首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a high concentration (1%, w/w) of ascorbic acid in a Cu-adequate (150 μmol/kg) purified diet was studied in rats. After 6 wk, ascorbic acid had significantly reduced Cu concentrations in muscle and bone. The estimated whole body content of Cu in rats fed ascorbic acid was reduced by 20%. Within 1 d after oral administration of64Cu, the recovery of the dose in feces was increased in rats fed ascorbic acid, suggesting that the vitamin depresses intestinal absorption of Cu. After intraperitoneal (ip) administration of64Cu, the rate of loss of the dose from the body was decreased in rats fed ascorbic acid. This study suggests that the ascorbic acid induces a decreased efficiency of intestinal Cu absorption, which in turn triggers mechanisms to preserve Cu in the body stores. This is supported by the observation that the feeding of a Cu-deficient diet (5 μmol/kg) had similar effects, although more pronounced.  相似文献   

2.
Ginger (Z. officinale; 1% w/w) significantly lowered lipid peroxidation by maintaining the activities of the antioxidant enzymes--superoxide dismutase, catalase and glutathione peroxidase in rats. The blood glutathione content was significantly increased in ginger fed rats. Similar effects were also observed after natural antioxidant ascorbic acid (100 mg/kg, body wt) treatment. The results indicate that ginger is comparatively as effective as ascorbic acid as an antioxidant.  相似文献   

3.
Lipid peroxidation in rat liver, unlike in brain shows wide variations with age. In liver, ascorbic acid content also undergoes wide variations and there is negative correlation between ascorbic acid content and lipid peroxidation. Heat-labile antioxidant factors are present in the cytosol fraction. There is inverse relationship between antioxidant activity and lipid peroxidation in liver.  相似文献   

4.
Alteration of the radiation-induced changes in wound contraction, collagen synthesis and wound histology by ascorbic acid was studied in mice exposed to 10, 16 and 20 Gy of fractionated (2 Gy/fraction) gamma radiation. The animals were given double-distilled water or ascorbic acid daily before exposure to 2 Gy/day of fractionated irradiation. A full-thickness skin wound was created on the dorsum of the irradiated mice, and the progression of wound contraction and collagen synthesis were examined and histological evaluations were carried out at various times after wounding. Irradiation caused a dose-dependent delay in wound contraction, and pretreatment with ascorbic acid resulted in a significant increase in wound contraction. The greatest increase in wound contraction was observed 6 and 9 days after wounding in both groups. Pretreatment with ascorbic acid augmented the synthesis of collagen significantly as revealed by an increase in hydroxyproline content. The collagen deposition and fibroblast and vasculature densities declined in a dose-dependent manner in groups receiving radiation alone as indicated by histological evaluation. Pretreatment with ascorbic acid ameliorated the observed effect significantly. These studies demonstrate that pretreatment with ascorbic acid resulted in a significant reduction of radiation-induced delay in wound healing as shown by earlier wound closure and increased collagen content and fibroblast and vascular densities.  相似文献   

5.
Mice were exposed to concentrations of 20, 40 and 200 ppm ozone in air for 30 min. Ozone exposure decreased lung ascorbic acid levels and increased lung weight by up to 50% in a dose related manner. On incubation in Krebsphosphate solution, lung slices from mice exposed to 200 ppm ozone released a smaller fraction of their content of ascorbic acid into the medium than did lung slices from control mice, suggesting that there was a preferential loss of extracellular ascorbic acid during ozone exposure. These results are consistent with the proposed function of ascorbic acid as an extracellular antioxidant in lungs.  相似文献   

6.
1. Granulation tissue from healing tendonectomy wounds in guinea pigs was analysed and the effects of inanition and ascorbic acid deficiency on this tissue were investigated. 2. Inanition produced no significant effect on either the glucosamine or the galactosamine content of the tissue. Ascorbic acid deficiency decreased the galactosamine content without affecting the glucosamine content. 3. Fractionation of papain-digested granulation tissue gave three major fractions, which behaved respectively as glycopeptide, hyaluronic acid and a sulphated glycosaminoglycan mixture. At least half of the sulphated glycosaminoglycan mixture behaved as dermatan sulphate. 4. Inanition produced no consistent effect on the fractions examined. In ascorbic acid deficiency, a decrease in the sulphated glycosaminoglycan fraction was observed, which accounted for the decreased galactosamine content of the tissue. This was accompanied by a decrease in hyaluronic acid and a slight increase in the glycopeptide fraction.  相似文献   

7.
Abstract. The level of peroxidase activity utilizing ascorbic acid changes during the development of the green alga, Acetabularia mediterranea. During development almost parallel levels of peroxidase activity and ascorbic acid content are detectable: both steadily decrease as algae progress from very young, slowly growing cells to the rapid growth stage and then to cells exhibiting differentiation into primordium and cap. Changes in the levels of the enzyme and its substrate in the cytoplasm and periplasm were demonstrated using biochemical and cytochemical procedures. Concomitant with these developmental changes, we also observed changes in the stage-specific patterns of ascorbic acid concentration: growing algae exhibit a pronounced negative apicobasal gradient of ascorbic acid. Acetabularia cultivated at 1,200 lux (the normal intensity in a 12-h-light/12-h-dark cycle) and at 700 lux (intensity at which growth is reduced, and cap formation is delayed) were also compared. The higher light intensity induced a moderate decrease in the ascorbic acid content without noticeable changes in the compartmental distribution in the cytoplasm and periplasm, and an increase in the level of periplasmic peroxidase activity with little change in the total peroxidase activity. Catalase was found to be present at very low levels and is unlikely to play a role in H2O2 catabolism. Possible roles for ascorbic acid and peroxidase in the development of Acetabularia are discussed.  相似文献   

8.
为了优化建立火棘多糖铁(Ⅲ)复合物(PPC)中铁含量检测的方法。考察了邻菲啰啉溶液浓度(w/w,%)及用量(mL)、抗坏血酸溶液浓度(w/w,%)及用量(mL)、反应时间(h)及温度(℃)等因素对PPC中铁含量测定的影响。在单因素实验的基础上,运用响应面软件进一步优化PPC的检测条件。结果表明,PPC中铁含量的最佳检测条件为:向1.0 mL适宜浓度的PPC溶液中,依次加入1.5 mL 10%的抗坏血酸溶液及3.0 mL 0.1%的邻菲啰啉溶液,于45℃水浴2.0 h后,冰水快速冷却,在室温下于510 nm波长处测其吸光度。该方法具有良好的重复性及重现性,回收率达99.93%。此方法也适合推广于其他植物多糖铁复合物中铁含量的测定。  相似文献   

9.
Ascorbic acid stimulates active transport of Cl-minus by the isolated intact cornea. The effect is not present in corneas previously stimulated by the theophylline, an inhibitor of 3':5"-cyclic-AMP phosphodiesterase (EC 3.1.4.17), and vice versa, theophylline has no action after stimulation with ascorbic acid. This indicated inhibition of 3':5'-cyclic-AMP phosphodiesterase by ascorbic acid. Assay of phosphodiesterase using 3-H-labeled cyclid AMP of frog and rabbit corneal epithelial homogenates showed an inhibitory effect of ascorbic acid. Concentration of 5 mM produced 16% inhibition with 20 mM producing 46%. This compares with 58% inhibition by theophylline at 5 mM. Phosphodiesterase activity is mostly soluble in frog corneal epithelium but in rabbit 45% is particulate. Soluble and particulate fractions are inhibited by ascorbate, but in rabbits greater inhibition (50%) was observed in the particulate fraction than in the soluble fraction. Other tissues showed inhibition also: frog retina 12%, rat brain (caudate nucleus) 48%, rabbit brain 14%, rabbit liver 16%. It is concluded that ascorbate produces an increase in cyclic AMP content of corneal epithelium and other tissues by inhibition of 3':5'-cyclic-AMP phosphodiesterase. This action may be one of the main functions of the high ascorbic acid content of ocular tissues and explain some of the effects of high dosis of ascorbate in other systems.  相似文献   

10.
Liposomal delivery systems for water-soluble bioactives were prepared using the pro-liposome and the microfluidization technologies. Iron, an essential micronutrient as ferrous sulfate and ascorbic acid, as an antioxidant for iron were encapsulated in the liposomes. Liposomes prepared by the microfluidization technology using 6% (w/w) concentration of the lipid encapsulated with ferrous sulfate and ascorbic acid had particle size distributions around 150 to 200 nm, whereas liposomes from the pro-liposome technology resulted in particle sizes of about 5 μm. The encapsulation efficiency of ferrous sulfate was 58% for the liposomes prepared by the microfluidization using 6% (w/w) lipid and 7.5% of ferrous sulfate concentrations, and it was 11% for the liposomes from pro-liposome technology using 1.5% (w/v) lipid and 15% of ferrous-sulfate concentration. Both the liposomes exhibited similar levels of oxidative stability, demonstrating the feasibility of microfluidization-based liposomal delivery systems for large-scale food/nutraceutical applications.  相似文献   

11.
The effect of the supernatant fraction (105,000 g for 60 min) of rat brain on the microsomal thiamine diphosphatase activity was examined. The thiamine diphosphatase activity was increased by addition of the supernatant fraction. The factor activating the enzyme was a heat-stable and dialyzable substance. It caused lipid peroxidation in the microsomes and the increase of the enzyme activity was mediated through lipid peroxidation of the preparation. When the supernatant fraction was chromatographed on columns of Sephadex G-25 and Dowex 1 × 2, the activator was eluted in fractions containing ascorbic acid. The inhibitory factor of ATPase present in the supernatant fraction was also eluted with the activator. The u.v.-spectrum of the active fraction obtained by these chromatographies was the same as that of ascorbic acid. These findings indicate the existence of ascorbic acid as an activator of thiamine diphosphatase in rat brain and confirm the previous finding that the soluble factor inhibiting ATPase activity is ascorbic acid.  相似文献   

12.
Ascorbic acid stimulates active transport of Cl? by the isolated intact corneas. The effect is not present in corneas previously stimulated by theophylline, an inhibitor of 3′: 5′-cyclic-AMP phosphodiesterase (EC 3.1.4.17), and vice versa, theophylline has no action after stimulation with ascorbic acid. This indicated inhibition of 3′: 5′-cyclic-AMP phosphodiesterase by ascorbic acid. Assay of phosphodiesterase using 3H-labeled cyclid AMP of frog and rabbit corneal epithelial homogenates showed an inhibitory effect of ascorbic acid. Concentration of 5 mM produced 16% inhibition with 20 mM producing 46 %. This compares with 58 % inhibition by theophylline at 5 mM. Phosphodiesterase activity is mostly soluble in frog corneal epithelium but in rabbit 45 % is particulate. Soluble and particulate fractions are inhibited by ascorbate, but in rabbits greater inhibition (50 %) was observed in the particulate fraction than in the soluble fraction. Other tissues showed inhibition also: frog retina 12 %, rat brain (caudate nucleus) 48 %, rabbit brain 14 %, rabbit liver 16 %. It is concluded that ascorbate produces an increase in cyclic AMP content of corneal epithelium and other tissues by inhibition of 3′: 5′-cyclic-AMP phosphodiesterase. This action may be one of the main functions of the high ascorbic acid content of ocular tissues and explain some of the effects of high dosis of ascorbate in other systems.  相似文献   

13.
The native lipid composition and the capacity of cell-free extracts to biosynthesize acyl lipids in vitro were determined for the first time using the recently reported microspore-derived (MD) embryo system from the Brassica campestris low erucic acid line BC-2 (Baillie et al. 1992). The total lipid fraction isolated from midcotyledonary stage MD embryos (21 days in culture) was composed primarily of triacylglycerol (76%) with an acyl composition quite similar to that of mature BC-2 seed. When incubated in the presence of glycerol-3-phosphate, 14C 181-CoA, and reducing equivalents, homogenates prepared from 21-day cultured MD embryos were able to biosynthesize glycerolipids via the Kennedy pathway. The maximum in vitro rate of triacylglycerol biosynthesis could more than account for the known rate of lipid accumulation in vivo. The homogenate catalyzed the desaturation of 181 to 182 and to a lesser extent, 183. The newly-synthesized polyunsaturated fatty acids initially accumulated in the polar lipid fraction (primarily phosphatidic acid and phosphatidylcholine) but began to appear in the triacylglycerol fraction after longer incubation periods. As expected for a low erucic acid cultivar, homogenates of MD embryos from the BC-2 line were incapable of biosynthesizing very long chain monounsaturated fatty acyl moieties (201 and 221) from 181-CoA in vitro. Nonetheless, embryo extracts were still capable of incorporating these fatty acyl moieties into triacylglycerols when supplied with 14C 201-CoA or 14C 221-CoA. Collectively, the data suggest that developing BC-2 MD embryos constitute an excellent experimental system for studying pathways for glycerolipid bioassembly and the manipulation of this process in B. campestris.Abbreviations CPT sn-1,2-diacylglycerol cholinephosphotransferase - DAG diacylglycerol - DGAT diacylglycerol acyltransferase - DGDG digalactosyldiacylglycerol - G-3-P glycerol-3-phosphate - G-3-PAT glycerol-3-phosphate acyltransferase - LPA lyso-phosphatidic acid - LPAT lyso-phosphatidic acid acyltransferase - LPC lyso-phosphatidylcholine - LPCAT acyl-CoA: lyso-phosphatidylcholine acyltransferase - LPE lyso-phosphatidylethanolamine - MGDG monogalactosyldiacylglycerol - PA phosphatidic acid - PA Phosphatase, phosphatidic acid phosphatase - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - TAG triacylglycerol - 181-CoA oleoyl-Coenzyme A - 181 oleic acid, cis-9-octadecenoic acid - 182 linoleic acid, cis-9,12-octadecadienoic acid - 183 -linolenic acid, cis-9,12,15-octadecatrienoic acid - 201 cis-11-eicosenoic acid - 221 erucic acid, cis-13-docosenoic acid; all other fatty acids are designated by number of carbon atoms: number of double bonds National Research Council of Canada Publication No. 35896  相似文献   

14.
Both ascorbic acid and copper were strong prooxidants in the oxidation of linoleate in a buffered (pH 7.0) aqueous dispersion at 37 degrees C. Minimum concentrations at which catalytic activity was detected were 1.3 x 10(-7) m for copper and 1.8 x 10(-6) m for ascorbic acid. For concentrations up to 10(-3) m, the increase in rate of oxidation with increase in concentration of catalyst was greater for ascorbic acid than for copper. Ascorbic acid had maximum catalytic activity at 2.0 x 10(-3) m, but was still prooxidant at the highest concentration tested (5.0 x 10(-2) m). Dehydroascorbic acid was a weaker prooxidant than ascorbic acid. Further degradation products of ascorbic acid were not prooxidant. In early stages of the oxidation autocatalytic behavior was observed with copper, but not with ascorbic acid. Ascorbic acid functioned as a true catalyst, i.e., it accelerated the reaction but it was not oxidized simultaneously with the linoleate. It is proposed that the dehydroascorbic acid radical initiates the linoleate oxidation reaction.  相似文献   

15.
Ascorbic acid (vitamin C) has been suggested to protect cerebral tissue in a variety of pathophysiological situations such as head trauma, ischemia or Alzheimer's disease. Most of these protective actions have been attributed to the antioxidative capacity of ascorbic acid. Besides the presence of elevated levels of oxygen radicals, prostaglandins produced by neurones and microglial cells seem to play an important role in prolonged tissue damage. We investigated whether ascorbic acid alone inhibits prostaglandin E2 (PGE2) synthesis and may augment the inhibitory effect of acetylsalicylic acid on prostaglandin synthesis. Ascorbic acid dose-dependently inhibited PGE2 synthesis in lipopolysaccharide-treated primary rat microglial cells (IC50 = 3.70 micro m). In combination with acetylsalicylic acid (IC50 = 1.85 micro m), ascorbic acid augmented the inhibitory effect of acetylsalicylic acid on PGE2 synthesis (IC50 = 0.25 micro m in combination with 100 micro m ascorbic acid). Ascorbic acid alone or in combination with acetylsalicylic acid did not inhibit cyclooxygenase-2 (COX-2) protein synthesis but inhibited COX-2 enzyme activity. Our results show that ascorbic acid and acetylsalicylic acid act synergistically in inhibiting PGE2 synthesis, which may help to explain a possible protective effect of ascorbic acid in various brain diseases.  相似文献   

16.
Control (physiological saline treated) and ascorbic acid (AA) treated (1 mg.g-1 b.w. one hour before exposure) 18-day-old rats were exposed for 1 hour to high altitude in a hypobaric chamber and the mean lethal altitudes were calculated. AA displayed a protective effect, so that in two identical experiments the mean lethal altitude was 10,900 and 10,150 m in controls, while it was 11,500 and 11,450 m in AA treated animals.  相似文献   

17.
Choi KY  Kim YC  Lee MG 《Life sciences》2006,78(10):1057-1062
To increase the extent of comparative oral bioavailability (F) value and the diuretic and natriuretic effects of orally administered azosemide, ascorbic acid was coadministered to rats. The rationales for this study are that ascorbic acid might inhibit intestinal first-pass effect of azosemide and might increase the unionized fraction of azosemide at the receptor sites. After oral administration of azosemide (20 mg/kg) with 100 mg of ascorbic acid, the F value (138% vs. 100%), 8-h urinary excretion of azosemide (5.18% vs. 1.32% of oral dose), 8-h urine output (41.3 vs. 23.0 ml), and 8-h urinary excretion of sodium (24.6 vs. 15.3 mmol/kg) were greater than controls (without ascorbic acid). The amount of spiked azosemide remaining after 30 min incubation of 50 mug of azosemide with the 9000 g supernatant fraction of rat small intestine was significantly greater by 100 microg of ascorbic acid (45.3 vs. 40.9 microg) than controls (without ascorbic acid). After oral administration of azosemide with NH4Cl, the urine pH decreased by 0.5 U, and 8-h urine output (25.8 vs. 11.0 ml) and 8-h urinary excretion of sodium (13.3 vs. 6.89 mmol/kg) were significantly greater than controls (without NH4Cl). The increase in F value and diuretic and natriuretic effects of azosemide with coadministration of ascorbic acid seemed to be due to reduced intestinal first-pass metabolism of azosemide, increased urinary excretion of azosemide, and increased unionized fraction of azosemide at the renal tubular receptor sites.  相似文献   

18.
Summary Cytochemical detection of ascorbic acid in cultured root tips of Zea mays shows that dividing cells accumulate ascorbic acid in the cytoplasm. The localization pattern alters in the root tip as the cells begin to elongate. In elongating cells ascorbic acid is distinctly localized on cell walls. Ascorbic acid content per cell inreases with the onset of cell elongation. Fully elongated cells contain fivefold more ascorbic acid than meristematic cells. Cytophotometric analysis reveals a sharp and positive correlation (r=+0.93) between percentage increase in content of ascorbic acid per cell and corresponding increase in cell size at different phases of cell elongation. IAA treatment to the roots raises the content of ascorbic acid per cell with a parallel increase in size of cell. Involvement of ascorbic acid in IAA induced cell elongation is discussed.  相似文献   

19.
The effects of temperature, sodium chloride and ascorbic acid on the aerobic growth kinetics of a clinical strain of Aeromonas hydrophila were evaluated. At 5°C, ascorbic acid (1 mmol l-1) and sodium chloride (3% w/v) inhibited the growth of the organism. At 10°C, ascorbic acid depressed only the maximum population densities (A) by approximately 2 log cycles, but not maximum specific growth rate (μm) or the lag time (Λ). On the contrary, NaCl caused A to increase, with the effect being greatest when the NaCl content was 1.5%. Temperature increase from 10 to 15°C resulted in an approximate doubling of μm and unexpectedly an apparent increase in Λ However, this apparent increase resulted from the particular manner in which the lag phase was mathematically calculated.  相似文献   

20.
Experimental focal cerebral ischemia was produced in monkeys (Macaca radiata) by occlusion of the right middle cerebral artery (MCA). The release of the lysosomal glycosidases, -d-hexosaminidase, -l-fucosidase and -d-mannosidase into the soluble fraction in the right basal ganglia of the experimental animals was measured at different periods from 30 min to 12 hr after occlusion and compared with the corresponding sham operated control animals. There was a significant increase in the released lysosomal enzymes in the MCA occluded animals at all periods and particularly at 4 hr after occlusion. The CSF from the experimental animals also showed elevated levels of hexosaminidase and fucosidase. The free fatty acids (FFA) measured in the basal ganglia at 30 min and 2 hr after occlusion showed a 100 fold increase in the experimental animals. The predominant fatty acid released was linoleic acid (18:2) followed by arachidonic acid (20:4). Lipid peroxidation in the basal ganglia measured by the thiobarbituric acid (TBA) reaction in the presence or absence of ascorbic acid also showed a significant increase in the experimental animals at all periods with a maximum at 30 min to 2 hr after occlusion. In order to assess whether lipid peroxidation causes damage to the lysosomes and release of the enzymes, a lysosome enriched P2 fraction from the normal monkey basal ganglia was prepared and the effect of peroxidation studied. Maximum peroxidation in the P2 fraction was observed in the presence of arachidonic acid, ascorbic acid and Fe2+. There was a good correlation between the extent of lipid peroxidation and the in vitro release of lysosomal hexosaminidase from the P2 fraction. Anti-oxidants which strongly inhibited lipid peroxidation in the P2 fraction prevented the release of hexosaminidase. The results suggested that in ischemia produced by MCA occlusion lipid peroxidation which damages the lysosomal membrane causes the release of lysosomal hydrolytic enzymes.Abbreviations used BHA butylated hydroxyanisole - BHT butylated hydroxytoluene - FFA free fatty acids - MCA middle cerebral artery - MDA malonaldehyde - PUFA polyunsaturated fatty acids - TBA thiobarbituric acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号