species of all classes of vertebrates. The presence of multiple SRIF genes has been demonstrated in a number of fish species and could extend to tetrapods. Three distinct SRIF genes have been identified in goldfish. One of these genes, which encodes [Pro2]SRIF-14, is also present in sturgeon and African lungfish, and is closely associated with amphibian [Pro2,Met13]SRIF-14 gene and mammalian cortistatin gene. The post-translational processing of SRIF precursors could result in multiple forms of mature SRIF peptides, with differential abundance and tissue- or cell type-specific patterns. The main neuroendocrine role of SRIF-14 peptide that has been determined in fish is the inhibition of pituitary growth hormone secretion. The functions of SRIF-14 variant or larger forms of SRIF peptide and the regulation of SRIF gene expression remain to be explored. Type 1 and type 2 SRIF receptors have been identified from goldfish and a type 3 SRIF receptor has been identified from an electric fish. Fish SRIF receptors display considerable homology with mammalian counterparts in terms of primary structure and negative coupling to adenylate cyclase. Although additional types of receptors remain to be determined, identification of the multiple gene family of SRIF peptides and multiple types of SRIF receptors opens a new avenue for the study of physiological roles of SRIF, and the molecular and cellular mechanisms of SRIF action in fish.  相似文献   

4.
The classical conversion site in precursors of regulatory peptides is a sequence of two basic amino acids. During recent years, however, a group of monobasic cleavage sites has emerged. In certain cell systems it has been shown that the monobasic cleavage mechanism is both a specific mechanism which only attacks a particular basic residue, and a distinct mechanism which can be separated from the dibasic cleaving mechanism within the same cell. The vast majority of monobasic cleavages occur at single arginines although cleavage after a lysine residue has also been demonstrated. There is no 'consensus sequence' of amino acids surrounding the single basic residue which is the apparent signal for proteolytic processing. However, in approximately one third of the cases, a proline residue is found either just before or just after the basic residue. On the basis of this 'proline-directed arginyl cleavage' it is discussed how the conformation of the peptide backbone might be important for this type of cleavage. Finally, it is suggested that tissue-specific expression of different processing enzymes, e.g. dibasic and monobasic specific forms, might explain the tissue-specific processing of precursors like the pro-opiomelanocortin and the CKK and somatostatin precursor.  相似文献   

5.
The parathyroid hormone-related protein (PTHrP) precursor requires proteolytic processing to generate PTHrP-related peptide products that possess regulatory functions in the control of PTH-like (parathyroid-like) actions and cell growth, calcium transport, and osteoclast activity. Biologically active peptide domains within the PTHrP precursor are typically flanked at their NH2- and COOH-termini by basic residue cleavage sites consisting of multibasic, dibasic, and monobasic residues. These basic residues are predicted to serve as proteolytic cleavage sites for converting the PTHrP precursor into active peptide products. The coexpression of the prohormone processing enzyme PTP ("prohormone thiol protease") in PTHrP-containing lung cancer cells, and the lack of PTP in cell lines that contain little PTHrP, implicate PTP as a candidate processing enzyme for proPTHrP. Therefore, in this study, PTP cleavage of recombinant proPTHrP(1-141) precursor was evaluated by MALDI mass spectrometry to identify peptide products and cleavage sites. PTP cleaved the PTHrP precursor at the predicted basic residue cleavage sites to generate biologically active PTHrP-related peptides that correspond to the NH2-terminal domain (residues 1-37) that possesses PTH-like and growth regulatory activities, the mid-region domain (residues 38-93) that regulates calcium transport, and the COOH-terminal domain (residues 102-141) that modulates osteoclast activity. Lack of cleavage at other types of amino acids demonstrated the specificity of PTP processing at basic residue cleavage sites. Overall, these results demonstrate the ability of PTP to cleave the PTHrP precursor at multibasic, dibasic, and monobasic residue cleavage sites to generate active PTHrP-related peptides. The presence of PTP immunoreactivity in PTHrP-containing lung cancer cells suggests PTP as a candidate processing enzyme for the PTHrP precursor.  相似文献   

6.
Many peptide hormones and neuropeptides are produced from larger, inactive precursors through endoproteolysis at sites usually marked by paired basic residues (primarily Lys-Arg and Arg-Arg), or occasionally by a monobasic residue (primarily Arg). Based upon data concerning processing of prorenin and its mutants around the native Lys-Arg cleavage site expressed in mouse pituitary AtT-20 cells, we present the following sequence rules that govern mono-arginyl cleavages: (a) a basic residue at the fourth (position -4) or the sixth (position -6) residue upstream of the cleavage site is required, (b) at position -4, Arg is more favorable than Lys, and (c) at position 1, a hydrophobic aliphatic residue is not suitable. These rules are compatible with those proposed by comparison of precursor sequences around mono-arginyl cleavage sites. We also provide evidence that precursor cleavages at mono-arginyl and dibasic sites can be catalyzed by the same Kex2-like processing endoprotease, PC1/PC3.  相似文献   

7.
Prohormone processing by yeast proteases.   总被引:1,自引:0,他引:1  
Investigations of the precursors of alpha-pheromone and killer toxin in the yeast Saccharomyces cerevisiae have defined the genes coding (KEX1 and KEX2) for the proteases which are responsible for their processing. In addition to processing at pairs of basic residues it is evident that yeast can also process at monobasic sites. We present data on the Kex1p and Kex2p enzymes, their cellular localization, and their post-translational modification. In addition initial characterisation of the monobasic specific protease and the isolation of mutants defective in this activity are presented. The use of the yeast system as a model for the processing of mammalian prohormones is discussed.  相似文献   

8.
Peptide neurotransmitters and hormones are synthesized as protein precursors that require proteolytic processing to generate smaller, biologically active peptides that are secreted to mediate neurotransmission and hormone actions. Neuropeptides within their precursors are typically flanked by pairs of basic residues, as well as by monobasic residues. In this review, evidence for secretory vesicle cathepsin L and Arg/Lys aminopeptidase as a distinct proteolytic pathway for processing the prohormone proenkephalin is presented. Cleavage of prohormone processing sites by secretory vesicle cathepsin L occurs at the NH2-terminal side of dibasic residues, as well as between the dibasic residues, resulting in peptide intermediates with Arg or Lys extensions at their NH2-termini. A subsequent Arg/Lys aminopeptidase step is then required to remove NH2-terminal basic residues to generate the final enkephalin neuropeptide. The cathepsin L and Arg/Lys aminopeptidase prohormone processing pathway is distinct from the proteolytic pathway mediated by the subtilisin-like prohormone convertases 1/3 and 2 (PC1/3 and PC2) with carboxypeptidase E/H. Differences in specific cleavage sites at paired basic residue sites distinguish these two pathways. These two proteolytic pathways demonstrate the increasing complexity of regulatory mechanisms for the production of peptide neurotransmitters and hormones.  相似文献   

9.
Somatostatin (SRIF) is a multigene family of peptides. SRIF-14 is conserved with identical primary structure in species across the vertebrates. The presence of multiple SRIF genes has been demonstrated in a number of fish species. Notably, three distinct SRIF genes have been identified in goldfish. One of these genes, which encodes [Pro(2)]SRIF-14, has also been identified in sturgeon and African lungfish, and is closely associated with the amphibian [Pro(2),Met(13)]SRIF-14 gene and mammalian cortistatin gene. The main neuroendocrine role of SRIF-14 peptide that has been determined in fish is the inhibition of pituitary growth hormone secretion. The functions of SRIF-14 variant or larger forms of SRIF peptide and the regulation of SRIF gene expression remain to be explored. Type one and two SRIF receptors have been identified from goldfish and type three SRIF receptor from an electric fish. Fish SRIF receptors display considerable homology to mammalian counterparts in terms of primary structure and negative coupling to adenylate cyclase. The identification of the multiple gene family of SRIF peptides and multiple types of SRIF receptors in fish opens a new avenue for the study of physiological roles of SRIF, and the molecular and cellular mechanisms of SRIF actions in fish.  相似文献   

10.
11.
The alkaline extracellular protease (AEP) of the yeast Yarrowia lipolytica is synthesized as a preproprotein. The precursor undergoes a complex maturation during its intracellular transit, successively involving signal peptide cleavage, dipeptidyl aminopeptidase processing, and cleavage at a dibasic site which results in the extracellular release of the active enzyme. It was previously shown that various deletions within the proregion affect the intracellular transit of the protease. Prodeleted precursors are translocated and have their signal sequences removed, but they accumulate in the secretion apparatus. We show here that the secretion of partially active proteins is restored when the prodomain is supplied in trans as an independent peptide. The secretion rescue and maturation processing that are reconstituted by the free propeptide do not reach wild type efficiency. The results of pulse-chase experiments indicate that a rate-limiting step occurs during the intracellular transit of the rescued precursors, before Kex2p proteolytic cleavage. This delayed maturation seems to be responsible for an overall slower release of the rescued polypeptides. Propeptide and AEP were secreted in equimolar amounts by both wild type and trans-complemented strains, but none could be detected in the supernatant when expressed alone. These experiments suggest that the prodomain of AEP initially acts as a crucial folding aid for the early secretory transit of the translocated precursor. They further suggest that the prodomain is also required for a second structural change of the AEP precursor during its activation.  相似文献   

12.
Many bioactive peptides are initially synthesized via larger precursors from which they are released by proteolytic cleavage at basic amino acids. Some precursors contain more than one final product peptide, multiple copies of a single peptide, or both. Different product peptides can be produced from a common precursor in different tissues. It is not currently known whether this cell-type specific production of bioactive peptides is mediated by different, specific propeptide converting enzymes (PCEs) or by a small number of similar PCEs. To resolve this issue for the conversion of prosomatostatin, the processing of prosomatostatin-I (aPSS-I) and prosomatostatin-II (aPSS-II) to either somatostatin-14 (SS-14) or somatostatin-28 (aSS-28), respectively, was examined in anglerfish islets. Two distinct forms of PSS PCE activity were detected using a rapid, sensitive, and specific assay. Examination of the specificity of these two enzyme activities showed that one proteolytic activity performs the aPSS-I to SS-14 conversion, while the other protease liberates aSS-28 from aPSS-II. The SS-14-generating PCE also cleaves aPSS-II to produce [Tyr7,Gly10]SS-14 (a tetra-decapeptide analog of SS-14) and converts proinsulin to insulin. The aSS-28-generating PCE does not process proinsulin. These results provide direct evidence that different, specific PCEs are required for liberation of SS-14 and aSS-28 from their precursors.  相似文献   

13.
Production of active enkephalin peptides requires proteolytic processing of proenkephalin at dibasic Lys-Arg, Arg-Arg, and Lys-Lys sites, as well as cleavage at a monobasic arginine site. A novel “prohormone thiol protease” (PTP) has been demonstrated to be involved in enkephalin precursor processing. To find if PTP is capable of cleaving all the putative cleavage sites needed for proenkephalin processing, its ability to cleave the dibasic and the monobasic sites within the enkephalin-containing peptides, peptide E and BAM-22P (bovine adrenal medulla docosapeptide), was examined in this study. Cleavage products were separated by HPLC and subjected to microsequencing to determine their identity. PTP cleaved BAM-22P at the Lys-Arg site between the two basic residues. The Arg-Arg site of both peptide E and BAM-22P was cleaved at the NH2-terminal side of the paired basic residues to generate [Met]-enkephalin. Furthermore, the monobasic arginine site was cleaved at its NH2-terminal side by PTP. These findings, together with previous results showing PTP cleavage at the Lys-Lys site of peptide F, demonstrate that PTP possesses the necessary specificity for all the dibasic and monobasic cleavage sites required for proenkephalin processing. In addition, the unique specificity of PTP for cleavage at the NH2-terminal side of arginine at dibasic or monobasic sites distinguishes it from many other putative prohormone processing enzymes, providing further evidence that PTP appears to be a novel prohormone processing enzyme.  相似文献   

14.
Messenger RNA from bovine hypothalami was used to direct the synthesis in vitro of a precursor to somatostatin (SRIF) of Mr 15,500. Specific antibodies, raised against the chemically synthesized tetradecapeptide SRIF-14, were used for the preliminary characterization. The radioactively labelled preprosomatostatin was then cleaved by trypsin or cyanogen bromide and the products were assayed by two-dimensional fingerprinting techniques. The results conclusively demonstrated the presence of the tetradecapeptide SRIF-14 sequence and its naturally occurring N-terminally extended form, SRIF-28. This 28-amino-acid sequence was shown to occupy the C terminus of the 15,500-dalton precursor and is probably preceded by basic amino acid(s).  相似文献   

15.
The cleavage specificity of a monobasic processing dynorphin converting endoprotease is examined with a series of quench fluorescent peptide substrates and compared with the cleavage specificity of prohormone convertases. A dynorphin B-29-derived peptide, Abz-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr-Arg-Ser-Glneddnp (where Abz is o-aminobenzoyl and eddnp is ethylenediamine 2,4-dinitrophenyl), that contains both dibasic and monobasic cleavage sites is efficiently cleaved by the dynorphin converting enzyme and not cleaved by two propeptide processing enzymes, furin and prohormone convertase 1. A shorter prorenin-related peptide, Dnp-Arg-Met-Ala-Arg-Leu-Thr-Leu-eddnp, that contains a monobasic cleavage site is cleaved by the dynorphin converting enzyme and prohormone convertase 1 and not by furin. Substitution of the P1' position by Ala moderately affects cleavage by the dynorphin-processing enzyme and prohormone convertase 1. It is interesting that this substitution results in efficient cleavage by furin. The site of cleavage, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry, is N-terminal to the Arg at the P1 position for the dynorphin converting enzyme and C-terminal to the Arg at the P1 position for furin and prohormone convertase 1. Peptides with additional basic residues at the P2 and at P4 positions also serve as substrates for the dynorphin converting enzyme. This enzyme cleaves shorter peptide substrates with significantly lower efficiency as compared with the longer peptide substrates, suggesting that the dynorphin converting enzyme prefers longer peptides that contain monobasic processing sites as substrates. Taken together, these results suggest that the cleavage specificity of the dynorphin converting enzyme is distinct but related to the cleavage specificity of the prohormone convertases and that multiple enzymes could be involved in the processing of peptide hormones and neuropeptides at monobasic and dibasic sites.  相似文献   

16.
Furin, a mammalian homolog of the yeast Kex2 protease, is associated with Golgi membranes and is involved in cleavage of precursor proteins at sites marked by the Arg-X-Lys/Arg-Arg (RXK/RR) motif. We have recently shown that a furin mutant lacking the transmembrane domain can be secreted from cDNA-transfected cells with proteolytic activity for the fluorogenic peptide t-butoxycarbonyl-Arg-Val-Arg-Arg-4-methylcoumarin-7- amide. In this study, we purified and characterized the recombinant furin from the conditioned medium of these cells. Furin was purified as a mixture of 83- and 81-kDa forms and a 96-kDa form. The differences in molecular mass were not due to differences in molecular mass were not due to differences in glycosylation. Moreover, all forms had the same NH2-terminal sequence beginning at the residue after the Arg-Ala-Lys-Arg sequence. These data suggest that the three different forms may be produced by differential COOH-terminal processing of a furin molecule and that mature furin may be autocatalytically produced. Both enzyme preparations showed a pH optimum at 7.0, required Ca2+ for the activity, and showed essentially the same inhibitor profile. These properties resembled those of the Kex2 protease. Both preparations efficiently cleaved fluorogenic peptides with an RXK/RR sequence and moderately cleaved a peptide with an RXXR sequence, but did not cleave dibasic peptides. The sequence requirements determined in vitro were compatible with those determined by expression studies in cultured cells. These data unequivocally demonstrate that furin is an endogenous cellular protease responsible for cleavage of precursor proteins mainly at RXK/RR sites.  相似文献   

17.
The Kex2 protease of the yeast Saccharomyces cerevisiae is a prototypical eukaryotic prohormone-processing enzyme that cleaves precursors of secreted peptides at pairs of basic residues. Here we have established the pathway of posttranslational modification of Kex2 protein using immunoprecipitation of the biosynthetically pulse-labeled protein from a variety of wild-type and mutant yeast strains as the principal methodology. Kex2 protein is initially synthesized as a prepro-enzyme that undergoes cotranslational signal peptide cleavage and addition of Asn-linked core oligosaccharide and Ser/Thr-linked mannose in the ER. The earliest detectable species, I1 (approximately 129 kD), undergoes rapid amino-terminal proteolytic removal of a approximately 9-kD pro-segment yielding species I2 (approximately 120 kD) before arrival at the Golgi complex. Transport to the Golgi complex is marked by extensive elaboration of Ser/Thr-linked chains and minor modification of Asn-linked oligosaccharide. During the latter phase of its lifetime, Kex2 protein undergoes a gradual increase in apparent molecular weight. This final modification serves as a marker for association of Kex2 protease with a late compartment of the yeast Golgi complex in which it is concentrated about 27-fold relative to other secretory proteins.  相似文献   

18.
Proteolytic processing of somatostatin precursor produces several peptides including somatostatin-14 (S-14), somatostatin-28 (S-28), and somatostatin-28 (1-12) (S-28(1-12)). The subcellular sites at which these cleavages occur were identified by quantitative evaluation of these products in enriched fractions of the biosynthetic secretory apparatus of rat cortical or hypothalamic cells. Each of the major cellular compartments was obtained by discontinuous gradient centrifugation and was characterized both by specific enzyme markers and electron microscopy. The prosomatostatin-derived fragments were measured by radioimmunoassay after chromatographic separation. Two specific antibodies were used, allowing the identification of either S-28(1-12) or S-14 which results from peptide bond hydrolysis at a monobasic (arginine) and a dibasic (Arg-Lys) cleavage site, respectively. These antibodies also revealed prosomatostatin-derived forms containing at their COOH terminus the corresponding dodeca- and tetradecapeptide sequences. Whereas the reticulum-enriched fractions contained the highest levels of prosomatostatin, the proportion of precursor was significantly lower in the Golgi apparatus. In the latter fraction, other processed forms were also present, i.e. S-14 and S-28(1-12) together with the NH2-terminal domain (1-76) of prosomatostatin (pro-S(1-76). Inhibition of the intracellular transport either by monensin or by preincubation at reduced temperature resulted in an increase of prosomatostatin-derived peptides in the Golgi-enriched fractions. Finally, immunogold labeling using antibodies raised against S-28(1-12) and S-14 epitopes revealed the presence of these forms almost exclusively in the Golgi-enriched fraction mainly at the surface of saccules and vesicles. Together these data demonstrate that in rat neural cells, prosomatostatin proteolytic processing at both monobasic and dibasic sites is initiated at the level of the Golgi apparatus.  相似文献   

19.
Somatostatin is a 14-amino-acid peptide hormone that is proteolytically excised from its precursor, prosomatostatin, by the action of a paired-basic-specific protease. Yeast (Saccharomyces cerevisiae Mat alpha) synthesizes an analogous peptide hormone precursor, pro-alpha-factor, which is proteolytically processed by at least two separate proteases, the products of the KEX2 and STE13 genes, to generate the mature bioactive peptide. Expression in yeast of recombinant DNAs encoding hybrids between the proregion of alpha-factor and somatostatin results in proteolytic processing of the chimeric precursors and secretion of mature somatostatin. To determine if the chimeras were processed by the same enzymes that cleave endogenous pro-alpha-factor, the hybrid DNAs were introduced into kex2 and ste13 mutants, and the secreted proteins were analyzed. Expression of the pro-alpha-factor-somatostatin hybrids in kex2 mutant yeast resulted in secretion of a high molecular weight hyperglycosylated precursor. No mature somatostatin was secreted, and there was no proteolytic cleavage at the Lys-Arg processing site. Similarly, in ste13 yeast, only somatostatin molecules containing the (Glu-Ala)3 spacer peptide at the amino terminus were secreted. Our results demonstrate that in yeast processing mutants, the behavior of the chimeric precursors with respect to proteolytic processing was exactly as that of endogenous pro-alpha-factor. We conclude that the same enzymes that generate mature alpha-factor proteolytically process hybrid precursors. This suggests that structural domains of the proregion rather than the mature peptide are recognized by the processing proteases.  相似文献   

20.
Extracts of Escherichia coli grown in defined medium contain somatostatin-related material (1-10 pg/g wet weight of cells). Preconditioned medium had no immunoactive somatostatin whereas, conditioned medium had 110-150 pg/l. Following purification of the extracted material on Sep-pak C18, Bio-Gel P-6 and HPLC, multiple molecular weight forms of somatostatin- (SRIF-) related material were identified. The material in one peak reacted in both the N-terminal and C-terminal SRIF immunoassay and coeluted on HPLC with SRIF-28, whereas that in a second peak eluted near SRIF-14 and was reactive only in the C-terminal SRIF assay. The two peaks are thus similar to SRIF-28 and SRIF-14 of vertebrates. These findings add support to the suggestion that vertebrate-type peptide hormones and neuropeptides have early evolutionary origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号