首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of conformational analysis was applied to the spatial structures of peptide analogues of phytochelatins and some fragments of metallothioneins: (Cys-Gly)3, (Cys-Gly)3-Asp, (Cys-Gly)3-Glu, (Cys-βAla)3, (Cys-γGlu)3, and (Cys-Gly-Gly)3. All the possible low-energy conformations of the molecules were revealed and the role of intra-and interresidual interactions in the formation of their spatial structures was determined. A different tendency of the molecules under study for acceptance of conformations favorable for binding bismuth ions was shown. Low-energy structures providing an optimum binding of bismuth ion were shown to be most frequent for (Cys-βAla)3 peptide. Among the analogues of peptide fragments of the metallothioneins, lacking in natural peptides, low-energy pentapeptide CCXXC fragments (where X = Gln, Asn, Phe, Tyr, or Gly) were revealed. In the α-helical conformations of these pentapeptides, the distance between the sulfur atoms corresponds to that in Bi2S3.  相似文献   

2.
Theoretical conformational analysis was used to study the spatial structure and conformational properties of the bovine adrenal medulla dodecapeptide BAM-12P (Tyr1-Gly2-Gly3-Phe4-Met5-Arg6-Arg7-Val8-Gly9-Arg10-Pro11-Glu12). Twenty-three low-energy conformations of the BAM-12P backbone were shown to represent the spatial structure of the peptide. The inverse structural problem was solved, and synthetic analogues of BAM-12P were proposed, the spatial structures of which correspond to a set of low-energy potentially physiologically active conformations of the natural dodecapeptide. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   

3.
Theoretical conformational analysis was carried out for several tetrapeptide analogues of beta-casomorphin and dermorphin containing a Phe residue in position 3. Sets of low-energy backbone structures of the mu-selective peptides [N-Me-Phe3, D-Pro4]-morphiceptin and Tyr-D-Orn-Phe-Asp-NH2 were obtained. These sets of structures were compared for geometrical similarity between themselves and with the low-energy conformations found for the delta-selective peptide Tyr-D-Cys-Phe-D-Pen-OH and nonactive peptide Tyr-Orn-Phe-Asp-NH2. Two pairs of geometrically similar conformations of mu-selective peptides, sharing no similarity with the conformations of peptides showing low affinity to the mu-receptor, were selected as two alternative models of probable mu-receptor-bound backbone conformations. Both models share geometrical similarity with the low-energy structures of the linear mu-selective peptide Tyr-D-Ala-Phe-Phe-NH2. Putative binding conformations of Tyr1 and Phe3 side chains are also discussed.  相似文献   

4.
Theoretical conformational analysis was used to study the spatial structure and conformational properties of the bovine adrenal medulla dodecapeptide BAM-12P (Tyr1-Gly2-Gly3-Phe4-Met5-Arg6-Arg7-Val8-Gly9-Arg10-Pro11-Glu12). Twenty-three low-energy conformations of the BAM-12P backbone were shown to represent the spatial structure of the peptide. The inverse structural problem was solved, and synthetic analogues of BAM-12P were proposed, the spatial structures of which correspond to a set of low-energy potentially physiologically active conformations of the natural dodecapeptide.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 245–250.Original Russian Text Copyright © 2005 by Akhmedov, Tagiev, Hasanov, Makhmudova.  相似文献   

5.
A model of spatial structure of the synthetic peptide rp142 (24 amino acid residues) containing the immunodominant epitope of the HIV-1 protein gp120 in the region Gly-10-Phe-15 was constructed by the method of "constrained" molecular mechanics, which uses the algorithms of theoretical conformational analysis, based on NMR spectroscopy data. A comparative analysis of calculated conformations revealed that the spatial structure of rp142 in solution can be described by a family of conformations to which nine different structural clusters involving the sets of topologically close conformers correspond. It is shown that the main chain of the peptide forms irregular but "structured" conformations in which the main portion of amino acid residues is incorporated into beta-turns and helix-like fragments, while Pro-11 and Gly-12 form in some structures inverse gamma-turns, which rarely occur in protein-peptide molecules. It was found that the spatial packing of the Gly-10-Phe-15 hexapeptide in different clusters is realized at different internal rotation angles, to which topologically close structures correspond. It is assumed that this invariant structural element describes the "conformation of complex formation" that is complementary to the antigen-binding center of antibodies and is responsible for their binding to the peptide.  相似文献   

6.
Sets of low-energy backbone conformations of the active tetragastrin analogue Boc-Trp-Leu-Asp-Phe-NH2 and two competitive antagonists Boc-Trp-Leu psi (CH2NH)-Asp-Phe-NH2 and Boc-Trp-Leu-Asp-O-CH2-CH2-C6H5 were obtained using theoretical conformational analysis methods. Groups of the conformations were selected for the three analogues, allowing a spatial matching of Trp, Asp and Phe residues responsible for the gastrin receptor binding. Three conformations possessing the lowest energies among the geometrically similar structures of these three peptides are suggested as a model for the "receptor-bound" conformations of these analogues. Backbone spatial folding resembling an alpha-helix turn is characteristic of these conformations. The correspondence of the proposed model to the available data on structure--activity relationships for tetragastrin analogues is discussed. Orientations of the putative receptor-bound conformations in a "water--lypophylic medium" two-phase system were investigated.  相似文献   

7.
On the basis of theoretical conformational analysis of separate peptide fragments, the conformational characteristics of two substrates and a substrate-like inhibitor of aspartic protease rhizopuspepsin were studied. It was shown that the spatial structure of these molecules is described by several families of conformations, the transition between which does not require the overcoming of high energy barriers. It was assumed that the stabilization of beta-structural conformations experimentally observed in inhibitor complexes is due to the greater predisposition of extended structures to the formation of effective intermolecular contacts with amino acid residues of the active site of the enzyme.  相似文献   

8.
Low-energy peptide backbone structures of dermorphin (DM), amide of its N-terminal pentapeptide (DM 1-5) and DM 1-5 analogues with substitutions of Gly4 for Leu, D-Gln, Aal or Tal were determined by energy calculations. The above analogues were shown to possess different affinities toward opiate receptors of mu-type. The comparison of low-energy backbone structures of DM, DM 1-5 and its analogues resulted in development of the dermorphin "biologically active" conformation being characteristic of its binding with mu-type receptors. The specific binding of dermorphin to this receptor apparently depends on the conformation of the whole N-terminal pentapeptide.  相似文献   

9.
The spatial structure of the cardioactive octapeptide Pro1-Gln2-Asp3-Pro4-Phe5-Leu6-Arg7-Ile8-NH2 was investigated using the theoretical conformational analysis. The low-energy conformations of the octapeptide molecule were found, the values of dihedral angles of the backbone and side chains of the amino acid residues constituting the peptide were determined, and the energies of intra-and interresidual interactions were estimated. It was shown that the spatial structure of this molecule represent six stable low-energy forms of the main chain.  相似文献   

10.
Han L  Hiratake J  Kamiyama A  Sakata K 《Biochemistry》2007,46(5):1432-1447
Gamma-glutamyl transpeptidase (GGT, EC 2.3.2.2) catalyzes the transfer of the gamma-glutamyl group of glutathione and related gamma-glutamyl amides to water (hydrolysis) or to amino acids and peptides (transpeptidation) and plays a central role in glutathione metabolism. GGT is involved in a number of biological events, such as drug resistance and metastasis of cancer cells by detoxification of xenobiotics and reactive oxygen species through glutathione metabolism, and is also implicated in physiological disorders, such as Parkinson's disease, neurodegerative disease, diabetes, and cardiovascular diseases. In this study, we designed, synthesized, and evaluated a series of gamma-phosphono diester analogues of glutamate as transition-state mimic inhibitors of GGT. The electrophilic phosphonate diesters served as highly potent mechanism-based inhibitors that caused the time-dependent and irreversible inhibition of both the E. coli and human enzymes, probably by phosphonylating the catalytic Thr residue of the enzyme. In particular, one of the inhibitors exhibited more than 6000 times higher activity toward human GGT than acivicin, a classical but nonselective inhibitor of GGT. The dependence of the inactivation rate on the leaving group ability of the phosphonates (Br?nsted plot) revealed that the phosphonylation of the catalytic Thr residue proceeded via a dissociative transition-state with substantial bond cleavage between the phosphorus and the leaving group for both E. coli and human GGTs. The binding site of GGT for the Cys-Gly moiety of glutathione or for the acceptor molecules was probed by the phosphonate diesters to reveal a significant difference in the mechanism of substrate recognition between E. coli and human GGT. Thus, in the human enzyme, a specific residue in the Cys-Gly binding site played a critical role in recognizing the Cys-Gly moiety or the acceptor molecules by interacting with the C-terminal carboxy group, whereas the Cys side chain and the Cys-Gly amide bond were not recognized significantly. In contrast, the E. coli enzyme was a nonselective enzyme that accommodated substrates without specifically recognizing the C-terminal carboxy group of the Cys-Gly moiety of gamma-glutamyl compounds or the acceptor molecules. The phosphonate diester-based GGT inhibitors shown here should serve as a blue print for the future design of highly selective GGT inhibitors for use as drug leads and biological probes that gain insight into the hitherto undefined physiological roles of GGT and the relationships between GGT and a variety of diseases.  相似文献   

11.
Models of mu- and delta-receptor-bound backbone conformations of enkephalin cyclic analogues containing Phe4 were determined by comparing geometrical similarity among the previously found low-energy backbone structures of [D-Cys2,Cys5]-enkephalinamide, [D-Cys2,D-Cys5]-enkephalinamide, [D-Pen2,L-Pen5]-enkephalin and [D-Pen2,D-Pen5]-enkephalin. The present mu-receptor-bound conformation resembles a beta-I bend in the peptide backbone centred on the Gly3-Phe4 region. Two slightly different models were found for the delta-receptor-bound conformation; both of them are more extended than the mu-receptor-bound conformation and include a gamma-turn (or a gamma-like turn) on the Gly3 residue. Energetically favourable rotamers of Tyr and Phe side chains were also determined for the mu- and delta-conformations. The present models of mu- and delta-conformations share geometrical similarity with the low-energy structures of Leu-enkephalin and the Tyr-D-Lys-Gly-Phe-analogue.  相似文献   

12.
13.
A hallmark of oligosaccharides is their often limited spatial flexibility, allowing them to access a distinct set of conformers in solution. Viewing each individual or even the complete ensemble of conformations as potential binding partner(s) for lectins in protein-carbohydrate interactions, it is pertinent to address the question on the characteristics of bound state conformation(s) in solution. Also, it is possible that entering the lectin's binding site distorts the low-energy topology of a glycosidic linkage. As a step to delineate the strategy of ligand selection for galactosides, a common physiological docking point, we have performed a NMR study on two non-homologous lectins showing identical monosaccharide specificity. Thus, the conformation of lactose analogues bound to bovine heart galectin-1 and to mistletoe lectin in solution has been determined by transferred nuclear Overhauser effect measurements. It is demonstrated that the lectins select the syn conformation of lactose and various structural analogues (Galbeta(1-->4)Xyl, Galbeta(1-->3)Xyl, Galbeta(1-->2)Xyl, and Galbeta(1-->3)Glc) from the ensemble of presented conformations. No evidence for conformational distortion was obtained. Docking of the analogues to the modeled binding sites furnishes explanations, in structural terms, for exclusive recognition of the syn conformer despite the non-homologous design of the binding sites.  相似文献   

14.
In this study fragment-based drug design is combined with molecular docking simulation technique, to design databases of virtual sialic acid (SA) analogues with new substitutions at C2, C5 and C6 positions of SA scaffold. Using spaces occupied by C2, C5 and C6 natural moieties of SA when bound to hemagglutinin (HA) crystallographic structure, new fragments that are commercially available were docked independently in all the pockets. The oriented fragments were then connected to the SA scaffold with or without incorporation of linker molecules. The completed analogues were docked to the whole SA binding site to estimate their binding conformations and affinities, generating three databases of HA-bound SA analogues. Selected new analogues showed higher estimated affinities than the natural SA when tested against H3N2, H5N1 and H1N1 subtypes of influenza A. An improvement in the binding energies indicates that fragment-based drug design when combined with molecular docking simulation is capable to produce virtual analogues that can become lead compound candidates for anti-flu drug discovery program.  相似文献   

15.
The spatial structure of two cardioactive isoleucine pentapeptides Glu-Phe-Leu-Arg-Ile-NH2 (I) and Pro-Phe-Tyr-Arg-Ile-NH2 (II) have been investigated using the theoretical conformational analysis. The low-energy conformations of these molecules were found, the values of dihedral angles of the backbone and side chains of the amino acid residues constituting these peptides were determined, and the energies of intra- and interresidual interactions were estimated. It was revealed that the spatial structure of molecule I can exist as five and that of molecule II as seven stable backbone forms.  相似文献   

16.
In this study fragment-based drug design is combined with molecular docking simulation technique, to design databases of virtual sialic acid (SA) analogues with new substitutions at C2, C5 and C6 positions of SA scaffold. Using spaces occupied by C2, C5 and C6 natural moieties of SA when bound to hemagglutinin (HA) crystallographic structure, new fragments that are commercially available were docked independently in all the pockets. The oriented fragments were then connected to the SA scaffold with or without incorporation of linker molecules. The completed analogues were docked to the whole SA binding site to estimate their binding conformations and affinities, generating three databases of HA-bound SA analogues. Selected new analogues showed higher estimated affinities than the natural SA when tested against H3N2, H5N1 and H1N1 subtypes of influenza A. An improvement in the binding energies indicates that fragment-based drug design when combined with molecular docking simulation is capable to produce virtual analogues that can become lead compound candidates for anti-flu drug discovery program.  相似文献   

17.
Semi-empirical energy calculations are used to determine all low-energy conformations of Trp-containing fragment 113-121 of myelin basic protein (experimental allergic encephalomyelitis inducing peptide). The computed conformations are compared with the results of physico-chemical experiments and data on biological testing of the encephalitogenic peptide analogs. The three computed structures are shown to be in a good agreement with the available experimental evidence. However, additional information is required to predict "biologically active" conformation of encephalitogenic peptide.  相似文献   

18.
Conformational analysis, based on ECEPP (Empirical Conformational Energy Program for Peptides) using the chain build-up procedure, was applied to determine the low-energy conformations for a series of tetrapeptides. The tetrapeptides are components of larger peptides which have been found to bind to the CD4 receptor of monocytes. Several previous studies have implicated the tetrapeptide units investigated here as being critical to the biological activities of the full peptides. Five such tetrapeptides were studied: Ser-Ser-Asn-Tyr (from ribonuclease A), Thr-Thr-Asn-Tyr (from peptide T, known to block human immunodeficiency virus from attaching to CD4+ T cells), Thr-Ile-Asn-Tyr (from polio virus coat protein, which is less active than the other peptides in binding to CD4 receptors), Ser-Ser-Ala-Tyr (from the gp 120 coat protein of human immunodeficiency virus, a variant of the peptide T sequence, active in blocking viral attachment to CD4+ cells), and the tetrapeptide from an active synthetic pentapeptide, Asn-Thr-Lys-Tyr (from Asn-Thr-Lys-Tyr-Thr). Using a 7 kcal/mol cutoff, the low-energy conformations for each peptide were computed. Approximately 20,000 conformations were computed for each tetrapeptide. Residue probability profiles were determined for each tetrapeptide. All tetrapeptides except for the polio sequence showed flexibility in the sense that many low-energy conformations were possible. In previous studies, it was postulated that the critical tetrapeptide units would adopt conformations similar to the one observed in a segment of ribonuclease A, residues 22-25, a beta-bend, which is part of an octapeptide segment (residues 19-26) that is homologous to the sequence of peptide T.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The optimized energies of seven beta-bends, repeating C5 and C7, and right- and left-handed alpha-helical conformations for each of eight tetrapeptides have been computed using empirical methods. Eight tetramers were selected: four helix-forming sequences with hydrophobic residues such as Val, Leu, Ile and Trp, and four helix-breaking sequences with hydrophilic residues such as Asp, Asn and Ser, as determined by their frequency of occurrence in beta turns in proteins. Analysis of the optimized conformations with energies less than or equal to 2.1 kcal/mol from the absolute minimum energy conformer for each tetramer reveals a correlation between low-energy conformations and those predicted from observed protein structures. These results show that energy calculations on small peptide fragments may be usefulin predicting protein structure.  相似文献   

20.
A hallmark of oligosaccharides is their often limited spatial flexibility, allowing them to access a distinct set of conformers in solution. Viewing each individual or even the complete ensemble of conformations as potential binding partner(s) for lectins in protein–carbohydrate interactions, it is pertinent to address the question on the characteristics of bound state conformation(s) in solution. Also, it is possible that entering the lectin’s binding site distorts the low-energy topology of a glycosidic linkage. As a step to delineate the strategy of ligand selection for galactosides, a common physiological docking point, we have performed a NMR study on two non-homologous lectins showing identical monosaccharide specificity. Thus, the conformation of lactose analogues bound to bovine heart galectin-1 and to mistletoe lectin in solution has been determined by transferred nuclear Overhauser effect measurements. It is demonstrated that the lectins select the syn conformation of lactose and various structural analogues (Galβ(1→4)Xyl, Galβ(1→3)Xyl, Galβ(1→2)Xyl, and Galβ(1→3)Glc) from the ensemble of presented conformations. No evidence for conformational distortion was obtained. Docking of the analogues to the modeled binding sites furnishes explanations, in structural terms, for exclusive recognition of the syn conformer despite the non-homologous design of the binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号