首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the transforming growth factor alpha (TGF alpha) cDNA predicts that the mature TGF alpha polypeptide is cleaved from the extracellular domain of its precursor, which is an integral membrane protein. Furthermore, the cleavage sites for the release of this mitogen are compatible with the participation of an elastaselike protease. We have immunohistochemically localized TGF alpha to the vascular smooth muscle cells in the arterioles. To investigate whether polymorphonuclear (PMN) leukocytic elastase, a blood-borne protease, could process the cell surface TGF alpha, NR6 cells were transfected with the rat TGF alpha cDNA. The cDNA encoded the entire open reading frame, and its expression was under the control of the mouse metallothionein I promoter. A cloned transfectant, termed 1B2, synthesized the TGF alpha precursor in a zinc-inducible manner, and the precursor was localized to the cell surface. Western blot (immunoblot) analysis indicated that treatment of the zinc-induced 1B2 cells with either PMN leukocytic or pancreatic elastase resulted in the release of the mature TGF alpha polypeptide. The released TGF alpha was bioactive, as it was capable of both competing with epidermal growth factor for binding to its receptor and stimulating [3H]thymidine incorporation in the mitogenic assay. Formaldehyde fixation of the 1B2 cells eliminated basal release of TGF alpha but allowed normal processing by both PMN leukocytic and pancreatic elastase to occur. However, human cathepsin G, bovine pancreatic alpha 1-chymotrypsin, collagenase, trypsin, subtilisin, and plasmin failed to release any detectable fragments of the TGF alpha precursor from the fixed cells. The location of TGF alpha in the arterioles and ability of PMN leukocytic elastase to process the membrane-bound TGF alpha precursor suggests a novel role for this elastase at the wound site.  相似文献   

2.
NOG-8 ras cells are a normal mouse mammary epithelial cell line transfected with a plasmid containing a glucocorticoid-inducible mouse mammary tumor virus long terminal repeat linked to the activated c-Ha-ras protooncogene. After addition of dexamethasone, there is a rapid induction (within 1-3 h) of p21ras protein that is concomitant with a parallel induction of the c-Ha-ras specific mRNA. After 4-6 days of dexamethasone treatment, NOG-8 ras cells are able to grow as colonies in semisolid medium. Between 9 and 12 days of dexamethasone treatment, there is a 5- to 6-fold increase of transforming growth factor alpha (TGF alpha) activity in the conditioned medium from NOG-8 ras cells. A 60-65% reduction in epidermal growth factor cell surface receptors on NOG-8 ras cells also occurs during this time interval. A 3- to 4-fold increase of the expression of a specific TGF alpha mRNA can be detected within 2 days of dexamethasone treatment, preceding the increase in TGF alpha protein found in the conditioned medium. Exogenous TGF alpha is able to stimulate in a dose-dependent fashion the anchorage-dependent and anchorage-independent growth of NOG-8 ras cells to a level comparable to that observed in dexamethasone treated ras-transformed NOG-8 ras cells. These results suggest that the enhanced expression of TGF alpha after induction of an activated ras protooncogene may be necessary for the anchorage-independent growth and subsequent morphological changes and the enhanced growth rate observed in ras-transformed mammary epithelial cells.  相似文献   

3.
Many carcinoma cells secrete transforming growth factor alpha (TGF alpha). A 23 base anti-sense oligonucleotide that recognizes the TGF alpha mRNA inhibits both DNA synthesis and the proliferation of the colon carcinoma cell line LIM 1215. The effects of the anti-sense TGF alpha oligonucleotide are reversed by epidermal growth factor (EGF) at 20 ng/ml. When the LIM 1215 cells are grown under serum free conditions, the anti-sense TGF alpha oligonucleotides have their greatest effects at high cell density (2 x 10(5) cells/cm2), indicating that the secreted TGF alpha is acting as an exogenous growth stimulus. In addition, at higher cell densities, the kinase activity of the EGF receptor is activated and the receptor is down-modulated. The cell density dependent activation of the EGF receptor is inhibited by the application of the antisense TGF alpha oligonucleotides.  相似文献   

4.
A mouse mammary epithelial cell line, NMuMG, exhibits a low capacity to grow in semisolid medium as colonies and it is not tumorigenic in nude mice. In contrast, NMuMG cells which have been transformed by an activated c-Harvey ras proto-oncogene, NMuMG/rasH, or by the polyoma middle T-transforming gene, NMuMG/pyt, are able to grow in soft agar and, when injected into nude mice, produce undifferentiated carcinomas. Human epidermal growth factor (EGF) or human alpha-transforming growth factor (alpha TGF) can stimulate, in a dose-dependent fashion, the anchorage-independent growth of NMuMG and NMuMG/pyt cells in soft agar but fail to enhance the anchorage-independent growth of the NMuMGrasH cells. Likewise, human EGF or human alpha TGF is also able to stimulate the anchorage-dependent growth of normal NMuMG cells and NMuMG/pyt cells in a serum-free medium supplemented with insulin, transferrin, fetuin, and laminin, or in medium containing low concentrations of serum, whereas these same growth factors under comparable culture conditions have little or no effect upon the anchorage-dependent growth of the ras-transformed NMuMG-rasH cells. The biological refractoriness of the NMuMG/rasH cells to human EGF or human alpha TGF is reflected by a reduction in the total number of cell surface receptors for EGF and by an absence of a high-affinity population of binding sites for mouse [125l]EGF on these cells as compared to the NMuMG or NMuMG/pyt cells. In addition, concentrated conditioned medium (CM) obtained from NMuMG/rasH and NMuMG/pyt cells contains a relatively higher amount of biologically active TGFs than CM obtained from comparably treated NMuMG cells as measured by the ability to induce the anchorage-independent growth of normal rat kidney cells in soft agar. The higher levels of biologically active TGFs found in the CM from the transformed cells relative to the NMuMG cells is paralleled by a corresponding increase in the CM from these cells in the amount of immunoreactive alpha TGF, by an increase in the amount of EGF receptor-competing activity, and by an increase in the levels of alpha TGF mRNA in the NMuMG/rasH cells. These results demonstrate that mammary epithelial cells which have been transformed by an activated ras proto-oncogene, but not by the polyoma middle T-transforming gene, become unresponsive to exogenous EGF or alpha TGF.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
We have shown in the present study and in studies reported previously that preneoplastic and neoplastic rat tracheal epithelial (RTE) cell lines express TGF alpha and do so regardless of the mechanism by which they were transformed. In order to determine whether TGF alpha is an autocrine growth regulator of immortalized RTE cells, we have examined the function of TGF alpha/EGF receptors and the growth requirements for TGF alpha in these cells. The level of immunoprecipitated TGF alpha/EGF receptor protein in immortalized RTE cells was similar to or less than levels in primary RTE cells, indicating that chemically induced transformation of RTE cells does not involve overexpression of TGF alpha/EGF receptors. Scatchard analysis of TGF alpha/EGF receptors in the neoplastic EGV5T cell line revealed the presence of high-affinity (Kd = 0.4 nM) and low-affinity (Kd = 9.8 nM) binding sites. A tyrphostin TGF alpha/EGF receptor tyrosine kinase inhibitor decreased in a dose-dependent manner the proliferation as well as EGF-induced autophosphorylation of the TGF alpha/EGF receptor of transformed RTE cells. The inhibitory effect of tyrphostin on proliferation and receptor kinase activity was attenuated in late log and plateau phase cultures. The phosphotyrosine content of several other EGF-dependent and independent phosphoproteins was also decreased by the tyrphostin. Proliferation of transformed RTE cells was also inhibited when TGF alpha antisera was added to the media of growing cells. These data are consistent with the hypothesis that proliferation of transformed RTE cells involves autocrine regulation by TGF alpha and its receptor.  相似文献   

6.
7.
The role of autocrine growth factors in tumor cell growth has been difficult to prove. Our results indicate that more than one autocrine factor is required for the autonomous growth of the LIM 1215 colonic carcinoma cell line. Furthermore, the morphologic changes induced by epidermal growth factor (EGF) are also density dependent and appear to require a synergistic autocrine factor. The serum-free proliferation of the colonic carcinoma cell line LIM 1215 depends on cell density and the presence of EGF (A. Sizeland, S. Bol, and A.W. Burgess, Growth Factors 4:129-143, 1991). At cell densities below 10(4)/cm2, conditioned medium (from cells at a density of 10(5)/cm2) was required for the cells to elicit a mitogenic response to exogenous EGF. At higher cell densities (10(5)/cm2), the cells were independent of both exogenous EGF and conditioned medium. In addition, the EGF receptor was found to be phosphorylated on tyrosine in LIM 1215 cells proliferating at high density, suggesting that the autocrine production of transforming growth factor alpha (TGF alpha) and subsequent ligation to the EGF receptor was occurring. The proliferation of cells at high density was partly inhibited by TGF alpha antibodies but was almost completely inhibited by an antisense oligonucleotide to TGF alpha. The antisense inhibition could be overcome by the addition of EGF, indicating that the effect of the antisense TGF alpha oligonucleotide was on the production of autocrine TGF alpha. LIM 1215 cells were also observed to undergo morphologic changes (spreading and actin cable organization) in response to EGF. These changes were density dependent, but they occurred with a cell density dependence different from that of the proliferative response. These results suggest two possibilities: that the morphologic changes and proliferative responses have different sensitivities to the autocrine factors or that the actions of the autocrine factors are mediated through different signal transduction pathways.  相似文献   

8.
We have studied the estrogenic regulation and the potential autocrine role of transforming growth factor alpha (TGF alpha) in the human breast cancer cell line MCF-7. A biologically active apparent mol wt 30 k TGF alpha was identified by gel filtration chromatography in medium conditioned by MCF-7 breast cancer cells. We previously reported induction of TGF alpha levels in medium by 17 beta-estradiol. We now report correlated increases in TGF alpha mRNA, by Northern and slot blot analysis, after estrogen treatment of MCF-7 cells in vitro. In vivo experiments confirmed these data: estrogen withdrawal from MCF-7 tumor-bearing nude mice resulted in a decline in tumor size and TGF alpha mRNA levels. To explore the functional significance of TGF alpha in MCF-7 cells, anti-TGF alpha antibody was added to MCF-7 soft agar cloning assays. Inhibition of MCF-7 growth resulted, supporting an autocrine role for TGF alpha. Further experiments using an anti-EGF receptor antibody expanded this data, demonstrating inhibition of estrogen-stimulated monolayer MCF-7 cell growth. Examining the generality of TGF alpha expression, 4.8 kilobase TGF alpha mRNAs were seen in three other human breast cancer cell lines, MDA-MB-231, ZR 75B, and T47D. Expression of TGF alpha mRNA was detected in 70% of estrogen receptor positive and negative primary human breast tumors from 40 patients when examined by slot blot and Northern analysis. Thus, we have demonstrated broad expression of TGF alpha in human breast cancer, its hormonal regulation in an estrogen-responsive cell line, and its possible functional significance in MCF-7 cell growth.  相似文献   

9.
An endothelial cell line (M40) resistant to growth inhibition by transforming growth factor-beta type 1 (TGF beta 1) was isolated by chemical mutagenesis and growth in the presence of TGF beta 1. Like normal endothelial cells, this mutant is characterized by high expression of type II TGF beta receptor and low expression of type I TGF beta receptor. However, the mutant cells display a type II TGF beta receptor of reduced molecular weight as a result of a general defect in N-glycosylation of proteins. The alteration does not impair TGF beta 1 binding to cell surface receptors or the ability of TGF beta 1 to induce fibronectin or plasminogen activator inhibitor-type I production. M40 cells were also resistant to growth inhibition by tumor necrosis factor alpha (TNF alpha) and interleukin-1 alpha (IL-1 alpha) but were inhibited by interferon-gamma (IFN gamma) and heparin. These results imply that TGF beta 1, TNF alpha, and IL-1 alpha act through signal transducing pathways that are separate from pathways for IFN gamma and heparin. Basic fibroblast growth factor was still mitogenic for M40, further suggesting that TGF beta 1, TNF alpha, and IL-1 alpha act by direct inhibition of cell growth rather than by interfering with growth stimulatory pathways.  相似文献   

10.
The effect of growth factors on the cytochrome P-450 (CYPIA1) gene expression was studied in primary mouse hepatocytes. Of the three growth factors used, i.e. epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha) and insulin, only EGF or TGF alpha completely blocked CYPIA1 expression in the presence of the CYPIA1 inducer 3-methylcholanthrene (3-MC). This repression was not linked to cell cycle progression of the hepatocyte because insulin was active to induce 'early immediate genes' and DNA replication as well as EGF/TGF alpha but failed to suppress CYPIA1 expression. A specific EGF/TGF alpha receptor-mediated function may repress CYPIA1 gene expression and contribute to the acquisition of a xenobiotic drug resistance phenotype.  相似文献   

11.
A Gebhardt  J C Bell    J G Foulkes 《The EMBO journal》1986,5(9):2191-2195
Cells transformed by the v-abl-oncogene produce large amounts of the tumour growth factor alpha TGF. alpha TGF is homologous to the epidermal growth factor (EGF) and stimulates cell growth via the EGF receptor pathway. To separate metabolic events in the v-abl-transformed cells mediated by alpha TGF as opposed to the v-abl-encoded protein-tyrosine kinase, we have employed the Swiss 3T3 variant cell line NR6 which lacks a functional EGF receptor. v-abl was found to transform efficiently NR6 cells in vitro. These transformed NR6 cells displayed a variety of in vitro properties which were indistinguishable from transformed wild-type fibroblast lines. However, in contrast to the wild-type lines, v-abl-transformed NR6 cells failed to form tumours when injected into athymic nude mice. These results imply an important function for alpha TGF and the EGF receptor in the establishment of the v-abl-induced fibrosarcomas.  相似文献   

12.
13.
14.
Schistosoma mansoni receptor kinase 1 (SmRK1) is a divergent member of the TGF beta receptor family. Intracellular proteins that associate with these receptors are likely to play an important role in signaling. 14-3-3 epsilon is a previously described cytoplasmic protein, which associates with both SmRK1 and the human type I TGF beta receptor (T beta RI); overexpression of 14-3-3 epsilon leads to enhanced TGF beta-mediated signaling by T beta RI. We now describe the identification of S. mansoni eukaryotic translation initiation factor 2 alpha subunit (eIF2 alpha), through its interaction with SmRK1 in a yeast two-hybrid assay. S. mansoni eIF2 alpha also interacts with human TGF beta receptors. Strongest association was demonstrated with kinase inactive receptors, particularly the type II TGF beta receptor (T beta RII). Both T beta RI and T beta RII phosphorylate eIF2 alpha in vitro, at sites other than the previously described eIF2 alpha phosphorylation sites. EIF2 alpha also modulates signaling by TGF beta receptors; however, in contrast to 14-3-3 epsilon, eIF2 alpha overexpression inhibits the TGF beta-driven response. These data suggest a novel function for eIF2 alpha in the TGF beta signaling pathway. In addition, we have demonstrated an independent interaction between eIF2 alpha and 14-3-3 epsilon. Coexpression of 14-3-3 epsilon with eIF2 alpha leads to the abrogation of the inhibitory effect of eIF2 alpha on TGF beta-mediated signaling. The interaction of these two regulatory proteins with each other and with the TGF beta receptors and their relative expression levels are likely to be important in fine-tuning the regulation of TGF beta signal transduction.  相似文献   

15.
The effect of transforming growth factor alpha (TGF alpha) on the development of diploid parthenogenetic mouse embryos (CBA x C57BL/6)F1 was studied. The embryos were in vitro treated with the TGF alpha at the stage of morula. Upon reaching the blastocyst stage, each embryo was implanted into uterus of a pseudopregnant female. At a dose of 5 ng/ml, the TGF alpha was found to improve development of parthenogenetic embryos before implantation, increase significantly the number of developing blastocysts, and promote embryo implantation into uterus. After treatment with TGF alpha at a dose of 10 ng/ml, 4% of parthenogenetic embryos reached the stage of 30-45 somites and had forelimb and hindlimb buds; the embryo size from vertex to sacrum was 2.0 to 3.8 mm. A well-developed placenta was observed in 6% of TGF alpha-treated parthenogenetic embryos that reached the somite stages. In the parthenogenetic embryos with the most prominent development (42-45 somites) treated with 10 ng/ml of TGF alpha, the placental diameter was 4.0 to 4.2 mm on day 12 of gestation, which is close to the placental size of the normal (fertilized) 11-day-old mouse embryos. Our results suggest that endogenous TGF alpha can modulate the effects of genomic imprinting significantly improving formation of trophoblast derivatives and promoting longer postimplantation development of parthenogenetic embryos.  相似文献   

16.
The link between cell adhesion to extracellular matrix and integrin-mediated survival signals has been established in several physiological systems, and roles for the cytokines tumor necrosis factor alpha (TNF alpha) and transforming growth factor alpha (TGF alpha) have been suggested. TGF alpha stimulates fibronectin production in hen granulosa cells and is an important survival factor during follicular maturation. In contrast, the role of TNF alpha and its possible interaction with TGF alpha in the regulation of granulosa cell fate (death versus survival) during ovarian follicular development have not been fully elucidated. The object of the current study was to determine if TNF alpha and TGF alpha interact in the regulation of hen granulosa cell fibronectin and integrin content in the context of cell death and survival during follicular development. TGF alpha (0.1 or 10 ng/ml), but not TNF alpha (0.1 or 10 ng/ml), increased both cellular and secreted fibronectin content in granulosa cell cultures of F5,6 but not F1 follicles. The expression of integrin beta(3) subunit was also stimulated by TGF alpha in a follicular stage-dependent manner, and culture of F5,6 granulosa cells with TNF alpha in the presence of maximal stimulatory concentrations of TGF alpha potentiated this response. TGF alpha increased both F5,6 and F1 granulosa cell [(3)H]thymidine incorporation but not 3-(4,5-dimethylthiazol-2-yl)3,5-diphenyl tetrazolium bromide (MTT) metabolism. Although TNF alpha had no effect on [(3)H]thymidine incorporation irrespective of the presence of the growth factor, MTT metabolism was higher in F5,6 granulosa cells cultured for 24 h with both TNF alpha and TGF alpha than with either cytokine alone. Incubation of F5,6 granulosa cells for 48 and 72 h resulted in a TGF alpha-inhibited loss of cellular adhesion and detachment of granulosa cells from the growth surface. Although TNF alpha alone had no effect on cell morphology, it facilitated the reorganization of the granulosa cells into multicellular follicle-like structures in the presence of the growth factor. DNA degradation significantly increased between 0 and 72 h of culture in the absence of the cytokine but was suppressed by the addition of TGF alpha but not of TNF alpha. However, fluorometric analysis indicated that the primary type of cell death exhibited by F5,6 granulosa cells during extended culture and attenuated by the presence of TNF alpha and TGF alpha was necrosis and not apoptosis. The current study demonstrates that TNF alpha and TGF alpha interact in the regulation of granulosa cell integrin content and cell survival in vitro in a follicular stage-dependent manner. These findings suggest that follicular development is accompanied by a change in the intraovarian role of TNF alpha; it is atretogenic prior to follicular selection but prevents follicular demise during preovulatory growth.  相似文献   

17.
Regulation of ovarian cancer growth is poorly understood. In this study, the effects of EGF, TGF alpha and TGF beta 1 on two ovarian cancer cell lines (OVCAR-3 and CAOV-3) were investigated. The results showed that EGF/TGF alpha stimulated cell growth and DNA synthesis in OVCAR-3 cells, but inhibited cell proliferation and DNA synthesis in CAOV-3 cells. TGF beta 1 invariably inhibited cell proliferation and DNA synthesis in both cell lines. These effects on growth factors are dose dependent. The interaction of TGF beta 1 and EGF/TGF alpha was antagonistic in OVCAR-3 cells. In contrast, EGF/TGF alpha and TGF beta 1 had an additive inhibitory effect on CAOV-3 cells. Our results demonstrated that mature and functional EGF receptors are present in both cell lines and that they are capable of ligand binding, internalization, processing and ligand-enhanced autophosphorylation. Both high- and low-affinity binding are present in these cell lines, with CAOV-3 cells having about 2-3-fold higher total receptors than OVCAR-3 cells. These results together with those from our previous studies show that these cells express TGF alpha, TGF beta 1 and EGF receptors and that cell growth may be modulated by these growth factors in an autocrine and paracrine manner. This report presents evidence supporting the important roles of growth factors in ovarian cancer growth and provides a foundation for further study into the mechanism of growth regulation by growth factors in these cell lines.  相似文献   

18.
Untransformed bovine anterior pituitary cells cultured in serum-free defined medium secrete an epidermal growth factor (EGF)-like peptide with an amino acid composition similar to rat or human alpha-transforming growth factor (alpha TGF). To further characterize the bovine pituitary alpha TGF, it was compared to a human alpha TGF partially purified from the conditioned medium of a human melanoma cell line. An anti-alpha TGF monoclonal antibody, MF9, was produced from hybridomas derived from mice immunized with a 17-residue synthetic peptide corresponding to the carboxyl-terminal sequence of rat alpha TGF. The hybridoma supernatants were initially screened for the ability to immunoprecipitate 125I-peptide and then tested for recognition of human alpha TGF. Only 2 of 36 antipeptide antibodies recognized the native alpha TGF. The binding of 125I-peptide to MF9 was displaced by human alpha TGF but not by EGF. Bovine pituitary alpha TGF also displaced the binding of 125I-peptide to MF9 in a similar manner to human alpha TGF. Both iodinated human and bovine pituitary alpha TGF were immunoprecipitated by MF9 whereas 125I-EGF was not. Recognition of alpha TGF by MF9 was strongly dependent on sulfhydryl reduction of the growth factors, suggesting that synthetic peptides representing sulfhydryl-rich protein are not ideal immunogens. Tryptic digests of both 125I-alpha TGFs chromatographed to give a single, indistinguishable peak of iodinated material on a reverse-phase C18 high performance liquid chromatography column when eluted with two different solvent systems, suggesting the generation of a single and identical tyrosine-containing tryptic peptide from both alpha TGFs. The comparisons of the bovine pituitary and human melanoma alpha TGF using a sequence-specific monoclonal antibody and peptide mapping suggest that these alpha TGFs are related and that alpha TGF production is not limited to transformed or fetal sources.  相似文献   

19.
20.
Growth of the human mammary tumor cell line ZR-75-1 is stimulated by epidermal growth factor (EGF) and alpha-type transforming growth factor (alpha TGF), as well as by estradiol (E2). The role of activation of S6 kinase and S6 phosphorylation in the EGF(alpha TGF)-induced and E2-induced growth was investigated. Maximal effects on growth are observed at 10 nM EGF or alpha TGF. EGF as well as alpha TGF treatment of serum-starved cells leads to rapid activation of S6 kinase; the activity is increased about tenfold after 30 min of EGF treatment and declines with the time reaching about 25% of the maximal activity after 2 h of EGF treatment. Similar to the growth response, S6 kinase is activated at lower doses of EGF than alpha TGF and shows a maximal response at 10 nM for both growth factors. In contrast to this finding the incubation of serum-starved cells with E2 over a concentration range between 1 pM and 10 nM and times from 30 min to 4 h does not lead to increased S6 kinase activity. On investigating whether this lack of response to E2 is due to desensitization of the system by induction of alpha TGF it was found that preincubation of cells with alpha TGF for 2-6 h desensitizes them to reactivation of S6 kinase by alpha TGF, whereas preincubation with E2 does not. When S6 phosphorylation is monitored over times from 1 h to 6 h, it is observed that EGF leads to increased S6 phosphorylation, whereas E2 does not. The rate of onset of protein synthesis in the first 2 h of stimulation, when EGF-induced S6 phosphorylation is maximal, is more rapid with EGF than with E2. The results suggest that different pathway are involved in E2-induced and EGF(alpha TGF)-induced proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号