首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A number of β-sandwich immunoglobulin-like domains have been shown to fold using a set of structurally equivalent residues that form a folding nucleus deep within the core of the protein. Formation of this nucleus is sufficient to establish the complex Greek key topology of the native state. These nucleating residues are highly conserved within the immunoglobulin superfamily, but are less well conserved in the fibronectin type III (fnIII) superfamily, where the requirement is simply to have four interacting hydrophobic residues. However, there are rare examples where this nucleation pattern is absent. In this study, we have investigated the folding of a novel member of the fnIII superfamily whose nucleus appears to lack one of the four buried hydrophobic residues. We show that the folding mechanism is unaltered, but the folding nucleus has moved within the hydrophobic core.  相似文献   

2.
Fluorescence measurements and H/2H exchange experiments monitored by mass spectrometry have been applied to investigate the influence of the conserved disulfide bridges on the folding behavior and in vitro aggregation properties of the scFv fragment of the antibody hu4D5-8. A set of four proteins, carrying none, one, or both of the disulfide bridges have been compared regarding their stabilities, folding kinetics and tendency to aggregate. The results show that refolding of all four scFvs is ultimately limited by a slow proline isomerization in the VLdomain, since the native cis -conformation of proline L95 seems to be a prerequisite for formation of the native interface. Starting from short-term denatured protein, with the proline residues in their native conformation, a kinetically trapped intermediate is populated depending on the conditions, whose rate of conversion is slower than that of the fast-folding molecules. According to deuteron protection patterns determined by mass spectrometry, those domains retaining the disulfide bridge are able to form stable native-like structure, independent of native interface formation. The disulfide-free domains, in contrast, require the native interface for sufficient stabilization. The resistance of the scFvs towards aggregation seems to be critically dependent on the presence of the disulfide bridge in the VHdomain, and thus on the ability of the VHdomain to form stable structure prior to interaction with the VLdomain. The presence of a stable VLdomain in combination with a disulfide-free VHdomain appears to further promote aggregation, indicating the involvement of structured domains in the aggregates.  相似文献   

3.
Superoxide dismutase 1 (SOD1) proteins harboring mutations linked to familial amyotrophic lateral sclerosis (FALS) uniformly show heightened potential to form high molecular weight structures. Here, we examine the domains of SOD1 that are involved in forming these structures (aggregates) and study the role of intra- and intermolecular disulfide bonds. An analysis of disease mutations identified to date reveals a non-random distribution with predominant occurrence at residues within highly conserved beta-strands or at highly conserved residues in loop domains. Using a cell transfection assay for aggregation, we determined that no single domain in SOD1 is indispensable in the formation of sedimentable aggregates, suggesting multiple potential motifs in the protein mediate non-native interactions. By a cell-free aggregation assay, analysis of transgenic mouse tissues, and mutagenesis approaches, we found evidence that redox conditions may modulate SOD1 aggregation; reduction of the native intramolecular disulfide bonds may predispose SOD1 to unfolding and aggregation, whereas non-native intermolecular disulfide linkages may help stabilize aggregates in vivo. The results suggest a possible mechanism for diversity in the structures formed by different SOD1 mutants, and define a potential contribution of redox conditions to SOD1 aggregation.  相似文献   

4.
5.
To understand the folding mechanism of a protein is one of the goals in bioinformatics study. Nowadays, it is enigmatic and difficult to extract folding information from amino acid sequence using standard bioinformatics techniques or even experimental protocols which can be time consuming. To overcome these problems, we aim to extract the initial folding unit for titin protein (Ig and fnIII domains) by means of inter-residue average distance statistics, Average Distance Map (ADM) and contact frequency analysis (F-value). TI I27 and TNfn3 domains are used to represent the Ig-domain and fnIII-domain, respectively. Beta-strands 2, 3, 5, and 6 are significant for the initial folding processes of TI I27. The central strands of TNfn3 were predicted as a primary folding segment. Known 3D structure and unknown 3D structure domains were investigated by structure or non-structure based multiple sequence alignment, respectively, to learn the conserved hydrophobic residues and predicted compact region relevant to evolution. Our results show good correspondence to experimental data, phi-value and protection factor from H-D exchange experiments. The significance of conserved hydrophobic residues near F-value peaks for structural stability using hydrophobic packing is confirmed. Our prediction methods once again could extract a folding mechanism only knowing the amino acid sequence.  相似文献   

6.
As part of a systematic study of the folding of protein structural families we compare the effect of mutation in two closely related fibronectin type III (fnIII) domains, the tenth fnIII domain of human fibronectin (FNfn10) and the third fnIII domain of human tenascin (TNfn3). This comparison of the two related proteins allows us to distinguish any anomalous response to mutation. Although they have very similar structures, the effect of mutation is very different. TNfn3 behaves like a "typical" protein, with changes in free energy correlated to the number of contacts lost on mutation. The loss of free energy upon mutation is significantly lower for FNfn10, particularly mutations of residues in the A, B and G strands. Remarkably, some of the residues involved are completely buried and closely packed in the core. In FNfn10 the regions of the protein that can accommodate mutation have previously been shown to be mobile. We propose that there is a "plasticity" in the peripheral regions of FNfn10 that allows it to rearrange to minimise the effect of mutations. This study emphasises the difficulties that might arise when making generalisations from a single member of a protein family.  相似文献   

7.
Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using “Dehydrons.” “Dehydrons” are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein–protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non‐conserved dehydron‐residues) from other interaction interfaces (conserved dehydron‐residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. Proteins 2016; 84:254–266. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Two homologous fibronectin type III (fnIII) domains, FNfn10 (the 10th fnIII domain of human fibronectin) and TNfn3 (the third fnIII domain of human tenascin), have essentially the same backbone structure, although they share only ∼ 24% sequence identity. While they share a similar folding mechanism with a common core of key residues in the folding transition state, they differ in many other physical properties. We use a chimeric protein, FNoTNc, to investigate the molecular basis for these differences. FNoTNc is a core-swapped protein, containing the “outside” (surface and loops) of FNfn10 and the hydrophobic core of TNfn3. Remarkably, FNoTNc retains the structure of the parent proteins despite the extent of redesign, allowing us to gain insight into which components of each parent protein are responsible for different aspects of its behaviour. Naively, one would expect properties that appear to depend principally on the core to be similar to TNfn3, for example, the response to mutations, folding kinetics and side-chain dynamics, while properties apparently determined by differences in the surface and loops, such as backbone dynamics, would be more like FNfn10. While this is broadly true, it is clear that there are also unexpected crosstalk effects between the core and the surface. For example, the anomalous response of FNfn10 to mutation is not solely a property of the core as we had previously suggested.  相似文献   

9.
Nonribosomal peptide synthetases (NRPSs) are multimodular proteins capable of producing important peptide natural products. Using an assembly line process, the amino acid substrate and peptide intermediates are passed between the active sites of different catalytic domains of the NRPS while bound covalently to a peptidyl carrier protein (PCP) domain. Examination of the linker sequences that join the NRPS adenylation and PCP domains identified several conserved proline residues that are not found in standalone adenylation domains. We examined the roles of these proline residues and neighboring conserved sequences through mutagenesis and biochemical analysis of the reaction catalyzed by the adenylation domain and the fully reconstituted NRPS pathway. In particular, we identified a conserved LPxP motif at the start of the adenylation‐PCP linker. The LPxP motif interacts with a region on the adenylation domain to stabilize a critical catalytic lysine residue belonging to the A10 motif that immediately precedes the linker. Further, this interaction with the C‐terminal subdomain of the adenylation domain may coordinate movement of the PCP with the conformational change of the adenylation domain. Through this work, we extend the conserved A10 motif of the adenylation domain and identify residues that enable proper adenylation domain function. Proteins 2014; 82:2691–2702. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
The identification and annotation of protein domains provides a critical step in the accurate determination of molecular function. Both computational and experimental methods of protein structure determination may be deterred by large multi-domain proteins or flexible linker regions. Knowledge of domains and their boundaries may reduce the experimental cost of protein structure determination by allowing researchers to work on a set of smaller and possibly more successful alternatives. Current domain prediction methods often rely on sequence similarity to conserved domains and as such are poorly suited to detect domain structure in poorly conserved or orphan proteins. We present here a simple computational method to identify protein domain linkers and their boundaries from sequence information alone. Our domain predictor, Armadillo (http://armadillo.blueprint.org), uses any amino acid index to convert a protein sequence to a smoothed numeric profile from which domains and domain boundaries may be predicted. We derived an amino acid index called the domain linker propensity index (DLI) from the amino acid composition of domain linkers using a non-redundant structure dataset. The index indicates that Pro and Gly show a propensity for linker residues while small hydrophobic residues do not. Armadillo predicts domain linker boundaries from Z-score distributions and obtains 35% sensitivity with DLI in a two-domain, single-linker dataset (within +/-20 residues from linker). The combination of DLI and an entropy-based amino acid index increases the overall Armadillo sensitivity to 56% for two domain proteins. Moreover, Armadillo achieves 37% sensitivity for multi-domain proteins, surpassing most other prediction methods. Armadillo provides a simple, but effective method by which prediction of domain boundaries can be obtained with reasonable sensitivity. Armadillo should prove to be a valuable tool for rapidly delineating protein domains in poorly conserved proteins or those with no sequence neighbors. As a first-line predictor, domain meta-predictors could yield improved results with Armadillo predictions.  相似文献   

11.
The QacA multidrug transporter is encoded on Staphylococcus aureus multidrug resistance plasmids and confers broad-range antimicrobial resistance to more than 30 monovalent and bivalent lipophilic, cationic compounds from at least 12 different chemical classes. QacA contains 10 proline residues predicted to be within transmembrane regions, several of which are conserved in related export proteins. Proline residues are classically known as helix-breakers and are highly represented within the transmembrane helices of membrane transport proteins, where they can mediate the formation of structures essential for protein stability and transport function. The importance of these 10 intramembranous proline residues for QacA-mediated transport function was determined by examining the functional effect of substituting these residues with glycine, alanine or serine. Several proline-substituted QacA mutants failed to confer high-level resistance to selected QacA substrates. However, no single proline mutation, including those at conserved positions, significantly disrupted QacA protein expression or QacA-mediated resistance to all representative substrates, suggesting that these residues are not essential for the formation of structures requisite to the QacA substrate transport mechanism.  相似文献   

12.
Most of the classical physiological effects of the octapeptide angiotensin II (AngII) are produced by activating the AT1 receptor which belongs to the G-protein coupled receptor family (GPCR). Peptidic GPCRs may be functionally divided in three regions: (i) extracellular domains involved in ligand binding; (ii) intracellular domains implicated in agonist-induced coupling to G protein and (iii) seven transmembrane domains (TM) involved in signal transduction. The TM regions of such receptors have peculiar characteristics such as the presence of proline residues. In this project we aimed to investigate the participation of two highly conserved proline residues (Pro82 and Pro162), located in TM II and TM IV, respectively, in AT1 receptor signal transduction. Both mutations did not cause major alterations in AngII affinity. Functional assays indicated that the P162A mutant did not influence the signal transduction. On the other hand, a potent deleterious effect of P82A mutation on signal transduction was observed. We believe that the Pro82 residue is crucial to signal transduction, although it is not possible to say yet if this is due to a direct participation or if due to a structural rearrangement of TM II. In this last hypothesis, the removal of proline residue might be correlated to a removal of a kink, which in turn can be involved in the correct positioning of residues involved in signal transduction.  相似文献   

13.
Ebner S  Sharon N  Ben-Tal N 《Proteins》2003,53(1):44-55
Members of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily share a common fold and are involved in a variety of functions, such as generalized defense mechanisms against foreign agents, discrimination between healthy and pathogen-infected cells, and endocytosis and blood coagulation. In this work we used ConSurf, a computer program recently developed in our lab, to perform an evolutionary analysis of this superfamily in order to further identify characteristics of all or part of its members. Given a set of homologous proteins in the form of multiple sequence alignment (MSA) and an inferred phylogenetic tree, ConSurf calculates the conservation score in every alignment position, taking into account the relationships between the sequences and the physicochemical similarity between the amino acids. The scores are then color-coded onto the three-dimensional structure of one of the homologous proteins. We provide here and at http://ashtoret.tau.ac.il/ approximately sharon a detailed analysis of the conservation pattern obtained for the entire superfamily and for two subgroups of proteins: (a) 21 CTLs and (b) 11 heterodimeric CTLD toxins. We show that, in general, proteins of the superfamily have one face that is constructed mostly of conserved residues and another that is not, and we suggest that the former face is involved in binding to other proteins or domains. In the CTLs examined we detected a region of highly conserved residues, corresponding to the known calcium- and carbohydrate-binding site of the family, which is not conserved throughout the entire superfamily, and in the CTLD toxins we found a patch of highly conserved residues, corresponding to the known dimerization region of these proteins. Our analysis also detected patches of conserved residues with yet unknown function(s).  相似文献   

14.
Joshi AD  Pajor AM 《Biochemistry》2006,45(13):4231-4239
The Na+/dicarboxylate cotransporter 1 (NaDC1) is a low-affinity transporter for citric acid cycle intermediates such as succinate and citrate. The sequence of NaDC1 contains a number of conserved proline residues in predicted transmembrane helices (TMs) 7 and 10. These transmembrane domains are of particular importance because they may be involved in determining the substrate or cation-binding affinity in NaDC1. Four conserved proline residues in TMs 7 and 10 of rabbit NaDC1 were replaced with alanine to promote ideal alpha helix or glycine to promote free conformation, and the mutant transporters were expressed in the HRPE cell line. Mutations of prolines in TM 10 produced decreased protein expression and activity, whereas mutations of prolines in TM 7 completely abolished protein expression and activity. The chemical chaperone glycerol was found to improve the expression of the Pro-351 mutants in TM 7, suggesting that these mutants had defects in trafficking. The inactive mutant transporters at position 351 could also be rescued by the addition of a proline at a second site. For example, the P351A-F347P mutant had restored activity, although its substrate specificity was altered. We conclude that, in TM 7, Pro-327 may be of particular importance in the function of the transporter, whereas Pro-351 may affect protein targeting. The prolines in TM 10, at positions 523 and 524, may not be directly involved in the transporter function but may be necessary for maintaining structure.  相似文献   

15.
Lin SR  Zou G  Hsieh SC  Qing M  Tsai WY  Shi PY  Wang WK 《Journal of virology》2011,85(10):5159-5171
The envelope (E) of dengue virus (DENV) is a determinant of tropism and virulence. At the C terminus of E protein, there is a stem region containing two amphipathic α-helical domains (EH1 and EH2) and a stretch of conserved sequences in between. The crystal structure of E protein at the postfusion state suggested the involvement of the stem during the fusion; however, the critical domains or residues involved remain unknown. Site-directed mutagenesis was carried out to replace each of the stem residues at the hydrophobic face with an alanine or proline in a DENV serotype 4 (DENV4) precursor membrane (prM)/E expression construct. Most of the 15 proline mutations at either EH1 or EH2 severely affected the assembly of virus-like particles (VLPs). Radioimmunoprecipitation and membrane flotation assays revealed that EH1 mutations primarily affect prM-E heterodimerization and EH2 mutations affect the membrane binding of the stem. Introducing four proline mutations at either EH1 or EH2 into a DENV2 replicon packaging system greatly affects assembly and entry. Moreover, introducing these mutations into a DENV2 infectious clone confirmed the impairment in assembly and infectivity. Sequencing analysis of adaptive mutations in passage 5 viruses revealed a change to a leucine or wild-type residue at the original site, suggesting the importance of maintaining the helical structure. Collectively, these findings suggest that the EH1 and EH2 domains are involved in both assembly and entry steps of the DENV replication cycle; this feature, together with the high degree of sequence conservation, suggests that the stem region is a potential target of antiviral strategies.  相似文献   

16.
Most membrane-enveloped viruses bud from infected cells by hijacking the host ESCRT machinery. The ESCRTs are recruited to the budding sites by viral proteins that contain short proline (Pro)-rich motifs (PRMs) known as late domains. The late domains probably evolved by co-opting host PRMs involved in the normal functions of ESCRTs in endosomal sorting and cytokinesis. The solution and crystal structures of PRMs bound to their interaction partners explain the conserved roles of Pro and other residues that predominate in these sequences. PRMs are often grouped together in much larger Pro-rich regions (PRRs) of as many as 150 residues. The PRR of the ESCRT-associated protein, ALIX, autoregulates its conformation and activity. The robustness of different viral budding and host pathways to impairments in Pro-based interactions varies considerably. The known biology of PRM recognition in the ESCRT pathway seems, in principle, compatible with antiviral development, given our increasingly nuanced understanding of the relative weakness and robustness of the host and viral processes.  相似文献   

17.
Antibodies are the archetypal molecules of the Ig-fold superfamily. Their highly conserved beta-sheet architecture has evolved to avoid aggregation by protecting edge strands. However, the crystal structure of a human V kappa domain described here, reveals an exposed beta-edge strand which mediates assembly of a helical pentadecameric oligomer. This edge strand is highly conserved in V kappa domains but is both shortened and capped by the use of two sequential trans-proline residues in V lambda domains. We suggest that the exposure of this beta-edge in V kappa domains may explain why light-chain deposition disease is mediated predominantly by kappa antibodies.  相似文献   

18.
The unique nature of the proline side-chain imposes severe constraints on the polypeptide backbone, and thus it seems likely that it plays a special structural or functional role in the architecture of proteins. We have investigated the role of proline residues in suc1, a member of the cyclin-dependent kinase (cks) family of proteins, whose known function is to bind to and regulate the activity of the major mitotic cdk. The effect on stability of mutation to alanine of all but two of the eight proline residues is correlated with their conservation within the family. The remaining two proline residues are located in the hinge loop between two beta-strands that mediates a domain-swapping process involving exchange of a beta-strand between two monomers to form a dimer pair. Mutation of these proline residues to alanine stabilises the protein. cdk binding is unaffected by these mutations, but dimerisation is altered. We propose, therefore, that the double-proline motif is conserved for the purpose of domain swapping, which suggests that this phenomenon plays a role in the function of cks proteins. Thus, the conservation of the proline residues is a good indicator of their roles in suc1, either in the stabilisation of the native state or in performing functions that are as yet unknown. In addition, the strain resulting from two of the proline residues was relieved successfully by mutation of the preceeding residue to glycine, suggesting a general method for designing more stable proteins.  相似文献   

19.
PRPs (proline-rich proteins) are a group of cell wall proteins characterized by their proline and hy- droproline-rich repetitive peptides. The expression of PRPs in plants is stimulated by wounding and environmental stress. GASA (gibberellic acid stimulated in Arabidopsis) proteins are small peptides sharing a 60 amino acid conserved C-terminal domain containing twelve invariant cysteine residues. Most of GASAs reported are localized to apoplasm or cell wall and their expression was regulated by gibberellins (GAs). It has been reported that, in French bean, these two proteins encoding by two distinct genes formed a two-component chitin-receptor involved in plant-pathogen interactions when plant was infected. We cloned a full-length cDNA of PRGL (proline-rich GASA-like) gene which encodes a protein containing both PRP and GASA-like domains. It is demonstrated that PRGL is a new protein with characteristics of PRP and GASA by analyzing its protein structure and gene expression.  相似文献   

20.
We have determined the solution structure of the PABC domain from Saccharomyces cerevisiae Pab1p and mapped its peptide-binding site. PABC domains are peptide binding domains found in poly(A)-binding proteins (PABP) and are a subset of HECT-family E3 ubiquitin ligases (also known as hyperplastic discs proteins (HYDs)). In mammals, the PABC domain of PABP functions to recruit several different translation factors to the mRNA poly(A) tail. PABC domains are highly conserved, with high specificity for peptide sequences of roughly 12 residues with conserved alanine, phenylalanine, and proline residues at positions 7, 10, and 12. Compared with human PABP, the yeast PABC domain is missing the first alpha helix, contains two extra amino acids between helices 2 and 3, and has a strongly bent C-terminal helix. These give rise to unique peptide binding specificity wherein yeast PABC binds peptides from Paip2 and RF3 but not Paip1. Mapping of the peptide-binding site reveals that the bend in the C-terminal helix disrupts binding interactions with the N terminus of peptide ligands and leads to greatly reduced binding affinity for the peptides tested. No high affinity or natural binding partners from S. cerevisiae could be identified by sequence analysis of known PABC ligands. Comparison of the three known PABC structures shows that the features responsible for peptide binding are highly conserved and responsible for the distinct but overlapping binding specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号