首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation   总被引:1,自引:0,他引:1  
Catalase activity was inhibited by aminotriazole administration to rats in order to evaluate the influence of catalase on the peroxisomal fatty acyl-CoA beta-oxidation system. 2 h after the administration of aminotriazole, peroxisomes were prepared from rat liver, and the activities of catalase, the beta-oxidation system and individual enzymes of beta-oxidation (fatty acyl-CoA oxidase, crotonase, beta-hydroxybutyryl-CoA dehydrogenase and thiolase) were determined. Catalase activity was decreased to about 2% of the control. Among the individual enzymes of the beta-oxidation system, thiolase activity was decreased to 67%, but the activities of fatty acyl-CoA oxidase, crotonase and beta-hydroxybutyryl-CoA dehydrogenase were almost unchanged. The activity of the peroxisomal beta-oxidation system was assayed by measuring palmitoyl-CoA-dependent NADH formation, and the activity of the purified peroxisome preparation was found to be almost unaffected by the administration of aminotriazole. The activity of the system in the aminotriazole-treated preparation was, however, significantly decreased to 55% by addition of 0.1 mM H2O2 to the incubation mixture. Hydrogen peroxide (0.1 mM) reduced the thiolase activity of the aminotriazole-treated peroxisomes to approx. 40%, but did not affect the other activities of the system. Thiolase activity of the control preparation was decreased to 70% by addition of hydrogen peroxide (0.1 mM). The half-life of 0.1 mM H2O2 added to the thiolase assay mixture was 2.8 min in the case of aminotriazole-treated peroxisomes, and 4 s in control peroxisomes. The ultraviolet spectrum of acetoacetyl-CoA (substrate of thiolase) was clearly changed by addition of 0.1 mM H2O2 to the thiolase assay mixture without the enzyme preparation; the absorption bands at around 233 nm (possibly due to the thioester bond of acetoacetyl-CoA) and at around 303 nm (due to formation of the enolate ion) were both significantly decreased. These results suggest that H2O2 accumulated in peroxisomes after aminotriazole treatment may modify both thiolase and its substrate, and consequently suppress the fatty acyl-CoA beta-oxidation. Therefore, catalase may protect thiolase and its substrate, 3-ketoacyl-CoA, by removing H2O2, which is abundantly produced during peroxisomal enzyme reactions.  相似文献   

2.
Rat liver peroxisomes catalyze the beta oxidation of fatty acids   总被引:36,自引:0,他引:36  
Peroxisomes were purified by differential and equilibrium density centrifugation from the livers of rats treated with clofibrate to enhance their peroxisomal system of fatty acid oxidation. These purified peroxisomes were tested for the presence of crotonase, beta-hydroxybutyryl-CoA dehydrogenase and thiolase using spectroscopic techniques that utilize the characteristic absorption bands of the appropriate 4-carbon acyl-CoA substrates. All three enzymes were found. Analysis of the fractions from equilibrium density centrifugation revealed major peaks of these enzyme activities in peroxisomes and excluded contamination by mitochondria as an explanation of the results. In the presence of excess CoA the purified peroxisomes oxidized palmitoyl-CoA to acetyl-CoA, and reduced NAD, with a 1:5:5 stoichiometry. The peroxisomes were inactive with butyryl-CoA and less active with octanoyl-CoA than with lauroyl-CoA or palmitoyl-CoA; they appear specialized for the beta oxidation of long chain fatty acids.  相似文献   

3.
The presence of acyl-CoA synthetase (EC 6.2.1.3) in peroxisomes and the subcellular distribution of beta-oxidation enzymes in human liver were investigated by using a single-step fractionation method of whole liver homogenates in metrizamide continuous density gradients and a novel procedure of computer analysis of results. Peroxisomes were found to contain 16% of the liver palmitoyl-CoA synthetase activity, and 21% and 60% of the enzyme activity was localized in mitochondria and microsomal fractions respectively. Fatty acyl-CoA oxidase was localized exclusively in peroxisomes, confirming previous results. Human liver peroxisomes were found to contribute 13%, 17% and 11% of the liver activities of crotonase, beta-hydroxyacyl-CoA dehydrogenase and thiolase respectively. The absolute activities found in peroxisomes for the enzymes investigated suggest that in human liver fatty acyl-CoA oxidase is the rate-limiting enzyme of the peroxisomal beta-oxidation pathway, when palmitic acid is the substrate.  相似文献   

4.
Dietary clofibrate for 21 days induced a rise in the specific activities of crotonase, acyl-CoA oxidase and carnitine acetyltransferase in a crude particulate fraction from mouse small intestinal mucosa. Subcellular fractionation of post-nuclear supernatant prepared from mucosal homogenates of normal and clofibrate treated animals allowed substantial separation of peroxisomes from contaminating organelles. Analysis of fractions demonstrated that intestinal peroxisomes contain acyl-CoA oxidase, crotonase, beta-hydroxyacyl-CoA dehydrogenase and carnitine acyltransferase activities. It is concluded that intestinal peroxisomes are equipped to engage in fatty acid oxidation.  相似文献   

5.
Peroxisomal beta-oxidation enzyme proteins in the Zellweger syndrome   总被引:12,自引:0,他引:12  
The absence of peroxisomes in patients with the cerebro-hepato-renal (Zellweger) syndrome is accompanied by a number of biochemical abnormalities, including an accumulation of very long-chain fatty acids. We show by immunoblotting that there is a marked deficiency in livers from patients with the Zellweger syndrome of the peroxisomal beta-oxidation enzyme proteins acyl-CoA oxidase, the bifunctional protein with enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase activities and 3-oxoacyl-CoA thiolase. Using anti-(acyl-CoA oxidase), increased amounts of cross-reactive material of low Mr were seen in the patients. With anti-(oxoacyl-CoA thiolase), high Mr cross-reactive material, presumably representing precursor forms of 3-oxoacyl-CoA thiolase, was detected in the patients. Catalase protein was not deficient, in accordance with the finding that catalase activity is not diminished in the patients. Thus in contrast to the situation with catalase functional peroxisomes are required for the stability and normal activity of peroxisomal beta-oxidation enzymes.  相似文献   

6.
In Candida tropicalis cells grown on n-alkanes (C10-C13), the levels of the activities of the enzymes related to fatty acid β—oxidation—acyl-CoA oxidase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-ketoacyl-CoA thiolase—were found to be higher than those in cells grown on glucose, indicating that these enzymes were induced by alkanes. The enzymes were first confirmed to be localized only in peroxisomes, while none of these enzymes nor acyl-CoA dehydrogenase, which is known to participate in the initial step of mitochondrial β-oxidation in mammalian cells, were detected in yeast mitochondria under the conditions employed.

The significance of the peroxisomal β-oxidation system in the metabolism of alkanes by the yeast was also discussed.  相似文献   

7.
The effect of ionic strength and pH on the release of some enzymes of the matrix of peroxisomes in rat's liver was studied. Catalase, L ALpha-hydroxy acid oxidase, isocitrate dehydrogenase, glycerophosphate dehydrogenase and lactate dehydrogenase were easily released from the particles during their lysis and treatment with 0.16 M KCl, whereas urate oxidase, NADH cytochrome c reductase and D-amino acid oxidase were not solubilized. After the solubilization of peroxisomal membrane by 0.2% Triton X-100, the remaining core contained about 50% amino acid oxidase activity, and had 1.28--1.30 g/cm3 density. These results suggest that D-amino acid oxidase associates with urate oxidase in the peroxisomal core.  相似文献   

8.
In the algae Mougeotia, Bumilleriopsis and Eremosphaera, recently shown to possess the enzymes hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) and enoyl-CoA hydratase (EC 4.2.1.17), the presence of thiolase (EC 2.3.1.9) and acyl-CoA-oxidizing enzymes can also be demonstrated, indicating that -oxidation of fatty acids is possible in these organisms. The compartmentation of enzymes is different in the various algae. In Mougeotia, both thiolase and the acyl-CoA-oxidizing enzyme are located exclusively in the peroxisomes. The latter enzyme was found to be an oxidase using molecular oxygen as an electron acceptor. On the other hand, in Bumilleriopsis all enzymes of the fatty-acid -oxidation pathway tested are constituents only of the mitochondria, and acyl-CoA is oxidized by a dehydrogenase incapable of reducing oxygen. Finally, in Eremosphaera thiolase and acyl-CoA-oxidizing enzymes were found in the peroxisomes as well as in the mitochondria. In the peroxisomes, oxidation of acyl-CoA is catalyzed by an oxidase, whereas the corresponding enzyme in the mitochondria is a dehydrogenase. The acyl-CoA oxidases/dehydrogenases of the three algae differ not only by their capability for oxidation of acyl-CoA of different chain lengths but also with regard to their Km values and substrate specificities. Indications were obtained that the oxygen is reduced to water rather than to H2O2 by the algal acyl-CoA oxidases. When cells of Eremosphaera were cultured with hypolipodemic substances in the growth medium the activities of the peroxisomal enzymes, but not those of the mitochondrial enzymes of the fatty-acid -oxidation pathway, were increased by a factor of two to three.Abbreviations DPIP 2,6-dichlorophenol indophenol - INT p-iodonitrotetrazolium violet - MEHP monoethylhexylphthalate  相似文献   

9.
To clarify the significance of catalase in peroxisomes, we have examined the effect of aminotriazole treatment of rats on the activity of beta-hydroxybutyryl-CoA dehydrogenase in liver peroxisomes. When the effect of H2O2 on the dehydrogenase activity was examined using an extract of liver peroxisomes from aminotriazole-treated rats, the acetoacetyl-CoA-dependent oxidation of NADH was found to increase considerably on the addition of dilute H2O2. Such an effect of H2O2 was not seen on the beta-hydroxybutyryl-CoA-dependent reduction of NAD nor with extracts from untreated animals. We then noticed that similar NADH oxidation was caused non-enzymatically by a mixture of acetoacetyl-CoA and H2O2. The oxidation was dependent on both acetoacetyl-CoA and H2O2, and was blocked by scavengers of oxyradicals such as ascorbate and ethanol. Degradation products formed during the reaction of acetoacetyl-CoA with H2O2 had no NADH oxidizing activity, indicating that effective oxidant(s) were generated during the reaction of H2O2 with acetoacetyl-CoA. No other fatty acyl-CoA so far examined nor acetoacetate could replace acetoacetyl-CoA in this reaction. Therefore, if H2O2 were to be accumulated in peroxisomes, it would decrease both NADH and acetoacetyl-CoA, thus affecting the fatty acyl-CoA beta-oxidation system. These results, together with our previous finding that peroxisomal thiolase was significantly inactivated by H2O2 [Hashimoto, F. & Hayashi, H. (1987) Biochim. Biophys. Acta 921, 142-150] suggest that the role of catalase in peroxisomes is at least in part to protect the fatty acyl-CoA beta-oxidation system from the deleterious action of H2O2.  相似文献   

10.
Peroxisomes from mouse liver were fractionated with Triton X-114, a procedure which yields a detergent phase consisting of proteins containing hydrophobic binding sites, and a nondetergent, or aqueous, phase containing hydrophilic proteins. When this method was applied to peroxisomes from control mice, catalase and fatty acyl-CoA oxidase distributed to the aqueous phase, whereas the integral membrane protein, PMP68, and the bifunctional protein were recovered exclusively in the detergent phase. Urate oxidase distributed intermediate between these two phases. With peroxisomes from mice treated with the peroxisome proliferator clofibrate, the bifunctional protein was recovered in both the detergent and the aqueous phases, and urate oxidase was shifted toward the aqueous phase. Other analyses of the subperoxisomal distribution of the bifunctional protein were consistent with a proportion of this protein being tightly associated with the peroxisomal membrane, or with some other uncharacterized, poorly soluble, component. Sucrose gradient centrifugation of the aqueous phase resulting from Triton X-114 fractionation of peroxisomes revealed that a major proportion of catalase, fatty acyl-CoA oxidase, the bifunctional protein, and other unidentified proteins behaved as if associated under these conditions. In this respect, use of a higher concentration of Triton X-114 for peroxisome fractionation led to the partitioning of some catalase and fatty acyl-CoA oxidase to the detergent phase, indicating the presence of some detergent-accessible hydrophobic binding sites even on these proteins. These data have been interpreted as indicating matrix protein associations in vivo, associations which may be responsive to proliferator treatment.  相似文献   

11.
The enzymes for beta-oxidation of fatty acids in inducible and constitutive strains of Escherichia coli were assayed in soluble and membrane fractions of disrupted cells by using fatty acid and acyl-coenzyme A (CoA) substrates containing either 4 or 16 carbon atoms in the acyl moieties. Cell fractionation was monitored, using succinic dehydrogenase as a membrane marker and glucose 6-phosphate dehydrogenase as a soluble marker. Acyl-CoA synthetase activity was detected exclusively in the membrane fraction, whereas acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities that utilized both C4 and C16 acyl-CoA substrates were isolated from the soluble fraction. 3-Hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities assayed with both C4 and C16 acyl-CoA substrates co-chromatographed on gel filtration and ion-exchange columns and cosedimented in glycerol gradients. The data show that these three enzyme activities of the fad regulon can be isolated as a multienzyme complex. This complex dissociates in very dilute preparations; however, in those preparations where the three activities are separated, the fractionated species retain activity with both C4 and C16 acyl-CoA substrates.  相似文献   

12.
The algae Mougeotia and Eremosphaera were used for isolation of microbodies with the characteristics of leaf peroxisomes and unspecialized peroxisomes, respectively. In both types of organelles, the following enzymes of the β-oxidation pathway were determined: acyl-CoA oxido-reductase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase. There are indications that the peroxisomal oxidoreductase of both algae is a H2O2-forming oxidase rather than a dehydrogenase.

The enzymes enoyl-CoA hydratase and acyl-CoA oxidoreductase are located also in the mitochondria from Eremosphaera but not from Mougeotia. The mitochondrial acyl-CoA oxidizing enzyme was found to be a dehydrogenase. The specific activities of acyl-CoA oxidase and enoyl-CoA hydratase are lower than in spinach leaf peroxisomes. However, the activity of 3-hydroxyacyl-CoA dehydrogenase in the peroxisomes of both algae is almost 2-fold higher. The capability for degradation of fatty acids is a common feature of all different types of peroxisomes from algae.

  相似文献   

13.
Short-chain acyl-CoA oxidases are beta-oxidation enzymes that are active on short-chain acyl-CoAs and that appear to be present in higher plant peroxisomes and absent in mammalian peroxisomes. Therefore, plant peroxisomes are capable of performing complete beta-oxidation of acyl-CoA chains, whereas mammalian peroxisomes can perform beta-oxidation of only those acyl-CoA chains that are larger than octanoyl-CoA (C8). In this report, we have shown that a novel acyl-CoA oxidase can oxidize short-chain acyl-CoA in plant peroxisomes. A peroxisomal short-chain acyl-CoA oxidase from Arabidopsis was purified following the expression of the Arabidopsis cDNA in a baculovirus expression system. The purified enzyme was active on butyryl-CoA (C4), hexanoyl-CoA (C6), and octanoyl-CoA (C8). Cell fractionation and immunocytochemical analysis revealed that the short-chain acyl-CoA oxidase is localized in peroxisomes. The expression pattern of the short-chain acyl-CoA oxidase was similar to that of peroxisomal 3-ketoacyl-CoA thiolase, a marker enzyme of fatty acid beta-oxidation, during post-germinative growth. Although the molecular structure and amino acid sequence of the enzyme are similar to those of mammalian mitochondrial acyl-CoA dehydrogenase, the purified enzyme has no activity as acyl-CoA dehydrogenase. These results indicate that the short-chain acyl-CoA oxidases function in fatty acid beta-oxidation in plant peroxisomes, and that by the cooperative action of long- and short-chain acyl-CoA oxidases, plant peroxisomes are capable of performing the complete beta-oxidation of acyl-CoA.  相似文献   

14.
The fate of fluorescently labeled pre-nsL-TP (Cy3-pre-nsL-TP) microinjected into BALB/c 3T3 fibroblasts was investigated by confocal laser scanning microscopy. The protein exhibited a distinct punctate fluorescence pattern and colocalized to a high degree with the immunofluorescence pattern for the peroxisomal enzyme acyl-CoA oxidase. Proteolytic removal of the C-terminal leucine of the putative peroxisomal targeting sequence (AKL) resulted in a diffuse cytosolic fluorescence. These results indicate that microinjected Cy3-pre-nsL-TP is targeted to peroxisomes. The association of nsL-TP with peroxisomal enzymes was investigated in cells by measuring fluorescence resonance energy transfer (FRET) between the microinjected Cy3-pre-nsL-TP and Cy5-labeled antibodies against the peroxisomal enzymes acyl-CoA oxidase, 3-ketoacyl-CoA thiolase, bifunctional enzyme, PMP70 and catalase. The technique of photobleaching digital imaging microscopy (pbDIM), used to quantitate the FRET efficiency on a pixel-by-pixel basis, revealed a specific association of nsL-TP with acyl-CoA oxidase, 3-ketoacyl-CoA thiolase and bifunctional enzyme in the peroxisomes. These observations were corroborated by subjecting a peroxisomal matrix protein fraction to affinity chromatography on Sepharose-immobilized pre-nsL-TP. Acyl-CoA oxidase was retained. These studies provide strong evidence for a role of nsL-TP in the regulation of peroxisomal fatty acid beta-oxidation, e.g. by facilitating the presentation of substrates and/or stabilization of the enzymes.  相似文献   

15.
1. Changes in the activities of several enzymes involved in mitochondrial fatty acid oxidation were measured in livers of developing rats between late foetal life and maturity. The enzymes studied are medium- and long-chain ATP-dependent acyl-CoA synthetases of the outer mitochondrial membrane and matrix, GTP-dependent acyl-CoA synthetase, carnitine acyltransferase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, general 3-oxoacyl-CoA thiolase and acetoacetyl-CoA thiolase.  相似文献   

16.
17.
Using the Prasinophycean algae Platymonas, Heteromastix, Pedinomonas, and Pyramimonas, subcellular distribution of the enzymes of glycolate metabolism and β-oxidation pathway have been studied. Glycolate dehydrogenase, hydroxypyruvate reductase, and glutamate-glyoxylate aminotransferase are located in the mitochondria. In addition, the mitochondria of all four species contain acyl-coenzyme A (CoA) dehydrogenase, enoyl-CoA hydratase, and thiolase. In Platymonas, Heteromastix, and Pedinomonas, organelles with the characteristic structure of peroxisomes have been detected which also contain the enzymes acyl-CoA oxidase, enoyl-CoA hydratase and thiolase. However, catalase could not be demonstrated in either the peroxisome-like organelles or in the whole cells.  相似文献   

18.
Fatty acid degradation in Caulobacter crescentus.   总被引:3,自引:1,他引:2       下载免费PDF全文
Fatty acid degradation was investigated in Caulobacter crescentus, a bacterium that exhibits membrane-mediated differentiation events. Two strains of C. crescentus were shown to utilize oleic acid as sole carbon source. Five enzymes of the fatty acid beta-oxidation pathway, acyl-coenzyme A (CoA) synthase, crotonase, thiolase, beta-hydroxyacyl-CoA dehydrogenase, and acyl-CoA dehydrogenase, were identified. The activities of these enzymes were significantly higher in C. crescentus than the fully induced levels observed in Escherichia coli. Growth in glucose or glucose plus oleic acid decreased fatty acid uptake and lowered the specific activity of the enzymes involved in beta-oxidation by 2- to 3-fold, in contrast to the 50-fold glucose repression found in E. coli. The mild glucose repression of the acyl-CoA synthase was reversed by exogenous dibutyryl cyclic AMP. Acyl-CoA synthase activity was shown to be the same in oleic acid-grown cells and in cells grown in the presence of succinate, a carbon source not affected by catabolite repression. Thus, fatty acid degradation by the beta-oxidation pathway is constitutive in C. crescentus and is only mildly affected by growth in the presence of glucose. Tn5 insertion mutants unable to form colonies when oleic acid was the sole carbon source were isolated. However, these mutants efficiently transported fatty acids and had beta-oxidation enzyme levels comparable with that of the wild type. Our inability to obtain fatty acid degradation mutants after a wide search, coupled with the high constitutive levels of the beta-oxidation enzymes, suggest that fatty acid turnover, as has proven to be the case fatty acid biosynthesis, might play an essential role in membrane biogenesis and cell cycle events in C. crescentus.  相似文献   

19.
Developmental changes in fatty acid oxidation system of rat liver peroxisomes were studied to compare with that of mitochondria. More apparent enhancement of peroxisomal palmitoyl-CoA oxidase was observed than mitochondrial palmitoyl-CoA dehydrogenase during prenatal (20-day fetal) to neonatal (1-day after birth) period. The characteristics of peroxisomal enzymes, fatty acyl-CoA oxidase and carnitime acyltransferase, on the bases of substrate specificities, were rapidly established within the 1 day after birth accompanied by the marked enhancement of these activities. These findings indicate that peroxisomal fatty acid oxidation system plays an important role for early growth of neonatal rats; this system may contribute to supplying short- to medium-chain fatty acyl-CoA and NADH2 for mitochondrial energy formation system.  相似文献   

20.
The genes in Butyrivibrio fibrisolvens that encode the enzymes involved in butyrate production were sequenced. In a type I strain (ATCC 19171(T)), the genes coding for the enzymes that catalyze the conversion from acetyl-CoA to butyryl-CoA, thl (thiolase), crt (crotonase), hbd (beta-hydroxybutyryl-CoA dehydrogenase), bcd (butyryl-CoA dehydrogenase), etfB (electron transfer flavoprotein [ETF]-beta), and etfA (ETF-alpha), were found to be clustered and arranged in this order. A type II strain (ATCC 51255) had the same clustered genes with the same arrangement, except that crt was not present in the clustered genes. The deduced amino acid sequences of these enzymes did not greatly differ between the two strains, and even between B. fibrisolvens and clostridia. Amino acid identity appeared to be higher within the same type than between types I and II. The clustered genes were shown to be cotranscribed, and constitutively transcribed without being affected significantly by culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号