首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cardiac troponin (Tn) complex, consisting of a Ca2+-binding subunit (TnC), an inhibitory subunit (TnI), and a tropomyosin-binding subunit (TnT), has been reconstituted from purified troponin subunits isolated from bovine heart muscle. The Ca2+-binding properties of cardiac Tn were determined by equilibrium dialysis using either EGTA or EDTA to regulate the free Ca2+ concentration. Cardiac Tn binds 3 mol Ca2+/mol and contains two Ca2+-binding sites with a binding constant of 3 X 10(8) M-1 and one binding site with a binding constant of 2 X 10(6) M-1. In the presence of 4 mM MgC12, the binding constant of the sites of higher affinity is reduced to 3 X 10(7) M-1, while Ca2+ binding to the site at the lower affinity is unaffected. The two high affinity Ca2+-binding sites of cardiac Tn are analogous to the two Ca2+-Mg2+ sites of skeletal Tn, while the single low affinity site is similar to the two Ca2+-specific sites of skeletal Tn (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4625-5633). The Ca2+-binding properties of the complex of TnC and TnI (1:1 molar ratio) were similar to those of Tn. Cardiac TnC also binds 3 mol of Ca2+/mol and contains two sites with a binding constant of 1 X 10(7) M-1 and a single site with a binding constant of 2 X 10(5) M-1. Assuming competition between Mg2+ and Ca2+ for the high affinity sites of TnC and Tn, the binding constants for Mg2+ were 0.7 and 3.0 X 10(3) M-1, respectively. The Ca2+ dependence of cardiac myofibrillar ATPase activity was similar to that of an actomyosin preparation regulated by the reconstituted troponin complex. Comparison by the Ca2+-binding properties of cardiac Tn and the cardiac myofibrillar ATPase activity as a function of [Ca2+] and at millimolar [Mg2+] suggests that activation of the ATPase occurs over the same range of [Ca2+] where the Ca2+-specific site of cardiac Tn binds Ca2+.  相似文献   

2.
Changes in [Mg2+] in a millimolar range have a significant inverse effect on the Ca2+- (or Sr2+)activated tension generation of skeletal muscle fibers. Single frog (Rana pipiens) semitendinosus muscle fibers were "skinned" (sarcolemma removed) and contracted isometrically in bathing solutions of varying [Ca2+] or [Sr2+] and [Mg2+] but a constant pH, [MgATP2-], [K+], [CP2-], [CPK], and ionic strength. Ca2+- (or Sr2+- )activated steady-state tensions were recorded for three [Mg2+]'s: 5 X 10(-5)M, 1 X 10(-3) M, and 2 X 10(-3) M; and these tensions were expressed as the percentages of maximum tension generation of the fibers for the same [Mg2+]. Maximum tension was not affected by [Mg2+] within Ca2+-activating or Sr2+-activating sets of solutions; however, the submaximum Ca2+-(or Sr2+)activated tension is strongly affected in an inverse fashion by increasing [Mg2+]. Mg2+ behaves as a competitive inhibitor of Ca2+ and also affects the degree of cooperativity in the system. At [Mg2+] = 5 X 10(-5)M the shape of tension versus [Ca2+] (or [Sr2+]) curve showed evidence of cooperativity of Ca2+ (or Sr2+) binding or activation of the contractile system. As [Mg2+] increased, the apparent affinity for Ca2+ or Sr2+ and cooperativity of the contractile system declined. The effect on cooperativity suggests that as [Mg2+] decreases a threshold for Ca2+ activation appears.  相似文献   

3.
Submaximum and maximum forces of the cardiac muscle contractile apparatus, activated by Ca2+ or Sr2+, were determined as a function of Mg2+ concentration. Apical left ventricular tissue from Sprague-Dawley rats was broken by homogenization into small bundles of fibers with disrupted sarcolemmas (skinned). Tension generation was activated by and graded according to the concentration of Ca2+ or Sr2+ in solutions bathing the skinned fibers and measured with a photodiode force transducer. Steady-state tensions for various levels of activation at each of four concentrations of Mg2+ (5 x 10(-5), 1 x 10(-3), 5 x 10(-3), and 10 x 10(-3) M) in the bathing solutions were analyzed. Other bathing solution constituents and parameters mimicked significant normal intracellular conditions while providing adequate buffering of [H+], [Ca2+], and [MgATP2-] (magnesium adenosine triphosphate). To assess changes in sensitivity of the mechanical system to activation by Ca2+ (or Sr2+), each submaximum tension was expressed as a percentage of the given fiber bundle's maximum force generated at saturating [Ca2+] (or [Sr2+]) at the same [Mg2+]. When plotted as saturation curves these data demonstrate that increasing [Mg2+] depresses Ca2+ sensitivity of the force-generating mechanism. The Ca2+ and Sr2+ sensitivity of the cardiac force-generating apparatus is similar at every [Mg2+], indicating that the magnitude of Mg2+ effect is similar for both types of activation. However, absolute maximum tensions at saturating activating cation concentration increased as [Mg2+] increased; the effect of Mg2+ on maximum force was proportionately the same for Ca2+ and Sr2+ activation. But because saturating [Ca2+] always resulted in a lower maximum force than saturating [Sr2+], this site of Ca2+-Mg2+ interaction appears distinct from the one influencing Ca2+ sensitivity.  相似文献   

4.
The Ca2+-binding component of troponin (TnC) and its proteolytic fragments containing Ca2+-binding sites I-III (TH1) or sites III and IV (TR2C) have been labeled with the fluorescent probes dansylaziridine (DANZ) at methionine 25 or 5-(iodoacetamidoethyl)amino-naphthalene-1-sulfonic acid (AEDANS) at cysteine-98. These probes report binding of Ca2+ to the low and high affinity sites, respectively. Fluorescence changes as a function of [Ca2+] were measured for the free peptides, their complexes with troponin I + troponin T, and these complexes bound to actin-tropomyosin in the presence of Mg2+ and ATP with and without myosin. An apparent Hill coefficient of 1.0-1.1 has been obtained for the Ca2+-induced fluorescence changes in TnC, its fragments, and their ternary complexes regardless of the label used. When a ternary complex containing appropriately labeled TnC or its fragment is bound to the actin-tropomyosin complex, the Hill coefficient for the titration of the low affinity sites increases to 1.5-1.6 and further increases to greater than 2 in the presence of myosin. To interpret the apparent Hill coefficients, we used a model containing two binding sites and a single reporter of the conformational change. Hill coefficients between 1.0 and 1.2 can be obtained for the fluorescence change without true cooperativity in metal binding, depending on the mechanism of the fluorescence change; i.e. the contribution of the singly or doubly occupied species to the fluorescence change. A Hill coefficient between 1.2 and 2, however, always indicates cooperativity in binding independently of the mechanism. Thus, our finding that fluorescence titrations of Ca2+ binding to TnCDANZ bound to actin-tropomyosin exhibit a Hill coefficient of 1.5 in the absence of myosin and 2.4 in its presence indicates the existence of true positive cooperativity in metal binding to sites I and II. No cooperativity was observed for AEDANS-labeled complexes that reflect Ca2+-binding to the high affinity sites. Plots of the Ca2+ dependence of myosin ATPase activity activated by actin-tropomyosin in the presence of any of the troponin complexes used had apparent Hill coefficients of approximately 4. The higher value suggests cooperative interactions in the activation of ATPase beyond those involved in Ca2+-binding to the Ca2+-specific sites.  相似文献   

5.
The effect of Mg2+ on the Ca2+ binding to rabbit fast skeletal troponin C and the CA2+ dependence of myofibrillar ATPase activity was studied in the physiological state where troponin C was incorporated into myofibrils. The Ca2+ binding to troponin C in myofibrils was measured directly by 45Ca using the CDTA-treated myofibrils as previously reported (Morimoto, S. and Ohtsuki, I. (1989) J. Biochem. 105, 435-439). It was found that the Ca2+ binding to the low and high affinity sites of troponin C in myofibrils was affected by Mg2+ competitively and the Ca2(+)- and Mg2(+)-binding constants were 6.20 x 10(6) and 1.94 x 10(2) M-1, respectively, for the low affinity sites, and 1.58 x 10(8) and 1.33 x 10(3) M-1, respectively, for the high affinity sites. The Ca2+ dependence of myofibrillar ATPase was also affected by Mg2+, with the apparent Ca2(+)- and Mg2(+)-binding constants of 1.46 x 10(6) and 276 x 10(2) M-1, respectively, suggesting that the myofibrillar ATPase was modulated through a competitive action of Mg2+ on Ca2+ binding to the low affinity sites, though the Ca2+ binding to the low affinity sites was not simply related to the myofibrillar ATPase.  相似文献   

6.
The Ca2+ binding component (TnC) of troponin has been selectively labeled with either a spin label, N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl) iodoacetamide, or with a fluorescent probe, S-mercuric-N-dansyl cysteine, presumably at its single cysteine residue (Cys-98) in order to probe the interactions of TnC with divalent metals and with other subunits of troponin. The modified protein has the same Ca2+ binding properties as native TnC (Potter, J. D., and Gergely, J. (1975) J. Biol. Chem. 250, 4628), viz. two Ca2+ binding sites at which Mg2+ appears to compete (Ca2+-Mg2+ sites, KCa = 2 X 10(7) M-1) and two sites at which Mg2+ does not compete (Ca2+-specific sites, KCa = 2 X 10(5) M-1). Either Ca2+ or Mg2+ alters the ESR spectrum of spin-labeled TnC in a manner that indicates a decrease in the mobility of the label, Ca2+ having a slightly greater effect. In systems containing both Ca2+ and Mg2+ the mobility of the spin label is identical with that in systems containing Ca2+ alone. The binding constants for Ca2+ and Mg2+ deduced from ESR spectral changes are 10(7) and 10(3) M-1, respectively, and the apparent affinity for Ca2+ decreases by about an order of magnitude on adding 2 mM Mg2+. Thus, the ESR spectral change is associated with binding of Ca2+ to one or both of the Ca2+-Mg2+ sites. Addition of Ca2+ to the binary complexes of spin-labeled TnC with either troponin T (TnT) or troponin I (TnI) produces greater reduction in the mobility of the spin label than in the case of spin-labeled TnC alone, and in the case of the complex with TnI the affinity for Ca2+ is increased by an order of magnitude. The fluorescence of dansyl (5-dimethylaminonaphthalene-1-sulfonyl)-labeled TnC is enhanced by Ca2+ binding to both high and low affinity sites with apparent binding constants of 2.6 X 10(7) M-1 and 2.9 X 10(5) M-1, respectively, calculated from the transition midpoints. The presence of 2 mM Mg2+, which produces no effect on dansyl fluorescence itself, in contrast to its effect on the spin label, shifts the high affinity constant to 2 X 10(6) M-1. Spectral changes produced by Ca2+ binding to the TnC-TnI complex furnish evidence that the affinity of TnC for Ca2+ is increased in the complex. The reactivity of Cys-98 to the labels and to 5,5'-dithiobis(2-nitrobenzoic acid) (Nbs2) is decreased by Ca2+ or Mg2+ both with native TnC and in 6 M urea. The reaction rate between Cys-98 and Nbs2 decreases to one-half the maximal value at a Ca2+ concentration that suggests binding to the Ca2+-Mg2+ sites. Formation of a binary complex between TnI and TnC reduces the rate of reaction, and there is a further reduction by Ca2+. The effect of Ca2+ takes place at concentrations that are 1 order of magnitude lower than in the case of TnC alone. These results suggest that the Ca2+ binding site adjacent to Cys-98 is one of the Ca2+-Mg2+ binding sites.  相似文献   

7.
Binding of Ca2+ to the troponin C (TnC) subunit of troponin is necessary for tension development in skeletal and cardiac muscles. Tension was measured in skinned fibers from rabbit skeletal muscle at various [Ca2+] before and after partial substitution of skeletal TnC with cardiac TnC. Following substitution, the tension-pCa relationship was altered in a manner consistent with the differences in the number of low-affinity Ca2+-binding sites on the two types of TnC and their affinities for Ca2+. The alterations in the tension-pCa relationship were for the most part reversed by reextraction of cardiac TnC and readdition of skeletal TnC into the fiber segments. These findings indicate that the type of TnC present plays an important role in determining the Ca2+ dependence of tension development in striated muscle.  相似文献   

8.
In order to obtain information with regard to behavior of the Ca2+ receptor, troponin C (TnC), in intact myofilament lattice of cardiac muscle, we investigated Ca2+-binding properties of canine ventricular muscle fibers skinned with Triton X-100. Analysis of equilibrium Ca2+-binding data of the skinned fibers in ATP-free solutions suggested that there were two distinct classes of binding sites which were saturated over the physiological range of negative logarithm of free calcium concentration (pCa): class I (KCa = 7.4 X 10(7) M-1, KMg = 0.9 X 10(3) M-1) and class II (KCa = 1.2 X 10(6) M-1, KMg = 1.1 X 10(2) M-1). The class I and II were considered equivalent, respectively, to the Ca2+-Mg2+ and Ca2+-specific sites of TnC. The assignments were supported by TnC content of the skinned fibers determined by electrophoresis and 45Ca autoradiograph of electroblotted fiber proteins. Dissociation of rigor complexes by ATP caused a downward shift of the binding curve between pCa 7 and 5, an effect which could be largely accounted for by lowering of KCa of the class II sites. When Ca2+ binding and isometric force were measured simultaneously, it was found that the threshold pCa for activation corresponds to the range of pCa where class II sites started to bind Ca2+ significantly. We concluded that the low affinity site of cardiac TnC plays a key role in Ca2+ regulation of contraction under physiological conditions, just as it does in the regulation of actomyosin ATPase. Study of kinetics of 45Ca washout from skinned fibers and myofibrils revealed that cardiac TnC in myofibrils contains Ca2+-binding sites whose off-rate constant for Ca2+ is significantly lower than the Ca2+ off-rate constant hitherto documented for the divalent ion-binding sites of either cardiac/slow muscle TnC or fast skeletal TnC.  相似文献   

9.
Chemically skinned anterior byssus retractor muscle (ABRM) preparations were prepared by treatment with the nonionic detergents saponin and Triton X-100. Both maximum peak tension and rate of contraction were found to be greater in saponin-treated ABRM than in ABRM treated with Triton X-100. Active tension was initiated at a concentration of free Ca2+ above 0.1 microM, and maximum tension development was found at a [Ca2+] = approximately 32 microM. During exposure of the muscle preparation to optimal Ca2+ concentration, a high and almost constant tension level was sustained. The force recovery was high after a quick release during this period indicating the presence of an "active" state rather than a "catch" state. Actually, a state equivalent to the catch state in the living ABRM could not be induced, if the Ca2+ concentration was above 0.1 microM. Variations in the ionic strength in the range of 0.07--0.28 M had no influence on active state and only slightly affected the maximum tension developed. The influence of Mg2+ on the Ca2+-activated tension was examined by studying the tension-pCa relation at two concentrations of free Mg2+ (0.43 and 4.0 mM). The tension-pCa relation was found to be S-shaped with tension increasing steeply over approximately 1 pCa unit, indicating the existence of cooperativity between Ca2+ sites. Increasing the free concentration of Mg2+ shifted the tension-pCa relation to lower pCa as in striated muscles, demonstrating a decreasing Ca2+ sensitivity with increasing Mg2+. At [Mg2+] = 4.0 mM the half-maximum tension was found at [Ca2+] = 0.43 microM, decreasing to 0.20 microM at [Mg2+] = 0.43 mM. At both Mg2+ concentrations studied, plots of log Prel/(1--Prel) vs. log [Ca2+] were nonlinear with a shape indicating a rather complicated model for cooperativity, probably involving four sites for Ca2+. These Ca2+--Mg2+ interactions are most probably taking place at the myosin head itself because troponin is absent in this myosin-regulated muscle.  相似文献   

10.
Glycerinated rabbit fast skeletal muscle fibers were chemically skinned with 1% Brij 35 and partially depleted of endogenous troponin C subunit (TnC) by exposure of the fibers to EDTA (Zot, H. G., and Potter, J. D. (1982) J. Biol. Chem. 257, 7678-7683). The TnC-depleted fibers exhibited a decrease in maximal tension that was mostly restored by readdition of TnC or by the addition of the fluorescent 5-dimethylaminonaphthalene-1-sulfonyl aziridine analogue, TnCDanz. TnCDanz is known to undergo an increase in fluorescence intensity when Ca2+ binds to the two low affinity Ca2+-specific regulatory sites of TnC. Steady-state fractional fluorescence and tension changes were measured simultaneously as a function of Ca2+. The Ca2+ sensitivity of the fluorescence curve was about 0.6 log unit greater than the tension curve. This difference in sensitivity could be explained if separate conformational states of TnC, brought about by Ca2+ binding to the Ca2+-specific sites, produce the fluorescence and tension changes. TnC-depleted fibers were also reconstituted with the fluorescent 2-[(4'-iodoacetamido)analino]naphthalene-6-sulfonic acid analogue, cardiac TnCIaans, which undergoes an increase in fluorescence intensity when Ca2+ binds to the single Ca2+- specific regulatory site. The steady-state fractional fluorescence and tension curves for fibers reconstituted with cardiac TnCIaans had nearly the same Ca2+ sensitivity. The steady-state fractional fluorescence of myofibrils reconstituted with TnCDanz was found to have a greater sensitivity to Ca2+ than the simultaneously measured ATPase. In all cases paired fractional fluorescence and activity curves tended to have parallel dependence on Ca2+. These procedures make it possible to study the Ca2+ binding properties of the Ca2+- specific sites in intact myofibrils and skinned fibers; the results presented suggest that the Ca2+ affinity of the Ca2+-specific sites of troponin are reduced in the thin filament compared to that of troponin in solution.  相似文献   

11.
The steady-state level of phosphorylated intermediate (EP) of (Mg2+ + Ca2+)-ATPase is influenced by magnesium and calcium concentration in the Ca2+-transporting system of sarcoplasmic reticulum vesicles. At micromolar [Ca2+], the level of EP is increased by Mg2+, depending on its concentration. The effect of Mg2+ is less pronounced at lower Ca2+ concentration. At low [Mg2+], the EP formation increases at millimolar concentrations of Ca2+, suggesting, in accordance with earlier results, that the substrate may also be CaATP instead of MgATP. LaCl3 (1 mM) enhanced the EP formation at low Mg2+ concentration. Surprisingly, 10 microM LaCl3 caused a marked decrease in EP formation at high [Mg2+] and had little or no effect on the level of EP at low Mg2+ concentration. The inducing effect of 1 mM LaCl3 on the EP formation at low [Mg2+] and the inhibitory effect of 10 microM LaCl3 at high Mg2+ concentration draw attention to the involvement of divalent cation-binding sites with different affinity in phosphorylation and to the particular role of Mg2+ in the EP formation and EP decomposition.  相似文献   

12.
The Ca2+-sensitive photoprotein aequorin and the Ca2+-dependent fluorescent indicators quin 2 and TnCDANZ have been used to investigate contractile processes in single crustacean muscle fibres. The investigations with quin 2 indicate that the free Ca2+ rises to a maximum value before peak force as with aequorin light (approximately 200 msec delay at 12 degrees C) and subsequently decays more slowly, unlike the majority of the aequorin signal, although an aequorin 'tail' signal remains. The resting quin 2 fluorescence from the cell suggests an upper limit of 348 nM for the resting calcium concentration. Experiments with TnCDANZ indicate that this fluorescence response rises rapidly but then the rate of rise slows to reach a maximum value at a time when peak force is achieved and then the fluorescence signal decays more slowly than force. The latter result implies that Ca2+ is attached to the Ca2+-specific sites of TnC when externally recorded force is small.  相似文献   

13.
The rate constant of the conformational change of skeletal troponin C (TnC) induced by the Ca2+ binding reaction with the high-affinity Ca2+-binding sites was determined in the presence of Mg2+ by the fluorescence stopped-flow method in 0.1 M KCl, 50 mM Na-cacodylate-HCl pH 7.0 at 20 degrees C. The [MgCl2] dependence of the rate constants of the observed biphasic conformational change leveled off at the high [MgCl2] region: the rate constants were 60 +/- 9 s-1 and 8 +/- 2 s-1, respectively. These values are larger than the rate constants of the biphasic fluorescence intensity change of TnC induced by Mg2+ removal reaction at the high-affinity Ca2+-binding sites (37 +/- 7 s-1 and 3.0 +/- 0.6 s-1) under the same experimental conditions. These results suggest that the Ca2+-Mg2+ exchange reaction at the high-affinity Ca2+-binding sites is faster than the resultant conformational change accompanying the fluorescence intensity change. Based on these results, we also reexamine the molecular kinetic mechanism of the conformational change of the protein induced by the Mg2+ binding or removal reaction with the high affinity Ca2+-binding sites of skeletal TnC.  相似文献   

14.
The interactions of Tb3+ and sarcoplasmic reticulum (SR) were investigated by inhibition of Ca2+-activated ATPase activity and enhancement of Tb3+ fluorescence. Ca2+ protected against Tb3+ inhibition of SR ATPase activity. The apparent association constant for Ca2+, determined from the protection, was about 6 x 10(6) M-1, suggesting that Tb3+ inhibits the ATPase activity by binding to the high affinity Ca2+ binding sites. Mg2+ did not protect in the 2-20 mM range. The association constant for Tb3+ binding to this Ca2+ site was estimated to be about 1 x 10(9) M-1. No cooperativity was observed for Tb3+ binding. No enhancement of Tb3+ fluorescence was detected. A second group of binding sites, with weaker affinity for Tb3+, was observed by monitoring the enhancement of Tb3+ fluorescence (lambda ex 285 nm, lambda em 545 nm). The fluorescence intensity increased 950-fold due to binding. Ca2+ did not complete for binding at these sites, but Mg2+ did. The association constant for Mg2+ binding was 94 M-1, suggesting that this may be the site that catalyzes phosphorylation of the ATPase by inorganic phosphate. For vesicles, Tb3+ binding to these Mg2+ sites was best described as binding to two classes of binding sites with negative cooperativity. If the SR ATPase was solubilized in the nonionic detergent C12E9 (dodecyl nonaoxyethylene ether alcohol), in the absence of Ca2+, only one class of Tb3+ binding sites was observed. The total number of sites appeared to remain constant. If Ca2+ was included in the solubilization step, Tb3+ binding to these Mg2+ binding sites displayed positive cooperativity (Hill coefficient, 2.1). In all cases, the apparent association constant for Tb3+, in the presence of 5 mM MgCl2, was in the range of 1-5 x 10(4) M-1.  相似文献   

15.
Purified troponin (Tn), the complex of the Ca-2+ binding subunit (TnC), the inhibitory subunit (TnI), and the tropomyosin binding subunit (TnT) binds 4 mol of Ca-2+ per mol. Two sites bind Ca-2+ with a binding constant of 5 times 10-8 M- minus 1, and two with a binding constant of 5 times 10-6 M- minus 1. In the presence of 2 mM MgCl2 the binding to four sites can be characterized with a single affinity constant of 5 times 10-6 M- minus 1. Purified TnC also binds 4 mol of Ca-2+ per mol; two sites have a binding constant of 2 times 10-7 M- minus 1 and two have one of 2 times 10-5 M- minus 1. In the presence of 2 mM MgCl2 the binding constant of the sites of higher affinity is reduced to 2 times 10-6 M- minus 1, while Ca-2+ binding to the sites of lower affinity is unaffected. Assuming competition between Mg-2+ and Ca-2+ for the high affinity sites on TnC and Tn, the changes in Ca-2+ binding can be accounted for with KMg values of 5 times 10-3 M- minus 1 and 5 times 10-4 M- minus 1, respectively. Tn and TnC bind 4 mol of Mg-2+ per mol in the absence of Cs-2+. The fact that at [Ca-2+] similar to 10- minus 5 M four Ca-2+ and only two Mg-2+ are bound per mol of TnC in the presence of 2 mM Mg-2+ further supports the view that there is direct competition between Mg-2+ and Ca-2+ for the high affinity Ca-2+ binding sites on TnC and Tn. These results then suggest that Tn and TnC contain six divalent cation binding sites: two high affinity Ca-2+ binding sites that also bind Mg-2+ competitively (Ca-2+-Mg-2+ sites); two sites with lower affinity for Ca-2+ that do not bind Mg-2+ (Ca-2+-specific sites); and two sites that bind Mg-2+ but not Ca-2+ (Mg-2+-specific sites). The complex of TnC and TnI (1:1 molar ratio) has the same binding properties as Tn, suggesting a conformational change in TnC upon interaction with TnI. Studies on myofibrillar ATPase activity as a function of free Ca-2+ concentration at two different free Mg-2+ concentrations suggest that full activation by Ca-2+ occurs only upon binding of Ca-2+ to the two Ca-2+-specific binding sites in Tn but does not require binding of Ca-2+ to the Ca-2+-Mg-2+ sites.  相似文献   

16.
Chemically skinned fibers from guinea pig taenia caecum were prepared by saponin treatment to study the smooth muscle contractile system in a state as close to the living state as posible. The skinned fibers showed tension development with an increase of Ca2+ in the solution, the threshold tension occurring as 5 X 10(-7) M Ca2+. The maximal tension induced with 10(-4) M Ca2+ was as large and rapid as the potassium-induced contracture in the intact fibers. The slope of the pCa tension curve was less steep than that of skeletal muscle fibers and shifted in the direction of lower pCa with an increase of MgATP. The presence of greater than 1 mM Mg2+ was required for Ca2+-induced contraction in the skinned fibers as well as for the activation of ATPase and superprecipitation in smooth muscle myosin B. Mg2+ above 2 mM caused a slow tension development by itself in the absence of Ca2+. Such a Mg2+-induced tension showed a linear relation to concentrations up to 8 mM in the presence of MgATP. Increase of MgATP concentration revealed a monophasic response without inhibition of Ca2+-induced tension development, unlike the biphasic response in striated muscle. When MgATP was removed from the relaxing solution, the tension developed slowly and slightly, even though the Mg2+ concentrations was fixed at 2 mM. These results suggest a substantial difference in the mode of actin-myosin interaction between smooth and skeletal muscle.  相似文献   

17.
The determinants of relaxation in cardiac muscle are poorly understood, yet compromised relaxation accompanies various pathologies and impaired pump function. In this study, we develop a model of active contraction to elucidate the relative importance of the [Ca2+]i transient magnitude, the unbinding of Ca2+ from troponin C (TnC), and the length-dependence of tension and Ca2+ sensitivity on relaxation. Using the framework proposed by one of our researchers, we extensively reviewed experimental literature, to quantitatively characterize the binding of Ca2+ to TnC, the kinetics of tropomyosin, the availability of binding sites, and the kinetics of crossbridge binding after perturbations in sarcomere length. Model parameters were determined from multiple experimental results and modalities (skinned and intact preparations) and model results were validated against data from length step, caged Ca2+, isometric twitches, and the half-time to relaxation with increasing sarcomere length experiments. A factorial analysis found that the [Ca2+]i transient and the unbinding of Ca2+ from TnC were the primary determinants of relaxation, with a fivefold greater effect than that of length-dependent maximum tension and twice the effect of tension-dependent binding of Ca2+ to TnC and length-dependent Ca2+ sensitivity. The affects of the [Ca2+]i transient and the unbinding rate of Ca2+ from TnC were tightly coupled with the effect of increasing either factor, depending on the reference [Ca2+]i transient and unbinding rate.  相似文献   

18.
The block of rabbit skeletal ryanodine receptors (RyR1) and dog heart RyR2 by cytosolic [Mg2+], and its reversal by agonists Ca2+, ATP and caffeine was studied in planar bilayers. Mg2+ effects were tested at submaximal activating [Ca2+] (5 microM). Approximately one third of the RyR1s had low open probability ("LA channels") in the absence of Mg2+. All other RyR1s displayed higher activity ("HA channels"). Cytosolic Mg2+ (1 mM) blocked individual RyR1 channels to varying degrees (32 to 100%). LA channels had residual P(o) <0.005 in 1 mM Mg2+ and reactivated poorly with [Ca2+] (100 microM), caffeine (5 mM), or ATP (4 mM; all at constant 1 mM Mg2+). HA channels had variable activity in Mg2+ and variable degree of recovery from Mg2+ block with Ca2+, caffeine or ATP application. Nearly all cardiac RyR2s displayed high activity in 5 microM [Ca2+]. They also had variable sensitivity to Mg2+. However, the RyR2s consistently recovered from Mg2+ block with 100 microM [Ca2+] or caffeine application, but not when ATP was added. Thus, at physiological [Mg2+], RyR2s behaved as relatively homogeneous Ca2+/caffeine-gated HA channels. In contrast, RyR1s displayed functional heterogeneity that arises from differential modulatory actions of Ca2+ and ATP. These differences between RyR1 and RyR2 function may reflect their respective roles in muscle physiology and excitation-contraction coupling.  相似文献   

19.
The calcium binding properties of non-activated phosphorylase kinase at pH 6.8 have been studied by the gel filtration technique at calcium concentrations from 50 nM to 50 muM. Taking into account the subunit structure alpha4beta4gamma4 the enzyme binds 12 mol Ca2+ per mol with an association constant of 6.0 X 10(7) M-1, 4 mol with an association constant of 1.7 X 10(6) M-1 and 36 mol with a binding constant of 3.9 X 10(4) M-1 at low ionic strength. In buffer of high ionic strength, i.e. 180 mM NH4Cl or 60 mM (NH4)2SO4, only a single set of eight binding sites with a binding constant of 5.5 X 10(7) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. From these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1 is left. In a buffer containing 155 mM NH4Cl and 10 mM MgCl2, the calcium affinity of these sites is reduced to a KCa of 3.0 X 10(6) M-1, indicating competition between Ca2+ and Mg2+. from these measurements, the binding constant of Mg2+ for these sites is calculated to be 1.7 X 10(3) M-1. Additionally, 10 mM Mg2+ induces a set of four new Ca2+ binding sites which show positive cooperativity. Their half-saturation constant under the conditions described is 3.5 X 10(5) M-1, and they, too, exhibit competition between Ca2+ and Mg2+. Since this set of sites is induced by Mg2+ a third group of binding sites for the latter metal must be postulated.  相似文献   

20.
In maximally activated skinned fibers, the rate of tension redevelopment (ktr) following a rapid release and restretch is determined by the maximal rate of cross-bridge cycling. During submaximal Ca2+ activations, however, ktr regulation varies with thin filament dynamics. Thus, decreasing the rate of Ca2+ dissociation from TnC produces a higher ktr value at a given tension level (P), especially in the [Ca2+] range that yields less than 50% of maximal tension (Po). In this study, native rabbit TnC was replaced with chicken recombinant TnC, either wild-type (rTnC) or mutant (NHdel), with decreased Ca2+ affinity and an increased Ca2+ dissociation rate (koff). Despite marked differences in Ca2+ sensitivity (>0.5 DeltapCa50), fibers reconstituted with either of the recombinant proteins exhibited similar ktr versus tension profiles, with ktr low (1-2 s-1) and constant up to approximately 50% Po, then rising sharply to a maximum (16 +/- 0.8 s-1) in fully activated fibers. This behavior is predicted by a four-state model based on coupling between cross-bridge cycling and thin filament regulation, where Ca2+ directly affects only individual thin filament regulatory units. These data and model simulations confirm that the range of ktr values obtained with varying Ca2+ can be regulated by a rate-limiting thin filament process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号