首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
Soils that had a high binding capacity for inorganic orthophosphate (Pi) had reduced capacities to bind ionic alkyl phosphorus compounds. Only ionic methylphosphonate (MPn) and ionic phenylphosphonate exhibited moderate binding. Pseudomonas testosteroni used either MPn or Pi as a sole phosphorus source and exhibited diauxic utilization of MPn and Pi. The utilization of MPn was suppressed in the presence of Pi. This suppression was abolished by a Pi-binding soil. The soil did not have a significant effect on the maximum rate of degradation of either MPn or the poorly bound ionic O-isopropyl methylphosphonate, whereas the amount of MPn (but not the amount of O-isopropyl methylphosphonate) metabolized was reduced in the presence of soil  相似文献   

2.
Methylphosphonate in conjunction with 31P-NMR spectroscopy was used for the measurement of transmembrane delta pH in human erythrocytes stored at 4 degrees C for up to 5 weeks in a nutrient medium. Intra- and extracellular pH was determined using calibration curves based on the pH-dependent separation between the NMR resonances of methylphosphonate and orthophosphate (Pi). A comprehensive statistical procedure is presented for the determination of the variance of NMR-based pH estimates. The entry of methylphosphonate into erythrocytes was more rapid at low pH and uptake was fully inhibited by the band 3 reagent, disodium 4,4-diisothiocyano-2,2'-disulphonic acid stilbene. The distribution ratio of methylphosphonate concentration inside and outside the cells was used to calculate the membrane potential; the analysis depends on a consideration of the Donnan equilibrium for an anion with one or two charges. Furthermore, the analysis does not depend on the pH estimates but relies solely on concentration estimates. The chemical shift of methylphosphonate was not subject to the variations associated with specific intracellular binding encountered with many other phosphorus compounds, including Pi. On the other hand, the ionic strength dependence of the chemical shift of methylphosphonate, contrary to earlier reports, is comparable in magnitude (but opposite in sign) to that of Pi.  相似文献   

3.
The htx and ptx operons of Pseudomonas stutzeri WM88 allow for the use of the inorganic reduced phosphorus (P) compounds hypophosphite (P valence, +1) and phosphite (P valence, +3) as sole P sources. To support the proposed in vivo role for the htx and ptx operons, namely the use of phosphite and hypophosphite as alternative P sources, we used reporter gene fusions to examine their expression levels with respect to various P conditions. Expression of the htx and ptx operons was induced up to 17- and 22-fold, respectively, in cultures grown under phosphate starvation conditions relative to expression in medium with excess phosphate (Pi). However, the presence of the reduced P substrate hypophosphite, phosphite, or methylphosphonate, in addition to excess Pi, did not result in an increase in the expression of either operon. To provide further support for a role of the htx and ptx operons in Pi acquisition, we identified P. stutzeri phoBR homologs and constructed deletion mutants. Induction of the htx and ptx reporter gene fusions in response to growth on limiting Pi was abolished in DeltaphoB, DeltaphoR, and DeltaphoBR mutants, demonstrating that htx and ptx expression is phoBR dependent. The putative LysR-type regulator encoded by ptxE has no apparent role in the expression of the htx and ptx operons, as no effect was observed on the level of induction of either operon in a DeltaptxE mutant.  相似文献   

4.
在土培盆栽条件下,以野生大麦磷高效利用基因型IS-22-30、IS-22-25和低效基因型IS-07-07为材料,研究不施磷(CK)、无机磷(KH2PO4,Pi)、有机磷(phytate,Po)及二者混合(KH2PO4+phytate,Pi+Po)的方式施磷30 mg·kg-1时,磷高效基因型野生大麦对磷素吸收利用能力及土壤磷组分特征.结果表明: Pi处理野生大麦干物质量和磷素积累量最大,Pi+Po处理其次,Po处理最小,均显著高于CK处理,且磷高效基因型物质生产和磷素吸收能力显著高于磷低效基因型.土壤有效磷在不同磷源处理间差异显著,Pi处理时含量最高,Pi+Po处理次之,且磷高效基因型野生大麦根际有效磷含量显著高于磷低效基因型.磷高效基因型野生大麦根际有效磷呈现亏缺现象,在Pi和Pi+Po处理时亏缺程度较大.根际与非根际土壤无机磷组分含量为Ca10-P>O-P>Fe-P>Al-P>Ca2-P>Ca8-P,且其含量随着Pi的增加而增加.各磷源处理下,磷高效基因型野生大麦根际土壤Ca2-P、Ca8-P出现亏缺;Pi处理磷高效基因型野生大麦根际土壤Al-P、Fe-P出现富集.土壤中有机磷各组分含量为中活性有机磷>中稳性有机磷、高稳性有机磷>活性有机磷.野生大麦根际土壤活性有机磷和中活性有机磷呈现富集,其富集量在Pi处理时最大;中稳性有机磷和高稳性有机磷呈现亏缺.各磷源处理下,磷高效基因型野生大麦根际土壤活性有机磷含量显著高于磷低效基因型,中稳性有机磷和高稳性有机磷在基因型间差异不显著.Pi缺乏时,磷高效基因型野生大麦活化吸收Ca2-P、Ca8-P、Al-P和活性有机磷的能力较强.  相似文献   

5.
Three kinds of bacteria (CP1, CP9 and CP10), able to accumulate inorganic phosphate (Pi) in a growth medium containing phosphonoacetate as a sole source of phosphorus, were isolated from two hundred soil samples. CP bond cleavage activity in these strains was determined using extracts prepared from cells grown on a medium containing phosphonoacetate. The activity was not found in cell extracts of CP1. Cell extracts prepared from CP9 catalyzed the liberation of Pi only from phosphonoacetate and 2-aminoethylphosphonate. The cell size of CP10 was abnormally large compared with that of CP1 and CP9, and the extracts of CP10 catalyzed the cleavage of CP bonds in methylphosphonate, phosphonoacetate, phenylphosphonate, 2-amino-ethylphosphonate, 2-amino-4-phosphonobutyrate, glyphosate and in phosphonomycine.  相似文献   

6.
7.
Solubilization and reconstitution of the renal phosphate transporter   总被引:1,自引:0,他引:1  
Proteins from brush-border membrane vesicles of rabbit kidney cortex were solubilized with 1% octylglucoside (protein to detergent ratio, 1:4 (w/w). The solubilized proteins (80.2 +/- 2.3% of the original brush-border proteins, n = 10, mean +/- S.E.) were reconstituted into artificial lipid vesicles or liposomes prepared from purified egg yolk phosphatidylcholine (80%) and cholesterol (20%). Transport of Pi into the proteoliposomes was measured by rapid filtration in the presence of a Na+ or a K+ gradient (out greater than in). In the presence of a Na+ gradient, the uptake of Pi was significantly faster than in the presence of a K+ gradient. Na+ dependency of Pi uptake was not observed when the liposomes were reconstituted with proteins extracted from brush-border membrane vesicles which had been previously treated with papain, a procedure that destroys Pi transport activity. Measurement of Pi uptake in media containing increasing amounts of sucrose indicated that Pi was transported into an intravesicular (osmotically sensitive) space, although about 70% of the Pi uptake appeared to be the result of adsorption or binding of Pi. However, this binding of Pi was not dependent upon the presence of Na+. Both Na+-dependent transport and the Na+-independent binding of Pi were inhibited by arsenate. The initial Na+-dependent Pi transport rate in control liposomes of 0.354 nmol Pi/mg protein per min was reduced to 0.108 and 0 nmol Pi/mg protein per min in the presence of 1 and 10 mM arsenate, respectively. Future studies on reconstitution of Pi transport systems must analyze and correct for the binding of Pi by the lipids used in the formation of the proteoliposomes.  相似文献   

8.
磷是植物生长发育所必需的大量营养元素之一。土壤中存在大量的正磷酸盐 (Pi),但由于土壤化学和微生物转化使得土壤可利用磷的浓度并不高。土壤缺磷以及杂草的抗除草剂能力已成为当前农业可持续发展的重要限制因素,所以提高植物对土壤磷的吸收利用能力或寻求可替代正磷酸盐的磷肥以及开发新型杂草控制系统已成为亟待解决的问题。自然界中亚磷酸盐 (Phi) 是含量仅次于正磷酸盐的磷源,但仅在某些细菌中能被专一性的亚磷酸盐脱氢酶 (PTDH) 氧化利用,对植物的生长发育则具有抑制作用。利用这一特性,将从土壤宏基因组中直接扩增到的假单胞菌PTDH基因PsPtx通过农杆菌侵染法转入烟草中,并通过RT-PCR、垂直板幼苗生长、显性标记和生长竞争实验分析PsPtx转基因烟草的基因表达以及在Phi胁迫条件下的特性。结果显示,PsPtx在其转基因植株的根茎叶组织中都有几乎相同水平的表达;PsPtx转基因烟草不但能解除Phi对植物的毒害作用,并将它氧化成可用的Pi作为生长发育所需的磷源,而且在Phi胁迫条件下较野生型烟草有相当明显的生长竞争优势;另外PsPtx还具备成为植物遗传转化显性选择标记的优良特质。因此,PsPtx基因编码的亚磷酸盐脱氢酶可用于开发一种基于亚磷酸盐为磷肥和除草剂的植物磷利用和杂草控制系统,为当前农作物转基因研究存在的一些重大问题提供一个有效解决方案。  相似文献   

9.
The current study was undertaken to investigate the relative contribution of calcium and myosin binding to thin filament activation. Using the in vitro motility assay, myosin strong binding to the thin filament was controlled by three mechanisms: 1), varying the myosin concentration of the motility surface, and adding either 2), inorganic phosphate (Pi) or 3), adenosine diphosphate (ADP) to the motility solutions. At saturating myosin conditions, Pi had no effect on thin filament motility. However, at subsaturating myosin concentrations, velocity was reduced at maximal and submaximal calcium in the presence of Pi. Adding ADP to the motility buffers reduced thin filament sliding velocity but increased the pCa(50) of the thin filament. Thus by limiting or increasing myosin strong binding (with the addition of Pi and ADP, respectively), the calcium concentration at which half maximal activation of the thin filament is achieved can be modulated. In experiments without ADP or Pi, the myosin concentration on the motility surface required to reach maximal velocity inversely correlated with the level of calcium activation. Through this approach, we demonstrate that myosin strong binding is essential for thin filament activation at both maximal and submaximal calcium levels, with the relative contribution of myosin strong binding being greatest at submaximal calcium. Furthermore, under conditions in which myosin strong binding is not rate limiting (i.e., saturating myosin conditions), our data suggest that a modulation of myosin cross-bridge kinetics is likely responsible for the graded response to calcium observed in the in vitro motility assay.  相似文献   

10.
The Escherichia coli phn (psiD) locus encodes genes for phosphonate (Pn) utilization, for phn (psiD) mutations abolish the ability to use as a sole P source a Pn with a substituted C-2 or unsubstituted hydrocarbon group such as 2-aminoethylphosphonate (AEPn) or methylphosphonate (MPn), respectively. Even though the E. coli K-12 phosphate starvation-inducible (psi) phn (psiD) gene(s) shows normal phosphate (Pi) control, Pn utilization is cryptic in E. coli K-12, as well as in several members of the E. coli reference (ECOR) collection which are closely related to K-12. For these bacteria, an activating mutation near the phn (psiD) gene is necessary for growth on a Pn as the sole P source. Most E. coli strains, including E. coli B, are naturally Phn+; a few E. coli strains are Phn- and are deleted for phn DNA sequences. The Phn+ phn(EcoB) DNA was molecularly cloned by using the mini-Mu in vivo cloning procedure and complementation of an E. coli K-12 delta phn mutant. The phn(EcoB) DNA hybridized to overlapping lambda clones in the E. coli K-12 gene library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) which contain the 93-min region, thus showing that the phn (psiD) locus was itself cloned and verifying our genetic data on its map location. The cryptic phn(EcoK) DNA has an additional 100 base pairs that is absent in the naturally Phn+ phn(EcoB) sequence. However, no gross structural change was detected in independent Phn+ phn(EcoK) mutants that have activating mutations near the phn locus.  相似文献   

11.
Hua S  Ma H  Lewis D  Inesi G  Toyoshima C 《Biochemistry》2002,41(7):2264-2272
Experimental perturbations of the nucleotide site in the N domain of the SR Ca2+ ATPase were produced by chemical derivatization of Lys492 or/and Lys515, mutation of Arg560 to Ala, or addition of inactive nucleotide analogue (TNP-AMP). Selective labeling of either Lys492 or Lys515 produces strong inhibition of ATPase activity and phosphoenzyme intermediate formation by utilization of ATP, while AcP utilization and reverse ATPase phosphorylation by Pi are much less affected. Cross-linking of the two residues with DIDS, however, drastically inhibits utilization of both ATP and AcP, as well as of formation of phosphoenzyme intermediate by utilization of ATP, or reverse phosphorylation by Pi. Mutation of Arg560 to Ala produces strong inhibition of ATPase activity and enzyme phosphorylation by ATP but has a much lower effect on enzyme phosphorylation by Pi. TNP-AMP increases the ATPase activity at low concentrations (0.1-0.3 microM), but inhibits ATP, AcP, and Pi utilization at higher concentration (1-10 microM). Cross-linking with DIDS and TNP-AMP binding inhibits formation of the transition state analogue with orthovanadate. It is concluded that in addition to the binding pocket delimited by Lys 492 and Lys515, Arg560 sustains an important and direct role in nucleotide substrate stabilization. Furthermore, the effects of DIDS and TNP-AMP suggest that approximation of N (nucleotide) and P (phosphorylation) domains is required not only for delivery of nucleotide substrate, but also to favor enzyme phosphorylation by nucleotide and nonnucleotide substrates, in the presence and in the absence of Ca2+. Domain separation is then enhanced by secondary nucleotide binding to the phosphoenzyme, thereby favoring its hydrolytic cleavage.  相似文献   

12.
Cassidy RA  Kondo NS  Miller PS 《Biochemistry》2000,39(29):8683-8691
Interactions between nuclease-resistant, 5'-psoralen-conjugated, chimeric methylphosphonate oligodeoxyribo- or oligo-2'-O-methylribo-triplex-forming oligomers (TFOs) and a purine tract found in the envelope gene of HIV proviral DNA (env-DNA) were investigated by gel mobility shift assays or by photo-cross-linking experiments. These chimeric TFOs contain mixtures of methylphosphonate and phosphodiester internucleotide bonds. A pyrimidine chimeric TFO composed of thymidine and 5-methyl-2'-deoxycytidine (C), d-PS-TpCpTpCpTpCpTpTpTpTpTpTpCpTpC (1mp) where PS is trimethylpsoralen and p is methylphosphonate, forms a stable triplex with env-DNA whose dissociation constant is 1. 3 microM at 22 degrees C and pH 7.0. The dissociation constant of chimeric TFO 2mp, d-PS-UpCpTpCpTpCpTpUpTpUpTpUpCpTpC, decreased to 400 nM when four of the thymidines in 1mp were replaced by 5-propynyl-2'-deoxyuridines (U), a result consistent with the increased stacking interactions and hydrophobic nature of 5-propynyl-U. An even greater decrease, 470 -50 nM, was observed for the all-phosphodiester versions of 1mp and 2mp. The differences in behavior of the chimeric versus the all-phosphodiester oligomers may be related to differences in the conformations between the propynyl-U-substituted versus the nonsubstituted TFOs. Thus, in the chimeric oligomer, the stabilizing effect of the propynyl-U's may be offset by the reduced ability of the methylphosphonate backbone to assume an A-type conformation, a conformation that appears to be preferred by propynyl-U-containing TFOs. A chimeric oligo-2'-O-methylribopyrimidine with the same sequence as 1mp also formed a stable triplex, K(d) = 1.4 microM, with env-DNA. In contrast to the behavior of the pyrimidine TFOs, antiparallel A/G oligomers and parallel or antiparallel T/G oligomers did not form triplexes with env-DNA, even at oligomer concentrations of 10 microM. This lack of binding may be a consequence of the low G content (33%) of the triplex binding site. Irradiation of triplexes formed between the pyrimidine TFOs and env-DNA resulted in formation of photoadducts with either the upper-strand C or the lower-strand T at the 5'-CpA-3' duplex/triplex junction. No interstrand cross-links were observed. The presence of a 5-propynyl-U at the 5'-end of the oligomer caused a reduction in the amount of upper-strand photoadduct but had no effect on photoadduct formation with the lower strand, suggesting that increased stacking interactions caused by the presence of the 5-propynyl-U change the orientation of psoralen with respect to the upper-strand C. The ability of chimeric methylphosphonate TFOs to bind to DNA, combined with their resistance to degradation by serum 3'-exonucleases, suggests that they may have utility in biological experiments.  相似文献   

13.
Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase.   总被引:110,自引:0,他引:110  
Beef heart mitochondrial ATPase (F1) exhibited a single binding site for Pi. The interaction with Pi was reversible, partially dependent on the presence of divalent metal ions, and characterized by a dissociation constant at pH 7.5 of 80 micronM. A variety of substances known to influence oxidative phosphorylation or the activity of the soluble ATPase (F1) also influenced Pi binding by the enzyme. Thus aurovertin, an inhibitor of oxidative phosphorylation, which was bound tightly by F1 and inhibited ATPase activity, enhanced Pi binding via a 4-fold increase in the affinity of the enzyme for Pi (KD = 20 micronM) but did not alter binding stoichiometry. Anions such as SO4(2-), SO3(2-), chromate, and 2,4-dinitrophenolate, which stimulated ATPase activity of F1, also enhanced Pi binding. Inhibitors of ATPase activity such as nickel/bathophenanthroline and the protein ATPase inhibitor of Pullman and Monroy (Pullman, M. E., and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769) inhibited Pi binding. The adenine nucleotides ADP, ATP, and the ATP analog adenylyl imidodiphosphate as well as the Pi analog arsenate, also inhibited Pi binding. The observations suggest that the Pi binding site was located in or near an adenine nucleotide binding site on the molecule.  相似文献   

14.
Sarcoplasmic reticulum (SR) was isolated from control muscles and from muscles which had been subjected to short-term post-mortem electrical stimulation. Both preparations had similar protein compositions but the SR from electrically stimulated muscle had a lower 'extra' ATPase activity. The ability of the SR preparations from electrically stimulated muscles to accumulate Ca2+ was about the same as the controls. There was, therefore, an apparently greater efficiency of Ca2+ transport in the isolated vesicles, the reason for which is not known, but an alteration in the 'leakiness' of the membrane may be involved. Purified ATPase isolated from control and stimulated SR contained, in addition to the ATPase protein, a polypeptide of molecular weight about 30 000. The purified ATPase vesicles from electrically stimulated muscle had a reduced activity as measured by ATP splitting activity, phosphoenzyme formation from either inorganic orthophosphate (Pi) or ATP, or by an ATP in equilibrium Pi exchange reaction. These reduced activities probably result from an alteration in the binding affinities of the ATPase for ATP and Pi. The low affinity site for calcium binding was not affected by electrical stimulation. Purified ATPase vesicles from stimulated muscle were more susceptible to proteolytic attack, suggesting that the conformation of the protein or its association with the membrane lipids had been altered.  相似文献   

15.
Bacteria that can utilize glyphosate (GP) or methylphosphonic acid (MPA) as a sole phosphorus source have been isolated from soil samples polluted with organophosphonates (OP). No matter which of these compounds was predominant in the native habitat of the strains, all of them utilized methylphosphonate. Some of the strains isolated from GP-polluted soil could utilize both phosphorus sources. Strains growing on glyphosate only were not isolated. The isolates retained high destructive activity after long-term storage of cells in lyophilized state, freezing to ?20°C, and maintenance on various media under mineral oil. When phosphorusstarved cells (with 2% phosphorus) were used as inoculum, the efficiency of OP biodegradation significantly increased (1.5-fold).  相似文献   

16.
The adipocyte fatty acid-binding protein (AFABP) is believed to transfer unesterified fatty acids (FA) to phospholipid membranes via a collisional mechanism that involves ionic interactions between lysine residues on the protein surface and phospholipid headgroups. This hypothesis is derived largely from kinetic analysis of FA transfer from AFABP to membranes. In this study, we examined directly the binding of AFABP to large unilamellar vesicles (LUV) of differing phospholipid compositions. AFABP bound LUV containing either cardiolipin or phosphatidic acid, and the amount of protein bound depended upon the mol % anionic phospholipid. The K(a) for CL or PA in LUV containing 25 mol % of these anionic phospholipids was approximately 2 x 10(3) M(-1). No detectable binding occurred when AFABP was mixed with zwitterionic membranes, nor when acetylated AFABP in which surface lysines had been chemically neutralized was mixed with anionic membranes. The binding of AFABP to acidic membranes depended upon the ionic strength of the incubation buffer: >/=200 mM NaCl reduced protein-lipid complex formation in parallel with a decrease in the rate of FA transfer from AFABP to negatively charged membranes. It was further found that AFABP, but not acetylated AFABP, prevented cytochrome c, a well characterized peripheral membrane protein, from binding to membranes. These results directly demonstrate that AFABP binds to anionic phospholipid membranes and suggest that, although generally described as a cytosolic protein, AFABP may behave as a peripheral membrane protein to help target fatty acids to and/or from intracellular sites of utilization.  相似文献   

17.
Soil and hydroponic culture experiments were conducted to investigate the effects of phosphite (Phi) as phosphorus (P) fertilizer via root and foliar applications on the growth and P supply of komatsuna. In both experiments, root P treatments were combinations of Phi and phosphate (Pi) at different Pi:Phi ratios, for a total of high P level (92 mg P pot?1; the soil experiment) or low P level (0.05 mM P; the hydroponic experiment). Foliar P treatments were deionized water (control), a Pi solution and a Phi solution at low concentration of 0.05% P2O5. In both experiments, shoot dry weight of plants significantly decreased as Pi:Phi ratio decreased. In the soil experiment, plants grew abnormally at a Pi:Phi ratio of 25:75 and died when P was applied to soil entirely as Phi form (0:100 treatment). In the hydroponic experiment, no visible damage was found in shoot but root growth was strongly inhibited with severe damage symptoms at low Pi:Phi ratios. Total P concentration in plant decreased significantly with decreasing Pi:Phi ratio, especially in the hydroponic experiment. Foliar application of Phi although greatly increased total P of plants compared to that of Pi in both experiments, it did not improve but further decreased plant growth at low Pi:Phi ratios in the soil experiment and at all Pi:Phi ratios in the hydroponic experiment. The results of this study clearly indicated that Phi could not be used as P fertilizer by komatsuna plants via both application methods and could not substitute P at any rate at either low or high level. No beneficial effect of Phi was detected even when it was applied at low rate or applied in combination with Pi at different ratios. The effects of Phi were strongly dependent on the P nutrition status of plants; and plants that were not sufficiently fertilized with Pi may become vulnerable to Phi even at low levels.  相似文献   

18.
土壤有效磷(Olsen-P)含量的变化过程及其与土壤磷素平衡和作物产量的关系是科学推荐施磷的基础.本文通过设置于黄土高原黄绵土区持续34年(1981—2015)的长期定位试验,研究了长期不同施肥处理对作物磷素携出量、土壤磷素平衡、土壤Olsen-P含量的影响及其演变过程,同时对土壤Olsen-P含量与磷素平衡和作物籽粒产量的相关关系进行了分析.试验采用裂区设计,主处理为施用有机肥(M)和不施用有机肥,副处理为不施化肥(CK)、单施氮肥(N)、氮磷肥配合施用(NP)和氮磷钾肥配合施用(NPK).结果表明: 不同施肥处理和作物类型对磷素携出量和磷素平衡都有显著影响.CK、N、NP、NPK、M、MN、MNP 和MNPK处理小麦的磷素携出量多年平均值为8.63、10.64、16.22、16.21、16.25、17.83、20.39、20.27 kg·hm-2,而油菜为4.40、8.38、15.08、15.71、10.52、11.23、17.96、17.66 kg·hm-2,小麦的携出量略高于油菜.土壤磷素盈亏量与磷素投入量呈显著正相关,土壤磷素盈余为零,种植小麦的最小土壤磷素投入量为10.47 kg·hm-2,而油菜为6.97 kg·hm-2.土壤磷素盈亏量显著影响土壤有效磷的变化过程.长期不施磷的CK和N处理,土壤有效磷含量随试验年限延长而逐渐降低,年均分别降低0.16和0.15 mg·kg-1,而NP、NPK、M、MN、MNP和MNPK处理土壤有效磷含量随试验年限的延续而逐渐增加,年均增幅在0.02~0.33 mg·kg-1.土壤磷素累积盈亏量与土壤有效磷含量间存在显著的正相关关系,不施用有机肥和施有机肥处理可分别用线性模型y=0.012x+9.33和y=0.009x+11.72显著拟合.不施有机肥处理小麦籽粒产量与土壤有效磷含量呈显著正相关,而施有机肥处理两者间的相关性不明显,两者的小麦籽粒产量和土壤有效磷含量可以用线性分段模型拟合.小麦土壤有效磷农学阈值为14.99 kg·hm-2,油菜籽粒产量虽随土壤速效磷含量增加呈增加的趋势,但相关性不显著,表明在黄土高原黄绵土区,当土壤有效磷含量高于14.99 mg·kg-1时,种植小麦应减少磷肥施用量或不施磷肥.  相似文献   

19.
Osmotic shock with sequential 30-minute treatments in ice-cold saline solutions and H2O released proteins from excised barley roots and inhibited the subsequent uptake of orthophosphate (Pi). The amount of protein released increased sharply at NaCl concentrations above 0.05 molar, approximately the threshold concentration above which Pi uptake was increasingly suppressed. About 60% of the nearly 100 micrograms of protein per gram fresh weight of roots that was eluted in 0.16 molar NaCl treatments apparently had no function in Pi transport, since it was eluted at NaCl concentrations (≤0.05 molar) that did not affect Pi uptake. Although 0.16 molar NaCl completely inhibited Pi uptake, active uptake resumed at about 60% of control rates within 1 to 2 hours. The presence of either puromycin or cycloheximide greatly reduced the recovery of Pi uptake activity after the NaCl treatment. Mannitol and various monovalent and divalent salts at concentrations isosmotic with NaCl also inhibited Pi uptake, but CaCl2 was consistently the least inhibitory. The correlation between the concentration of the osmotic treatments and the simultaneous loss of protein and Pi uptake activity, together with the evidence that uptake recovery requires protein synthesis, support the hypothesis that the proteins eluted are required for active Pi transport.  相似文献   

20.
Here, nodulated lupins (Lupinus angustifolius (cv Wonga)) were hydroponically grown at low phosphate (LP) or adequate phosphate (HP). Routes of pyruvate synthesis were assessed in phosphorus (P)-starved roots and nodules, because P-starvation can enhance metabolism of phosphoenolpyruvate (PEP) via the nonadenylate-requiring PEP carboxylase (PEPc) route. Since nodules and roots may not experience the same degree of P stress, it was postulated that decreases in metabolic inorganic phosphorus (Pi) of either organ, should favour more pyruvate being synthesized from PEPc-derived malate. Compared with HP roots, the LP roots had a 50% decline in Pi concentrations and 55% higher ADP : ATP ratios. However, LP nodules maintained constant Pi levels and unchanged ADP : ATP ratios, relative to HP nodules. The LP roots had greater PEP metabolism via PEPc and synthesized more pyruvate from PEPc-derived malate. In nodules, P supply did not influence PEPc activities or levels of malate-derived pyruvate. These results indicate that nodules were more efficient than roots in maintaining optimal metabolic Pi and adenylate levels during LP supply. This caused an increase in PEPc-derived pyruvate synthesis in LP roots, but not in LP nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号