首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the perception of three Cantonese level tones produced by speakers with dysarthria associated with cerebral palsy. Four speakers with dysarthria were selected on the basis of their distinctive patterns of fundamental frequency (F0) values observed in the level tones they produced, which showed errors in either F0 level or, F0 contour, or both. Monosyllabic words which contrasted in tone level were used as stimuli in an identification task. Five expert listeners identified the tones among the six Cantonese contrastive tones. Results showed that the tones produced by the dysarthric speakers were predominantly perceived as level tones; although a majority was perceived as the wrong level tone. The most important finding is that only the level tones produced by dysarthric speakers could be identified as rising or falling contour tones. The frequent perceptual confusion among the level tones, and the perception of contour tones, shows that a disorder in the production of pitch-based linguistic contrasts can have a substantial impact on the communication abilities of individuals with cerebral palsy.  相似文献   

2.

Background

Prepulse inhibition (PPI) depicts the effects of a weak sound preceding strong acoustic stimulus on acoustic startle response (ASR). Previous studies suggest that PPI is influenced by physical parameters of prepulse sound such as intensity and preceding time. The present study characterizes the impact of prepulse tone frequency on PPI.

Methods

Seven female C57BL mice were used in the present study. ASR was induced by a 100 dB SPL white noise burst. After assessing the effect of background sounds (white noise and pure tones) on ASR, PPI was tested by using prepulse pure tones with the background tone of either 10 or 18 kHz. The inhibitory effect was assessed by measuring and analyzing the changes in the first peak-to-peak magnitude, root mean square value, duration and latency of the ASR as the function of frequency difference between prepulse and background tones.

Results

Our data showed that ASR magnitude with pure tone background varied with tone frequency and was smaller than that with white noise background. Prepulse tone systematically reduced ASR as the function of the difference in frequency between prepulse and background tone. The 0.5 kHz difference appeared to be a prerequisite for inducing substantial ASR inhibition. The frequency dependence of PPI was similar under either a 10 or 18 kHz background tone.

Conclusion

PPI is sensitive to frequency information of the prepulse sound. However, the critical factor is not tone frequency itself, but the frequency difference between the prepulse and background tones.  相似文献   

3.
Tinnitus is an auditory disorder, which affects millions of Americans, including active duty service members and veterans. It is manifested by a phantom sound that is commonly restricted to a specific frequency range. Because tinnitus is associated with hearing deficits, understanding how tinnitus affects hearing perception is important for guiding therapies to improve the quality of life in this vast group of patients. In a rodent model of tinnitus, prolonged exposure to a tone leads to a selective decrease in gap detection in specific frequency bands. However, whether and how hearing acuity is affected for sounds within and outside those frequency bands is not well understood. We induced tinnitus in mice by prolonged exposure to a loud mid-range tone, and behaviorally assayed whether mice exhibited a change in frequency discrimination acuity for tones embedded within the mid-frequency range and high-frequency range at 1, 4, and 8 weeks post-exposure. A subset of tone-exposed mice exhibited tinnitus-like symptoms, as demonstrated by selective deficits in gap detection, which were restricted to the high frequency range. These mice exhibited impaired frequency discrimination both for tones in the mid-frequency range and high-frequency range. The remaining tone exposed mice, which did not demonstrate behavioral evidence of tinnitus, showed temporary deficits in frequency discrimination for tones in the mid-frequency range, while control mice remained unimpaired. Our findings reveal that the high frequency-specific deficits in gap detection, indicative of tinnitus, are associated with impairments in frequency discrimination at the frequency of the presumed tinnitus.  相似文献   

4.
Voltage responses were recorded from outer hair cells (OHCS) in the basal coil of the guinea-pig cochlea in response to tones at frequencies above the characteristic frequency (CF) presented together with a 100 Hz tone at 80 dB or 85 dB sound pressure level (SPL). The amplitude and polarity of voltage responses to a 100 Hz, 85 dB SPL tone were altered when presented together with tones at frequencies above CF according to the frequency and level of the high-frequency tone, OHC phasic (ac) (greater than 500 microV) but not tonic (dc) voltage responses were elicited by the high-frequency tone. Thus the responses of OHCS to low-frequency tones can be altered when presented together with a high-frequency tone without an apparent dc change in membrane potential. Recordings were made from an OHC during cochlear desensitization through exposure to an intense tone. The maximum voltage response to high-level low-frequency tones remained unchanged, although the OHC response to high-frequency tones became less sensitive to low-level stimuli and more linear as a function of level. It is suggested that desensitization is associated with a change in the mechanical properties of the cochlea, possibly associated with the OHCS themselves, and not with inactivation of the transducer channels. The amplitude of the OHC ac voltage response was measured at neural threshold, and the consequences of these measurements on hair cell electromotility are considered.  相似文献   

5.
Taaseh N  Yaron A  Nelken I 《PloS one》2011,6(8):e23369
Stimulus-specific adaptation (SSA) is the specific decrease in the response to a frequent ('standard') stimulus, which does not generalize, or generalizes only partially, to another, rare stimulus ('deviant'). Stimulus-specific adaptation could result simply from the depression of the responses to the standard. Alternatively, there may be an increase in the responses to the deviant stimulus due to the violation of expectations set by the standard, indicating the presence of true deviance detection. We studied SSA in the auditory cortex of halothane-anesthetized rats, recording local field potentials and multi-unit activity. We tested the responses to pure tones of one frequency when embedded in sequences that differed from each other in the frequency and probability of the tones composing them. The responses to tones of the same frequency were larger when deviant than when standard, even with inter-stimulus time intervals of almost 2 seconds. Thus, SSA is present and strong in rat auditory cortex. SSA was present even when the frequency difference between deviants and standards was as small as 10%, substantially smaller than the typical width of cortical tuning curves, revealing hyper-resolution in frequency. Strong responses were evoked also by a rare tone presented by itself, and by rare tones presented as part of a sequence of many widely spaced frequencies. On the other hand, when presented within a sequence of narrowly spaced frequencies, the responses to a tone, even when rare, were smaller. A model of SSA that included only adaptation of the responses in narrow frequency channels predicted responses to the deviants that were substantially smaller than the observed ones. Thus, the response to a deviant is at least partially due to the change it represents relative to the regularity set by the standard tone, indicating the presence of true deviance detection in rat auditory cortex.  相似文献   

6.
The influence of stimulus duration on auditory evoked potentials (AEPs) was examined for tones varying randomly in duration, location, and frequency in an auditory selective attention task. Stimulus duration effects were isolated as duration difference waves by subtracting AEPs to short duration tones from AEPs to longer duration tones of identical location, frequency and rise time. This analysis revealed that AEP components generally increased in amplitude and decreased in latency with increments in signal duration, with evidence of longer temporal integration times for lower frequency tones. Different temporal integration functions were seen for different N1 subcomponents. The results suggest that different auditory cortical areas have different temporal integration times, and that these functions vary as a function of tone frequency.  相似文献   

7.
The human sequential grouping that organizes parts of tones into a group was examined by the mismatch negativity (MMN), a component of event-related potentials that reveals the sensory memory process. The sequential grouping is accomplished by the combinations of some factors, e.g., temporal and frequency proximity principles. In this study, auditory oddball stimuli in which each of the stimuli consisted of series of tone bursts, were applied to the subjects, and the MMN elicited by the deviation of the frequency of the last tone in the stimulus was investigated. The relationship between the expected phenomena of sequential grouping of tones and observed magnitudes of MMN was evaluated. It was shown that the magnitudes of MMN changed according to the configuration (number of tones, frequency) of tone sequence to be stored. This result suggested that the sequential grouping of presented tones was achieved on the preattentive auditory sensory memory process. It was also shown that the relative change of MMN magnitudes corresponded to the conditions of sequential grouping, which had been proposed by the auditory psychophysical studies. The investigation of MMN properties could reveal the nature of auditory sequential grouping.This study was approved by the Ethics Committee on Clinical Investigation, Graduate School of Engineering, Tohoku University and was carried out in accordance with the policy of the Declaration of Helsinki.  相似文献   

8.
Amplitude modulation can serve as a cue for segregating streams of sounds from different sources. Here we evaluate stream segregation in humans using ABA- sequences of sinusoidally amplitude modulated (SAM) tones. A and B represent SAM tones with the same carrier frequency (1000, 4000 Hz) and modulation depth (30, 100%). The modulation frequency of the A signals (fmodA) was 30, 100 or 300 Hz, respectively. The modulation frequency of the B signals was up to four octaves higher (Δfmod). Three different ABA- tone patterns varying in tone duration and stimulus onset asynchrony were presented to evaluate the effect of forward suppression. Subjects indicated their 1- or 2-stream percept on a touch screen at the end of each ABA- sequence (presentation time 5 or 15 s). Tone pattern, fmodA, Δfmod, carrier frequency, modulation depth and presentation time significantly affected the percentage of a 2-stream percept. The human psychophysical results are compared to responses of avian forebrain neurons evoked by different ABA- SAM tone conditions [1] that were broadly overlapping those of the present study. The neurons also showed significant effects of tone pattern and Δfmod that were comparable to effects observed in the present psychophysical study. Depending on the carrier frequency, modulation frequency, modulation depth and the width of the auditory filters, SAM tones may provide mainly temporal cues (sidebands fall within the range of the filter), spectral cues (sidebands fall outside the range of the filter) or possibly both. A computational model based on excitation pattern differences was used to predict the 50% threshold of 2-stream responses. In conditions for which the model predicts a considerably larger 50% threshold of 2-stream responses (i.e., larger Δfmod at threshold) than was observed, it is unlikely that spectral cues can provide an explanation of stream segregation by SAM.  相似文献   

9.
Evoked potentials were recorded from the posterior dorsal thalamus of green treefrogs (Hyla cinerea) in response to single tones and combinations of two and three tones. 1. The responses to two tones were largest when one of the component tones was 500 Hz and when the second component was between 2000 and 4000 Hz (Fig.3). 2. The response to 500 + 3000 Hz showed nonlinear facilitation; i.e., the amplitude of the response was greater than the sum of the responses to the component tones alone (Figs. 4, 5). This result provides evidence that cells functioning as 'AND' gates will be found in this center. 3. When a third tone around 1200 Hz was added to a stimulus of 500 + 3000 Hz a 65% decrease in the evoked response amplitude occurred (Fig. 6). 4. The largest evoked response amplitude to a two-tone stimulus (500 + 3000 Hz) occurred when the rise-time was less than 50 ms (Fig. 7). 5. The two-tone tuning was found to be temperature dependent. The optimal lower frequency tone shifted downward with decreasing temperatures (Fig. 8). 6. When the temperatures of the neurophysiological and the behavioral experiments are matched, the optimal stimuli for evoking a large response are closely correlated to the parameters of the acoustic stimuli preferred by gravid H. cinerea females in discrimination tests. This center therefore appears to be very important for the processing of complex species-specific sounds.  相似文献   

10.
Mosquitoes hear with their antennae, which in most species are sexually dimorphic. Johnston, who discovered the mosquito auditory organ at the base of the antenna 150 years ago, speculated that audition was involved with mating behaviour. Indeed, male mosquitoes are attracted to female flight tones. The male auditory organ has been proposed to act as an acoustic filter for female flight tones, but female auditory behavior is unknown. We show, for the first time, interactive auditory behavior between males and females that leads to sexual recognition. Individual males and females both respond to pure tones by altering wing-beat frequency. Behavioral auditory tuning curves, based on minimum threshold sound levels that elicit a change in wing-beat frequency to pure tones, are sharper than the mechanical tuning of the antennae, with males being more sensitive than females. We flew opposite-sex pairs of tethered Toxorhynchites brevipalpis and found that each mosquito alters its wing-beat frequency in response to the flight tone of the other, so that within seconds their flight-tone frequencies are closely matched, if not completely synchronized. The flight tones of same-sex pairs may converge in frequency but eventually diverge dramatically.  相似文献   

11.
In the present study, we examined the frequency dependence of auditory search performance. Detection thresholds were measured for an 800-Hz target tone in a sequence of distractor tones (informational masking) as a function of frequency separation between the target and the distractor tones. The results showed that the thresholds decreased monotonically with frequency separation increasing. To further quantify the frequency dependence of auditory search performance, we applied a roex function (Patterson and Moore, 1986) to estimate a filter bandwidth for the threshold data. The estimated bandwidth was wider than that of an auditory filter by a factor of five (Leek et al., 1991). This result, together with some earlier results (Mori, 2003), demonstrates the effectiveness of the informational masking we used.  相似文献   

12.
13.

Background

Vision provides the most salient information with regard to stimulus motion, but audition can also provide important cues that affect visual motion perception. Here, we show that sounds containing no motion or positional cues can induce illusory visual motion perception for static visual objects.

Methodology/Principal Findings

Two circles placed side by side were presented in alternation producing apparent motion perception and each onset was accompanied by a tone burst of a specific and unique frequency. After exposure to this visual apparent motion with tones for a few minutes, the tones became drivers for illusory motion perception. When the flash onset was synchronized to tones of alternating frequencies, a circle blinking at a fixed location was perceived as lateral motion in the same direction as the previously exposed apparent motion. Furthermore, the effect lasted at least for a few days. The effect was well observed at the retinal position that was previously exposed to apparent motion with tone bursts.

Conclusions/Significance

The present results indicate that strong association between sound sequence and visual motion is easily formed within a short period and that, after forming the association, sounds are able to trigger visual motion perception for a static visual object.  相似文献   

14.
To investigate how the high pitched notes in a musical score are played on the piccolo, nine flutists produced tones of a C major scale, from C6 to C8, using their own piccolo. The fundamental frequency of each tone was measured. The results showed that all tones were produced higher in frequency than the theoretical values and that this tendency was striking in the higher frequency range. This phenomenon is discussed in terms of temporal responses of auditory nerve fibers.  相似文献   

15.
The responses to sound of mammalian cochlear neurons exhibit many nonlinearities, some of which (such as two-tone rate suppression and intermodulation distortion) are highly frequency specific, being strongly tuned to the characteristic frequency (CF) of the neuron. With the goal of establishing the cochlear origin of these auditory-nerve nonlinearities, mechanical responses to clicks and to pairs of tones were studied in relatively healthy chinchilla cochleae at a basal site of the basilar membrane with CF of 8-10 kHz. Responses were also obtained in cochleae in which hair cell receptor potentials were reduced by systemic furosemide injection. Vibrations were recorded using either the M?ssbauer technique or laser Doppler-shift velocimetry. Responses to tone pairs contained intermodulation distortion products whose magnitudes as a function of stimulus frequency and intensity were comparable to those of distortion products in cochlear afferent responses. Responses to CF tones could be selectively suppressed by tones with frequency either higher or lower than CF; in most respects, mechanical two-tone suppression resembled rate suppression in cochlear afferents. Responses to clicks displayed a CF-specific compressive nonlinearity, similar to that present in responses to single tones, which could be profoundly and selectively reduced by furosemide. The present findings firmly support the hypothesis that all CF-specific nonlinearities present in the auditory nerve originate in analogous phenomena of basilar membrane vibration. However, because of their lability, it is almost certain that the mechanical nonlinearities themselves originate in outer hair cells.  相似文献   

16.
Summary The auditory pathway of the Guinea Fowl was labeled with [C14]2-deoxy-D-glucose after stimulation with pure tones, harmonic tones and species-specific calls. In addition to other auditory nuclei, which showed more or less uniform labeling with the present technique, the n. mesencephalicus lateralis dorsalis (MLD) of the midbrain, as well as field L and parts of the hyperstriatum ventrale in the telencephalon, showed a stripe-pattern of labeling after stimulation with a pure tone. The position and orientation of the tone-activated striped areas in field L, observed after stimulation with different tones, correspond to isofrequency contours obtained with microelectrode recordings. The labeling of the three congruent tonotopically organized layers of field L (L1, L2, and L3) was not uniform along the anterior-posterior axis of the field.Harmonic tones produced multiple reactive stripes each of which corresponded to the stripe characteristic of a particular harmonic presented as a pure tone. The species-specific Iambus-call labeled the tonotopic area of field L that corresponds to the frequency band with the highest energy of the call. The hyperstriatum ventrale generally showed a weaker pattern of labeling that, however, resembled the labeling in field L.  相似文献   

17.
Humans routinely segregate a complex acoustic scene into different auditory streams, through the extraction of bottom-up perceptual cues and the use of top-down selective attention. To determine the neural mechanisms underlying this process, neural responses obtained through magnetoencephalography (MEG) were correlated with behavioral performance in the context of an informational masking paradigm. In half the trials, subjects were asked to detect frequency deviants in a target stream, consisting of a rhythmic tone sequence, embedded in a separate masker stream composed of a random cloud of tones. In the other half of the trials, subjects were exposed to identical stimuli but asked to perform a different task—to detect tone-length changes in the random cloud of tones. In order to verify that the normalized neural response to the target sequence served as an indicator of streaming, we correlated neural responses with behavioral performance under a variety of stimulus parameters (target tone rate, target tone frequency, and the “protection zone”, that is, the spectral area with no tones around the target frequency) and attentional states (changing task objective while maintaining the same stimuli). In all conditions that facilitated target/masker streaming behaviorally, MEG normalized neural responses also changed in a manner consistent with the behavior. Thus, attending to the target stream caused a significant increase in power and phase coherence of the responses in recording channels correlated with an increase in the behavioral performance of the listeners. Normalized neural target responses also increased as the protection zone widened and as the frequency of the target tones increased. Finally, when the target sequence rate increased, the buildup of the normalized neural responses was significantly faster, mirroring the accelerated buildup of the streaming percepts. Our data thus support close links between the perceptual and neural consequences of the auditory stream segregation.  相似文献   

18.
An auditory neuron can preserve the temporal fine structure of a low-frequency tone by phase-locking its response to the stimulus. Apart from sound localization, however, much about the role of this temporal information for signal processing in the brain remains unknown. Through psychoacoustic studies we provide direct evidence that humans employ temporal fine structure to discriminate between frequencies. To this end we construct tones that are based on a single frequency but in which, through the concatenation of wavelets, the phase changes randomly every few cycles. We then test the frequency discrimination of these phase-changing tones, of control tones without phase changes, and of short tones that consist of a single wavelet. For carrier frequencies below a few kilohertz we find that phase changes systematically worsen frequency discrimination. No such effect appears for higher carrier frequencies at which temporal information is not available in the central auditory system.  相似文献   

19.
We studied the optimal airway caliber for minimizing the work rate of breathing in the lung (W) with different bronchomotor tones in six normal subjects. The inhalation of methacholine contracted airway smooth muscle, and the inhalation of salbutamol relaxed it. To calculate W at a given alveolar ventilation (VA), anatomical dead space (VDanat), pulmonary resistance (RL), and dynamic compliance were measured simultaneously, breath by breath, during various breathing maneuvers. VDanat increased and RL decreased with both increased breathing frequency and tidal volume, even at a given airway tone. This suggests that the airway caliber varied even at a given bronchomotor tone. The minimum W at a given VA increased in constricted airways, but there was no significant difference between control airways after saline inhalation and relaxed airways. It has been suggested that airway smooth muscle tones at both control and relaxed conditions bring W to a minimum and that the airway smooth muscle tone existing in the control state acts to keep the airway caliber optimal in order to minimize the W and stabilize the airway mechanics.  相似文献   

20.
Constant sound sequencing as operationalized by repeated stimulation with tones of the same frequency has multiple effects. On the one hand, it activates mechanisms of habituation and refractoriness, which are reflected in the decrease of response amplitude of evoked responses. On the other hand, the constant sequencing acts as spectral cueing, resulting in tones being detected faster and more accurately. With the present study, by means of magnetoencephalography, we investigated the impact of repeated tone stimulation on the N1m auditory evoked fields, while listeners were distracted from the test sounds. We stimulated subjects with trains of either four tones of the same frequency, or with trains of randomly assigned frequencies. The trains were presented either in a silent or in a noisy background. In silence, the patterns of source strength decline originating from repeated stimulation suggested both, refractoriness as well as habituation as underlying mechanisms. In noise, in contrast, there was no indication of source strength decline. Furthermore, we found facilitating effects of constant sequencing regarding the detection of the single tones as indexed by a shortening of N1m latency. We interpret our findings as a correlate of a bottom-up mechanism that is constantly monitoring the incoming auditory information, even when voluntary attention is directed to a different modality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号