首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pinus halepensis Mill., a widespread, low elevation conifer common in Mediterranean Basin, shows a dual reproductive strategy: post-fire obligate seeder (from serotinous cones) and an early coloniser (from non-serotinous cones). Release of seeds encased in serotinous cones is induced either by fire (pyriscence, serotiny or bradychory) or by drying (xeriscence). Morphological differences in serotinous and non-serotinous cones in natural populations of P. halepensis in Southeastern Italy were analyzed. Relationships between tree size (diameter class) and serotiny were checked by counting and sampling serotinous and non-serotinous cones. The macro and microscopic characteristics that could affect cones’ opening were measured in sampled cones. Protection against high temperatures offered by wood scales was also evaluated by applying different temperatures and time exposures, and following the inner thermal raise. Results showed that non-serotinous cones had bigger resin ducts and more separate scales. Also it was highlighted that ovuliferous scales of serotinous cones were bigger and thicker. These scales had more lamellated (multilayered) sclereid cells, and were significantly thinner with a shorter lumen diameter. Continuous temperature-monitoring heat tests inside cones showed that temperatures close to the cone axis were rather low, so seed germination was not influenced. Results confirm that serotinous cones are more compact, rigid and consistent than non-serotinous cones. These characteristics explain the lower insulation, seed protection and the ease opening of non-serotinous cones as well. In conclusion, opening mechanism of pinecone scales under the effect of fire or dry conditions seem related to anatomic differences and it provides seeds with an efficient protection against heat.  相似文献   

2.
Ne'eman  Gidi  Goubitz  Shirrinka  Nathan  Ran 《Plant Ecology》2004,171(1-2):69-79

Fire is known to be a major factor in shaping plants and vegetation worldwide. Many plant traits have been described as adaptations for surviving fire, or regenerating after it. However, many of the traits are also advantageous for overcoming other disturbances. The fact that fire in the Mediterranean Basin has been almost exclusively of anthropogenic origin, and thus is of short duration in an evolutionary time scale, cast doubt on the possibility that fire can act as a selective force in the Mediterranean Basin. Our aim here is to review the ecological advantages of Pinus halepensis traits and their possibility to be selected by fire. The non-self pruning of cones and branches, and the high resin content increase the probability of canopy fires and consequent death of P. halepensis trees. Post-fire regeneration of P. halepensis depends totally upon its canopy-stored seed bank. The seedlings grow quickly and they first reproduce at an early age. Young reproductive trees function first as females with a high percentage of serotinous cones. Thus, young P. halepensistrees allocate many resources to seed production, reducing their `immaturity risk' in a case of an early successive fire. The proportion of serotinous cones is higher in post-fire naturally regenerating stands than in unburned stands, and seeds from serotinous cones germinate better under simulated post-fire conditions. The extremely high pH of the ash-bed under the burned canopies creates the post-fire regeneration niche of P. halepensis exactly under their parent trees. All these traits are advantageous for post-fire regeneration, but could they also be selected during the time scale of anthropogenic fires in the Mediterranean Basin? Pinus halepensis is a relatively short living tree with almost no recruitment under forest canopy. The longest estimated fire-return interval and generation length are about 125 years. The earliest solid evidence for the first hominid-controlled fire in the Mediterranean basin is 780,000 years ago, and thus the estimated number of post-fire generations is 6240. We suggest that such a number of generations is sufficient for the selection and radiation of fire adaptive traits in P. halepensis.

  相似文献   

3.
Exotic species storing seeds in the canopy (serotinous species) can experience a clear advantage in fire-prone communities that lack native taxa with such fire-resistant traits. In addition, selection in the new environment can potentially increase the frequency of fire-adapted characteristics such as serotiny. We studied the potential role of fire favoring the serotinous, non-native conifer Pinus radiata in NW Patagonia. We characterized the degree of serotiny (percentage of serotinous cones) and the size of the canopy seed bank in the unburned plantation and in stands of trees recruited after a fire 30 years ago as a proxy for invasion potential. Fire had a positive effect, increasing serotiny in post-fire P. radiata stands. Post-fire recruited cohorts showed higher serotiny levels and a larger canopy seed bank compared with plantations. Our study suggests that fire-linked traits like serotiny may be subjected to a rapid, fire-driven selection process in fire-adapted species such as P. radiata invading fire-prone ecosystems. Thus, increased serotiny can lead to higher postfire invasion densities, which in turn create a positive feedback loop in invaded areas under recurrent fires.  相似文献   

4.
Pinus halepensis, a Mediterranean pine tree, is a partially serotinous species: individual trees of this species carry both non-serotinous and serotinous cones. Serotinous cones open mainly after fire, whereas non-serotinous cones open in absence of fire. In this study we addressed the question, whether or not this cone response is linked with the germination response of seeds to fires. Two main factors associated with fire are heating of seeds and soil pH. A combination of high heat and high pH simulates a scenario with fire, whereas low heat and low pH simulates a scenario without fire. We assessed the separate and combined effects of heat and pH on the germination rate and the percentage of germination of seeds from non-serotinous cones and two age classes of serotinous cones of P. halepensis. Heat had no effect on the percentage of germination of seeds from any of the cone types, but did positively affect the germination rates of seeds from both age-classes of serotinous cones. High pH negatively affected the germination rate of seeds from all cone types as well as the percentage of germination of seeds from non-serotinous cones. The combinations of heat and pH had different effects on the three cone types: percentage of germination and rate of germination of seeds from non-serotinous cones was higher in the combination high heat-high pH than in the combination low heat-low pH. In the combination high heat-high pH, seeds from serotinous cones germinated better than seeds from non-serotinous cones. The different germination responses of seeds from non-serotinous and serotinous cones could not be attributed to differences in cone age. Our results indicate that the cone response is linked to the germination response of the seeds in P. halepensis, with seeds from serotinous cones being more tolerant to fire related factors. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The advantages of canopy seed retention (serotiny) for plants inhabiting fire‐prone ecosystems are well documented. However, very few species are completely serotinous and non‐fire induced opening of serotinous fruits is commonly observed (weak serotiny). Two non‐mutually exclusive causes are envisaged to contribute to this process: mechanical changes in serotinous fruits mediated by climatic conditions (e.g. drought) or the costs of maintenance for the plant of these long‐lasting structures. However, their relative contribution to the spontaneous opening of serotinous fruits remains elusive as well as the consequences for the build‐up of the canopy seed bank and inter‐individual differences in serotiny. In this study we monitored the dynamics of cone production and cone opening in the weakly serotinous Pinus halepensis for five years (2004–2008), including two severe drought episodes (2005, 2006). Drought decreased the production of conelets, increased the abortion of immature cones, reduced the seed quality in the cohorts of cones produced during these years, and increased the opening of serotinous cones. During the first drought episode, a higher proportion of serotinous cones opened in those pines bearing a larger crop of younger cones. This suggests that not only passive changes induced by drought but also competition among cones for resources (e.g. water) might be involved in this process. The opening of serotinous cones in pines bearing more cones made inter‐individual differences in the size of the canopy cone bank to narrow or even to reverse from 2004 to 2008. These results may help to understand the decrease in serotiny when pines grow and accumulate more cones and the large inter‐individual variability in the degree of serotiny observed in P. halepensis forests. In addition, the negative effects of drought episodes for the size of the canopy cone bank and the seeds contained can be an unexplored cause of post‐fire regeneration constraint.  相似文献   

6.
Serotiny, the retention of seeds in a canopy seed bank until high temperatures cause seeds to be released, is an important life history trait for many woody plants in fire‐prone habitats. Serotiny provides a competitive advantage after fire but increases vulnerability to predispersal seed predation, due to the seeds being retained in clusters in predictable locations for extended periods. This creates opposing selection pressures. Serotiny is favored in areas of high fire frequency, but is selected against by predispersal seed predators. However, predation also selects for cone traits associated with seed defense that could reduce predation on serotinous cones and thereby relax selection against serotiny. This helps explain the elevated defenses in highly serotinous species. However, whether such interactions drive variation in seed defenses within variably serotinous populations has been studied rarely. We investigated the effects of phenotypic selection exerted by red squirrel (Tamiasciurus hudsonicus) predation on Rocky Mountain lodgepole pine (Pinus contorta latifolia) seeds. Squirrels preferentially harvested cones with more and larger seeds, indicating a preference for a higher food reward. We found evidence for stronger selection on trees with serotinous cones, which presumably accounts for the elevated defenses of and lower predation on serotinous compared to non‐serotinous cones. Lower levels of predation on serotinous cones in turn lessen selection against serotiny by squirrels. This has important implications because the frequency of serotiny in lodgepole pine has profound consequences for post‐fire communities and ecosystems widespread in the Rocky Mountains.  相似文献   

7.
Question: Can the direct regeneration hypothesis (DRH) be used to predict post‐disturbance regeneration after fire, wind disturbance, and clearcutting in northern forests? Do life‐history traits such as regeneration strategy and shade tolerance influence post‐disturbance regeneration success of tree species? Location: Northern forests in North America. Methods: A meta‐analysis was conducted by collecting published data on pre‐ and post‐disturbance stand compositional characteristics in the northern forests. For each tree species, compositional difference (CD) was calculated as the difference between basal area proportions of the post‐ and pre‐disturbance stands, but for post‐disturbance stands <25 years of age, post‐disturbance proportions were calculated based on relative stem density. Results: Species response to disturbances was best explained by regeneration strategy, while disturbance type had no effect on CD. The proportion of broadleaf trees with either strong or weak vegetative reproduction ability increased after all disturbances. Serotinous species had CD values not significantly different from zero after fire, while CD for semi‐serotinous species was negative. The post‐disturbance proportions of non‐serotinous conifers decreased after all forms of disturbance. Conclusions: All disturbances promote broadleaf trees, regardless of regeneration strategy (suckering, sprouting, or seeding). The DRH is supported for conifers with serotinous cones after fire. Fire causes local extinction of non‐serotinous conifers, while wind and clearcutting only decrease the proportion of non‐serotinous conifers because of partial survival of seed sources and advanced regeneration. This study suggests that increasing stand‐replacing disturbances associated with global climate change will promote broadleaf trees in northern forests.  相似文献   

8.
Ne'eman  G.  Fotheringham  C.J.  Keeley  J.E. 《Plant Ecology》1999,145(2):235-242
Obligate seeding species are highly specialized to fire disturbance and many conifers such as cypress, which are adapted to high intensity stand-replacing fires, have canopy seed banks stored in serotinous cones. Resilience of these trees to fire disturbance is a function of disturbance frequency and one focus of this study was to determine the effect of patch age on postfire recruitment. A second focus was to determine the extent to which fire induced a landscape level change in the location of the forest boundary. Prior to a fire in 1994, a large Cupressus sargentii forest was a mosaic landscape of different aged patches of nearly pure cypress bordered by chaparral. Patches less than 60 years of age were relatively dense with roughly one tree every 1–2 m2 but older patches had thinned to one tree every 3–15 m2. Older trees had substantially greater canopy cone crops but the stand level seed bank size was not significantly correlated with stand age. Fire-dependent obligate seeding species are sensitive to fire return interval because of potential changes in the size of seed banks – facing both a potential `immaturity risk' and a `senescence risk'. At our site, C. sargentii regeneration was substantial in stands as young as 20 years, suggesting that fire return interval would need to be shorter than this to pose any significant risk. Reduced seedling recruitment in stands nearly 100 years of age may indicate risk from senescence is greater, however, even the lowest density seedling recruitment was many times greater than the density of mature forests – thus this cypress would appear to be resilient to a wide range of fire return intervals. Changes in landscape patterning of forest and chaparral are unlikely except after fire. Factors that inhibit tree establishment within the shrubland, as well as factors that affect shrub establishment within the forest border likely affect the `permeability' of this ecotone. After the 1994 fire this boundary appeared to be stable in that cypress recruited best within the shadow of burned canopies and cypress were weak invaders of adjacent shrublands.  相似文献   

9.
Contrasting evidence in the degree of post-fire conifer invasion reported for different regions of the Southern Hemisphere (SH) raises questions about the role of fire as a presumed driver of invasion. We studied the influence of fire on invasion responses (assessing ‘serotiny’ and ‘time’ as key factors to determine invasion) based on a review of case studies performed in natural habitats of the SH. Our work showed that burned environments have no lag time with respect to invasion and are more susceptible to serotinous pine invasion than are unburned environments. Also, serotinous pines reached extremely high densities in burned habitats, exceeding records for the same species in unburned habitats, as well as for non-serotinous pines in any habitat condition. Therefore, burned environments are impacted by conifer invasion earlier and more intensively than unburned ones. Overall, our work indicates that fire is a leading driver of invasion, but only for serotinous pines. This highlights the importance of considering life history traits of introduced species to determine the probability and extent of invasion in relation to disturbance. We discuss the implications of introducing serotinous species in regions of the SH where serotiny is absent from native flora. Lastly, we provide suggestions for prioritizing management and further study.  相似文献   

10.
Abstract The ability to maintain a canopy stored seedbank (serotiny) is characteristic of many woody genera inhabiting fire-prone environments. The relationship between level of serotiny for 94 Hakea (Proteaceae) species in southwestern Australia and follicle mass, density, three wall thicknesses and seed mass was investigated. Two species were non-serotinous (fruits open at maturity), 12 were weakly serotinous (majority of fruits open at maturity), 9 were moderately serotinous (fruits open within five years of maturity) and 71 were strongly serotinous (fruits still closed at least five years after reaching maturity). A positive relationship existed between the level of serotiny and follicle morphology. Strongly serotinous species were more likely to have heavier, woodier and thicker-walled follicles than non- and weakly serotinous species. Moderately/strongly serotinous species invested more energy (six times higher follicle:seed mass ratio) than non weakly serotinous species, consistent with increased protection of the seeds from granivores, pathogens, desiccation and/or heat. Recent work has shown that thicker fruit walls (strongly serotinous species) provide better insulation to seeds from heat, although the need to survive fire is just as critical for thin-walled, weakly serotinous species. Greater protection from granivores may provide a better explanation for the adaptive significance of dense, thick-walled serotinous follicles, as the opportunities for predispersal granivore damage are low among weakly serotinous species.  相似文献   

11.

Abstract

  1. Trees which lack obvious fire-adaptive traits such as serotinous seed-bearing structures or vegetative resprouting are assumed to be at a dramatic disadvantage in recolonization via sexual recruitment after fire, because seed dispersal is invariably quite constrained. We propose an alternative strategy in masting tree species with woody cones or cone-like structures: that the large clusters of woody tissue in a mast year will sufficiently impede heat transfer that a small fraction of seeds can survive the flaming front passage; in a mast year, this small fraction would be a very large absolute number.
  2. In Kootenay National Park in British Columbia, we examined regeneration by Engelmann spruce (Picea engelmannii), a non-serotinous conifer, after two fires, both of which coincided with mast years. Coupling models of seed survivorship within cones and seed maturation schedule to a spatially realistic recruitment model, we show that (1) the spatial pattern of seedlings on a 630 m transect from the forest edge into the burn was best explained if there was in situ seed dissemination by burnt trees; (2) in areas several hundred meters from any living trees, recruitment density was well correlated with local prefire cone density; and (3) spruce was responding exactly like its serotinous codominant, lodgepole pine (Pinus contorta).
  3. We conclude that non-serotinous species can indeed behave like aerial seed bank species in mast years if the fire takes place late in the seed maturation period. Using the example of the circumpolar boreal forest, while the joint probability of a mast year and a late-season fire will make this type of event rare (we estimate P = 0.1), nonetheless, it would permit a species lacking obvious fire-adapted traits to occasionally establish a widespread and abundant cohort on a large part of the landscape.
  相似文献   

12.
Variation in seed traits is a well‐known phenomenon affecting plant ecology and evolution. Here we describe, for the first time, a bimodal colour pattern of individual seeds, proposing an adaptive explanation, using Pinus halepensis as a model. Pinus halepensis disperses its seeds either by wind on hot dry days, from regular cones, or after fires, mainly from serotinous cones. Post‐dispersal seeds are exposed to strong predation by passerine birds, making crypsis important for seed survival. Individual seeds from non‐serotinous cones have a bimodal colour pattern: one side is light brown and the other black, exposing only one colour when lying on the ground. Serotinous cones from most trees have seeds with similar bimodal colour patterns, whereas seeds from serotinous cones of some trees are light brown on both sides. The dark side provides the seed with better crypsis on dark soils, whereas the light‐brown side is better adapted to light‐coloured soils, and mainly to light‐grey ash‐covered soil, which is the natural post‐fire regeneration niche of P. halepensis. The relative reflection curves of the black and brown seed colours differ, and their calculated relative chromatic distance is 5: meaning that seed‐predating passerine birds see them differently, and probably prefer seeds that present a higher contrast against the soil background. We propose that such a bimodal colour pattern of individual seeds is probably an overlooked general phenomenon mainly linked to seed dispersal in post‐fire and other heterogeneous environments. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 271–278.  相似文献   

13.
Life histories of Mediterranean pines   总被引:1,自引:0,他引:1  
Tapias  Raul  Climent  José  Pardos  Jose A.  Gil  Luis 《Plant Ecology》2004,171(1-2):53-68
The life history of Spanish pines and their relation to fire as the main disturbance factor in their ecosystems was analysed. The primary ecological attributes studied were the canopy seed bank (onset of cone production, percentage and persistence of serotinous cones), seed and cone morphology, sprouting and bark thickness. Four ecological groups were separated using multivariate cluster analysis and their life-history characteristics are discussed. Serotiny and early flowering in Pinus halepensis and P. pinaster reflect their evader strategy in relation to fire as this character is advantageous to survive frequent crown fires and to attain successful post-fire recruitment. Late flowering and absence of serotinous cones in P. nigra, P. sylvestris and P. uncinata indicate that their natural forest did not evolve under frequent crown fires. P. canariensis and P. pinea appeared in two single groups because of their sprouting capability and their seed size respectively. Intraspecific variation in P. pinaster was also analysed using the same criteria and high variability was found in its life history traits. A group of P. pinaster populations showed high levels of serotiny and thin bark as a possible adaptation to frequent stand-replacing crown fires. In contrast, a group of non- or weakly-serotinous populations seems to have evolved under a low-intensity fire regime where the best fitness corresponds to thick-barked individuals capable of surviving ground fires. Intermediate strategies were also evident in this species and were discussed in relation to the effect of different fire regimes caused by the understorey vegetation.  相似文献   

14.

Premise

Understanding mechanisms fostering long-term persistence of marginal populations should provide key insights about species resilience facing climate change. Cone serotiny is a key adaptive trait in Pinus banksiana (jack pine), which shows phenotypic variation according to the fire regime. Compared to range-core populations within the fire-prone boreal forest, low and variable serotiny in rear-edge populations suggest local adaptation to uncommon and unpredictable wildfire regime. We assessed environmental/physiological factors that might modulate intraspecific variation in cone serotiny.

Methods

We experimentally subjected closed cones to incrementing temperatures, then tested seed germination to determine whether and how various ecological factors (cone age, branch height, tree size, tree age) are related to cone dehiscence and seed viability in jack pines from rear-edge and range-core populations in eastern Canada.

Results

Cones from rear-edge populations dehisce at a lower opening temperature, which increases with cone age. Cones from range-core stands open at a more constant, yet higher temperature. Cones from rear-edge stands take between 13 and 27 years to reach the level of serotiny achieved at the range core. At the rear edge, seed viability is steady (51%), whereas it decreases from 70% to 30% in 20 years at the range core.

Conclusions

We inferred the mechanisms of a bet-hedging strategy in rear-edge populations, which ensures steady recruitment during fire-free intervals and successful postfire regeneration. This capacity to cope with infrequent and unpredictable fire regime should increase the resilience of jack pine populations as global changes alter fire dynamics of the boreal forest.  相似文献   

15.
Pinus halepensis forests of N.W. Algeria are subjected to frequent fires. During the fire the aboveground parts of plants are completely burned but only a few species are killed. Most perennial herb and shrub species survive owing to their underground organs and regenerate vegetatively in the next moist period. The semi-shrubs regenerate both vegetatively and from seeds. The most intensive growth of the shrub layer occurs during the first 2 years and in the 5th year, it reaches a height of 1–1.5 m. Pinus halepensis is completely killed by the fire and it regenerates from seeds only. The regeneration is retarded during the first 2–3 years, apparently by competition of the rapidly developing shrubs and semi-shrubs with P. halepensis. In the following years, there is a more rapid increase in both density and height, although by the 5th year after fire, the height does not exceed 0.5 m. The young trees overtop the shrub layer between 10 and 15 years after fire. The increase in density and cover supress the lower layers, in particular the herb layer. The reduction in density of trees in the following decades enables the herb layer to reconstitute its composition and cover.This process of regeneration resembles forest growth cycles rather than a secondary succession. The shrub and herb layers maintain their identity as they are mostly formed of the same individuals as before the fire; they merely regenerated their aboveground organs. Only the tree layer regenerates anew after the fire.  相似文献   

16.
The degree of serotiny (i.e. the proportion of follicles remaining closed in each year's crop of cones since the last fire) was measured in Bank-sia attenuata, B. menziesii and B. prionotes at five sites along a climatic gradient extending 500 km north of Perth, Western Australia. The decrease in annual rainfall and increase in average temperature along the gradient paralleled a decrease in plant height and an increase in the degree of serotiny of all species. Extreme serotiny was recorded in the scrub-heath at the xeric end of the gradient whereas two species were essentially non-serotinous in the low woodland at the most mesic site. It is concluded that degree of serotiny is related to the fire characteristics of the site which depend on plant height. In xeric scrub-heath, the entire canopies of the Banksia spp. are consumed by fire which promotes massive release of seed. This facilitates recruitment in an otherwise unpredictable and unreliable seedbed. In mesic woodland, where cones rarely come into contact With flames, seeds are released spontaneously and site conditions are more conducive to recruitment in the inter-fire period.  相似文献   

17.
Abstract Successful control of invasive exotic plants depends to a large degree on the regeneration potential of the target exotic species and other species that might also be influenced by the removal effort. In coastal grasslands of California, exotic French broom (Genista monspessulana) forms both dense stands aboveground and abundant seed banks belowground. Land managers attempt to reduce broom cover and the seed bank through prescribed burning, but before this study, no investigators had examined the effect of repeated burning on French broom and associated grassland species. We found that the soil seed bank of stands that were burned had fewer broom seeds than unburned areas but that repeated burning did not reduce the seed bank beyond what was observed after one fire. Fire also did not have any consistent effect on the seed banks of other grassland species. We also examined the relationship between broom stand age and seed bank size but did not find a strong relationship between them. Our data suggested that the broom seed bank stays constant or declines slightly with stand age. We did, however, find that nonbroom seed numbers decreased as broom stands aged. Our results suggest that fire does reduce the size of the broom seed bank and that control of broom need not be limited to only the youngest stands.  相似文献   

18.
Enright  N.J.  Goldblum  D. 《Plant Ecology》1999,144(1):71-82
Population size-structures, seed production, canopy seed storage (serotiny), and recruitment were investigated in relation to fire, drought and disease for a pair of co-occurring resprouting and non-sprouting shrub species from the genus Hakea (Proteaceae) in fire-prone Eucalyptus woodlands in western Victoria, Australia. The non-sprouter species, Hakea decurrens, showed faster height growth, higher seed production and higher seed viability than the resprouter, Hakea rostrata. Population size structures in stands up to 24 years since last fire showed no evidence of inter-fire recruitment for either species. Following a fire in 1990 in a mixed species stand 15–20 years old, the estimated number of viable seeds released from canopy-stored seed banks was approximately equal for both species. However, the rate of seedling establishment in the first year was about 10 times higher, and seedling suvivorship over the first 5 years was seven times higher, for the non-sprouter. Seedlings of Hakea decurrens and resprouts of Hakea rostrata began to produce seeds within three years of the last fire, while the few surviving seedlings of Hakea rostrata showed no evidence of reproductive maturity after six years. Inter-fire recruitment was recorded for the non-sprouter, Hakea decurrens, in the oldest stand (burned in 1967) between 24 and 28 years since last fire. This was associated with an increased rate of seed release from serotinous fruits due to the onset of high rates of adult plant mortality. High adult mortality and increased seed release correlated with increasing stand age, the occurrence of severe drought, and the likely presence of Phytophthora cinnamomi, a fungal pathogen which damages the root system, reducing water and nutrient uptake. There were no new recruits for the resprouter Hakea rostrata in this stand, but old plants continued to resprout from basal lignotubers and no mortality was observed. While recruitment of strongly serotinous shrub species is commonly described as being restricted to the immediate post-fire period, the present study illustrates that other events (e.g., senescence, drought, disease) can lead to recruitment of serotinous non-sprouters and may be important in the maintenance of populations during unusually long periods without fire.  相似文献   

19.
Populations of the obligate-seeder, Banksia ericifolia, were even-aged. Seedling recruitment occurred only after fire. Mean genet size (height + canopy diameter; H+D) increased progressively with elapsed time since fire in stands last burnt 2–23 years before 1981. Populations of a co-occurring resprouter, B. oblongifolia, were mixed-aged. Genet size varied significantly between stands, but this variation was not explained by regressions of H+D on years since fire. In addition B. oblongifolia seedlings were recruited both after fire and in patches of heath unburnt for 16 years.Most flower and seed production in B. oblongifolia occurred in the stands last burnt less than 10 years previously. More than 30% of genets had not produced cones since the last fire, irrespective of how many years had elapsed. In contrast, few B. ericifolia genets had produced cones five years after fire, but by 16 years after fire nearly 100% had. Overall, about 51% of B. ericifolia inflorescences and about 28% of B. oblongifolia inflorescences set seed. The number of seeds in seed-bearing cones was not significantly different between species.Resprouting B. oblongifolia genets began flowering sooner after fire, but B. ericifolia subsequently overtook them in accumulating a bank of serotinous seeds. In the stand unburnt for 23 years the largest B. ericifolia genets had more than twice as many cones as the largest co-occurring B. oblongifolia. However, when accumulated cone production was compared for genets of equal H+D over all stands, there was no difference between species.We thank the New South Wales National Parks & Wildlife Service for permission to do this work in Ku-ring-gai Chase National Park. We are grateful to Don Adamson, Lynn Day, David Haig and James Sim for constructive comments on earlier drafts.  相似文献   

20.
Ne'eman  Gidi  Izhaki  Ido 《Plant Ecology》1999,144(1):115-125
Soil samples from three microhabitats (gaps, beneath shrubs and beneath trees) in five stands of various post-fire ages (6–55 years) were collected in an east Mediterranean Aleppo pine Pinus halepensis forest. Total germinable seed bank densities varied between 300 and 1300 seeds per m2. Herbaceous taxa were the major constituents of the germinable seed bank in gaps, regardless of stand age. Perennials were the major components beneath shrubs in all stands except the youngest stand where herbaceous species were the major components in all microhabitats. Important tree and shrub species (e.g., Pinus halepensis, Quercus calliprinos, Pistacia lentiscus, Phillyrea latifolia) of the mature pine forest were not an important component of the soil seed bank and therefore, little resemblance was observed between the above-ground plant species composition and soil seed bank composition. This is consistent with the fact that these species regenerate by resprouting rather than by germination from the seed bank. Both microhabitats and forest-stands, which were of different ages, contributed to the variation in taxa richness, germinable seed density and diversity among samples. The effect of small-scale spatial heterogeneity (among microhabitats) was much more pronounced. In contrast to other studies, species richness, species diversity, and density of seed banks did not decrease with post-fire age. Moreover, stand age was a poor predictor for these attributes of the soil seed bank in an Aleppo pine forest. The heterogeneity plays an important role in conservation and management of this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号