首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and in vitro p38 alpha activity of a novel series of benzimidazolone inhibitors is described. The p38 alpha SAR is consistent with a mode of binding wherein the benzimidazolone carbonyl serves as the H-bond acceptor to Met109 of p38 alpha in a manner analogous to the pyridine nitrogen of prototypical pyridylimidazole p38 inhibitors. Potent p38 alpha activity comparable to that of several previously reported p38 inhibitors is observed for this novel chemotype.  相似文献   

2.
3.
Synthesis and biological activities of some quinolinone and dihydroquinolinone p38 MAP kinase inhibitors are reported. Modifications to the dihydroquinolinone pharmacophore revealed that dihydroquinolinone may be replaced with a quinolinone pharmacophore and lead to enhanced p38 inhibitory activity. From a study of C-7 substitutions by amino acid side chains, a very potent series of compounds in the p38 enzyme assays was identified. Translation of the in vitro activity into reasonable whole blood activity can be improved in this series of compounds by judicious modification of the physical properties at appropriate regions of the lead.  相似文献   

4.
Inhibition of the p38 map kinase pathway has been shown to be beneficial in the treatment of inflammatory diseases. The first class of potent p38 kinase inhibitors was the pyridinylimidazole compounds from SKB. Since then several pyridinylimidazole-based compounds have been shown to inhibit activated p38 kinase in vitro and in vivo. We have developed a novel series of pyridinylimidazole-based compounds, which potently inhibit the p38 pathway by binding to unactivated p38 kinase and only weakly inhibiting activated p38 kinase activity in vitro.  相似文献   

5.
The biphenyl amides are a novel series of p38 MAP kinase inhibitors. Structure-activity relationships of the series against p38alpha are discussed with reference to the X-ray crystal structure of an example. The series was optimised rapidly to a compound showing oral activity in an in vivo disease model.  相似文献   

6.
Inhibitors of the MAP kinase p38 are potentially useful for the treatment for osteoporosis, arthritis, and other inflammatory diseases. A series of thienyl, furyl, and pyrrolyl ureas has been identified as potent p38 inhibitors, displaying in vitro activity in the nanomolar range.  相似文献   

7.
p38 MAPK is a Ser/Thr protein kinase activated by various inflammatory cytokines and a variety of stress stimuli. It is involved in many physiological processes, including the production of inflammatory cytokines. We have previously reported the design and synthesis of a series of pyridinylimidazole compounds that are selective inhibitors of p38 MAPK. These compounds, exemplified by SB 203580, are exceptionally effective in cell-based assays, including the inhibition of inflammatory cytokine production. SB 203580 is widely used as a tool to dissect the role of p38 MAPK in various physiological processes. It has previously been established that SB 203580 acts primarily to block the catalytic activity of p38 MAPK. However, it has been suggested that in cells, the compounds could also inhibit p38 MAPK activation by virtue of their ability to bind to the inactive enzyme. We undertook careful studies to definitively demonstrate that treatment with SB 203580 had no effect on Thr(180) and Tyr(182) phosphorylation, and hence activation of p38 in vivo. SB 203580, however, potently inhibited the activity of p38 MAPK as demonstrated by the inhibition of the activation of MAPKAP K2, a specific physiological substrate of p38 MAPK. This was observed regardless of stimuli or cell type. Identical results were obtained when the p38 MAPK cascade was partially reconstituted in vitro. Thus, our data clearly indicate that SB 203580 specifically inhibits the activity of p38 MAPK but not its activation by upstream MAPKK.  相似文献   

8.
The structure based drug design, synthesis and structure–activity relationship of a series of C6 sulfur linked triazolopyridine based p38 inhibitors are described. The metabolic deficiencies of this series were overcome through changes in the C6 linker from sulfur to methylene, which was predicted by molecular modeling to be bioisosteric. X-ray of the ethylene linked compound 61 confirmed the predicted binding orientation of the scaffold in the p38 enzyme.  相似文献   

9.
A novel series of compounds based on the pyrrolo[2,1-f][1,2,4]triazine ring system have been identified as potent p38 alpha MAP kinase inhibitors. The synthesis, structure-activity relationships (SAR), and in vivo activity of selected analogs from this class of inhibitors are reported. Additional studies based on X-ray co-crystallography have revealed that one of the potent inhibitors from this series binds to the DFG-out conformation of the p38 alpha enzyme.  相似文献   

10.
Functional domains required for NADPH-binding, T(3)-binding, protein dimerization and cytosolic retention were analyzed in NADPH-dependent cytosolic 3,5,3'-triiodothyronine (T(3))-binding protein (p38CTBP) by using the deletion mutants. Wild-type p38CTBP (amino acids; 1-314) and a series of deletion mutants (amino acids; 1-79, 1-128, 1-146, 1-216, 37-314, and 1-145 with 270-314) were bacterially induced. NADPH-dependent T(3)-binding activity was not observed in all mutant p38CTBPs studied, although wild-type p38CTBP showed high-affinity T(3)-binding activity. Wild-type p38CTBP was able to bind a CL-6B column, none of the mutant p38CTBPs showed any binding activity. Pull-down analyses demonstrated that two regions between amino acid 128 and 146, and between 216 and 270, both of which possess helical structures, were required for homodimeric p38CTBP binding. In fluoroscopic studies, GFP-tagged p38CTBP was preferentially observed in cytoplasm. However, C-terminal region-deleted p38CTBP(1-216) was not only observed in cytoplasm, but also in nucleus. These results suggest that 1) multiple regions in p38CTBP molecule are required for T(3)-binding and NADPH binding, 2) two helical structures in p38CTBP molecule may be important in the homodimer formation, and 3) C-terminal region of p38CTBP contains the function to preserve the protein in cytoplasm.  相似文献   

11.
The p38 mitogen-activated protein kinases are activated in response to various extracellular signals in eukaryotic cells and play a critical role in the cellular responses to these signals. The four mammalian isoforms (p38alpha, p38beta, p38gamma, and p38delta) are coexpressed and coactivated in the same cells. The exact role of each p38 isoform has not been entirely identified, in part due to the inability to activate each member individually. This could be resolved by the use of intrinsically active mutants. Based on previous studies on yeast p38/Hog1 [Bell M, Capone R, Pashtan I, Levitzki A & Engelberg D (2001) J Biol Chem276, 25351-2538] and human p38alpha[Diskin R, Askari N, Capone R, Engelberg D & Livnah O (2004) J Biol Chem279, 47040-47049] we have generated intrinsically active p38beta, p38gamma and p38delta mutants. In addition, we have identified a new activating mutation site in p38alpha. Most of the activating mutations are located in the L16 loop, in which conformational changes were shown to induce activation. We show that these changes impose substantial autophosphorylation activity, providing a mechanistic explanation for the intrinsic activity of the mutants. The new active variants maintain specificity towards substrates and inhibitors similar to that of the parental wild-type proteins, and are phosphorylated by mitogen-activated protein kinase kinase 6, their upstream activator. Thus, we have completed the development of a series of intrinsically active mutants of all p38 isoforms. These active variants could now become powerful tools for the elucidating the activation mechanism and specific biological roles of each p38 isoform.  相似文献   

12.
The design, synthesis, and structure–activity relationships (SAR) of a series of 2-aminothiazol-5-yl-pyrimidines as novel p38α MAP kinase inhibitors are described. These efforts led to the identification of 41 as a potent p38α inhibitor that utilizes a unique nitrogen–sulfur intramolecular nonbonding interaction to stabilize the conformation required for binding to the p38α active site. X-ray crystallographic studies that confirm the proposed binding mode of this class of inhibitors in p38α and provide evidence for the proposed intramolecular nitrogen–sulfur interaction are discussed.  相似文献   

13.
Cytochrome P450c17, a steroidogenic enzyme encoded by the CYP17A1 gene, catalyzes the steroid 17α-hydroxylation needed for glucocorticoid synthesis, which may or may not be followed by 17,20 lyase activity needed for sex steroid synthesis. Whether or not P450c17 catalyzes 17,20 lyase activity is determined by three post-translational mechanisms influencing availability of reducing equivalents donated by P450 oxidoreductase (POR). These are increased amounts of POR, the allosteric action of cytochrome b5 to promote POR-P450c17 interaction, and Ser/Thr phosphorylation of P450c17, which also appears to promote POR-P450c17 interaction. The kinase(s) that phosphorylates P450c17 is unknown. In a series of kinase inhibition experiments, the pyridinyl imidazole drugs SB202190 and SB203580 inhibited 17,20 lyase but not 17α-hydroxylase activity in human adrenocortical HCI-H295A cells, suggesting an action on p38α or p38β. Co-transfection of non-steroidogenic COS-1 cells with P450c17 and p38 expression vectors showed that p38α, but not p38β, conferred 17,20 lyase activity on P450c17. Antiserum to P450c17 co-immunoprecipitated P450c17 and both p38 isoforms; however, knockdown of p38α, but not knockdown of p38β, inhibited 17,20 lyase activity in NCI-H295A cells. Bacterially expressed human P450c17 was phosphorylated by p38α in vitro at a non-canonical site, conferring increased 17,20 lyase activity. This phosphorylation increased the maximum velocity, but not the Michaelis constant, of the 17,20 lyase reaction. p38α phosphorylates P450c17 in a fashion that confers increased 17,20 lyase activity, implying that the production of adrenal androgens (adrenarche) is a regulated event.  相似文献   

14.
A novel pyrrole-2-carboxamide series of p38α inhibitors, discovered through the application of virtual screening, is presented. Following evaluation of activity, selectivity and developability properties of commercially available analogues, a synthesis program enabled rapid assessment of the series’ suitability for further lead optimisation studies.  相似文献   

15.
A series of C-2, C-8, and N-9 trisubstituted purine based inhibitors of TNF-alpha production are described. The most potent analogs showed low nanomolar activity against LPS-induced TNF-alpha production in a THP-1 cell based assay. The SAR of the series was optimized with the aid of X-ray co-crystal structures of these inhibitors bound with mutated p38 (mp38).  相似文献   

16.
The synthesis, structure-activity relationship, in vivo activity, and metabolic profile for a series of triazolopyridine-oxazole based p38 inhibitors are described. The deficiencies of the lead structure in the series, CP-808844, were overcome by changes to the C4 aryl group and the triazole side-chain culminating in the identification of several potential clinical candidates.  相似文献   

17.
A series of 2-pyridinyl-[1,2,3]triazoles have been synthesized and evaluated for their ALK5 inhibitory activity in the luciferase reporter assays. Compound 8d showed significant ALK5 inhibition (SBE-luciferase activity, 25%; p3TP-luciferase activity, 17%) at a concentration of 5 microM that is comparable to that of SB-431542 (SBE-luciferase activity, 21%; p3TP-luciferase activity, 12%), but weak p38 alpha MAP kinase inhibition (13%) at a concentration of 10 microM that is much lower than that of SB-431542 (54%).  相似文献   

18.
The development and synthesis of potent p38α MAP kinase inhibitors containing a pyridazinone platform is described. Evolution of the p38α selective pyridopyridazin-6-one series from the p38α/β dual inhibitor 2H-quinolizin-2-one series will be discussed in full detail.  相似文献   

19.
Herein we report investigations into the p38alpha MAP kinase activity of trisubstituted imidazoles that led to the identification of compounds possessing highly potent in vivo activity. The SAR of a novel series of imidazopyridines is demonstrated as well, resulting in compounds possessing cellular potency and enhanced in vivo activity in the rat collagen-induced arthritis model of chronic inflammation.  相似文献   

20.
The design, synthesis and SAR of a series of 2,6,9-trisubstituted purine inhibitors of p38alpha kinase is reported. Synthetic routes were devised to allow for array synthesis in which all three points of diversity could be facilely explored. The binding of this novel series to p38alpha kinase, which was predicted to have several key interactions in common with SB-203580, was confirmed by X-ray crystallography of 19 (p38 IC(50)=82 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号