首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在自然界,能发光的生物有某些细菌、甲壳动物、软体动物、昆虫和鱼类,但能发光的植物却不多见。基因工程的发展使科学家了解到,生物冷光也是由DNA分子中的基因协调控制的基因工程学家已能把发光基因导入植物细胞中,培育出夜晚能发磷光或萤光的植物。  相似文献   

2.
正如26个英文字母组成千千万万单词一样,体内几百个基因通过不同组合产生无数种抗体,已经发现淋巴细胞是通过基因切粘技术来重组这些基因的,此项发现已获诺贝尔奖,但细胞究竟怎样完成这个过程却不清楚。现在科学家报道找到了与重组有关的两个基因。麻省剑桥Whitehead生物医学研究所的David等成功的克隆了一个基因,将它注入对DNA无影响的肌肉细胞可以激活基因重组。日本京都大学的 Honjo 也找到一个基因,它可编码一种蛋白,类似于病毒、细菌及酵母中的DNA内切酶,这些酶属重组酶类,可重组特定的DNA片段。虽然Whitehead研究所的科学  相似文献   

3.
生物发光是生物界的普遍现象。人们最常见的是萤火虫的发光。然而,在辽阔的自然界,发光生物何止萤火虫,例如,在微生物中,就有能发光的细菌。这种细菌寄生或共生于各种海洋动物如各种鱼类的体表、内脏或专门的发光器官中。一旦条件适宜就能发出蓝绿色的光  相似文献   

4.
有些运载体携带着保护发酵细菌不受噬菌体污染的基因,这些基因编码诸如溶血嗜血菌(Haemophilus haemolyticus)Hhall系统之类的细菌限制——修饰性的序列。它们产生限制性内切酶在限制性位点上消化噬菌体的DNA。  相似文献   

5.
类球红细菌(Rhodobacter sphaeroides)和嗜硫小红卵菌(Rhodovulum sulidophilum)为不同属的两种光合细菌,前者的捕光系统II由pucB、pucA基因编码产生的β亚基和α亚基组装形成,后者的捕光系统II由pucsB、pucsA基因编码产生的β亚基和α亚基组装形成.将这两组基因交叉组合,克隆到包含puc启动子的表达载体中,得到两个表达质粒即pRKpucsBpucA和pRKpucBpucsA,然后通过接合转移方法分别转入LHI、LHII和RC缺陷型菌株DD13中,两种接合转移菌株都可以形成捕光系统II并进入光合细菌膜系统.  相似文献   

6.
薛京伦  俞民澎 《遗传》1989,11(1):46-48
一个细胞的全部遗传信息都编码在长长的线状 DNA分子上,构成一个基因组(Genome)。在DNA分 子上排列着各种不同的基因,基因携带着产生所有蛋 白质的遗传信息。在人体基因组内,有些基因是一个个 单独分布的,在基因与基因之间隔着较长的非编码区 域,这些DNA称为间隔DNA (spacer DNA)。有些 基因则紧密排列在一起,形成基因簇(gene clusters), 或称为基因复合体(gene complexes).  相似文献   

7.
自然环境中,具备自然转化能力的细菌可以自发地从外界获取DNA,从而获得新的遗传性状。为能够自然地被转化,细菌需首先建立一个被称作感受态的生理状态并在此状态下表达DNA摄取和加工相关的基因。DNA摄取基因的表达产物可组装一个能将外源DNA摄入细胞质的蛋白复合物。在细胞质中,进入的DNA可同基因组DNA发生同源重组或建立成一个独立的质粒。一般DNA摄入细胞的过程可分为两个阶段,即从外部基质到细胞周质和跨细胞内膜的转运。近年来,包括作者在内的研究人员发现大肠杆菌中存在新的自然质粒转化模式。本文将首先综述近年来细菌自然转化的分子机制,随后简要介绍大肠杆菌中独特的自然质粒转化模式。  相似文献   

8.
主要从Red系统组成元件、作用机理、重组策略以及先进性和发展前景四个方面综述了利用Red 重组系统敲除或替换细菌染色体目的基因的方法。首先简要介绍了传统的细菌染色体重组技术,指出了其中的缺陷。然后提出了Red重组技术的定义:利用噬菌体Red系统介导来实现外源线性DNA片断与细菌染色体的靶基因进行同源重组的方法,外源线性DNA通常是PCR产物、寡核苷酸片断等,在它们的两翼各含有与染色体靶基因两翼同源的序列40~60bp。这种Red重组技术省去了体外DNA酶切和连接等步骤,使细菌染色体靶基因的敲除与替换操作相对简单,逐渐成为基因功能探索以及新菌株构建的有力手段。  相似文献   

9.
人干扰素有三大类:HuLeIFN、HuF IFN和HuI IFN。IFN基因在细菌中已实现克隆,并表现其生物活性。在研究细菌IFN的过程中有两个主要的发现:-- 一、发现人细胞中含有几个编码的LeIFN的基因,这个多基因的发现,先是C.Weissmann及其同事(苏黎世大学)发现的,尔后Goeddel D.和Stebbing N.及其同事(基因工程公司和Roche分子生物研究所)也得到类似结果。LeIFN基因最低限度有5个位点或10个位点,他们发现个体基因的核苷酸序列彼此约有15%的不同。然而不是所有的显性基因都能表达,基因工程公司研究工作者测定了其中8个核苷酸序列,发现一个含有终止信号,它阻止指令完全IFN蛋白的合成; 二、在LeIFN基因序列分析研究中发现LeIFN基因缺少间隙子(intron),其DNA片段定位于大多数真核基因,不编码蛋白质结构,迄今只有缺少IFN的其他真核生物基因中找到编码组蛋白,涉及基因表达的控制。 研究者在没有间隙子情况下较易建造生命,他是通过把人基因放入细菌细胞中而建造的细菌“IFN因子”,这就不必担忧细菌是否有产生蛋白质的机构(这种蛋白质是间隙子编码的,而间隙子在细菌细胞中又没有找到),事实上,基因工程公司和苏黎世研究者发现,LeIFN基因如系在细菌合适序列上,则细菌可制造LeIFN,为此,携带人IFN基因的细菌可产生IFN达200-250毫克/升菌液,据Weissmann的意见,基因工程方法产  相似文献   

10.
人干扰素有三大类:HuLeIFN、HuF IFN和HuI IFN。IFN基因在细菌中已实现克隆,并表现其生物活性。在研究细菌IFN的过程中有两个主要的发现:—— 一、发现人细胞中含有几个编码的LeIFN的基因,这个多基因的发现,先是C.Weissmann及其同事(苏黎世大学)发现的,尔后Goeddel D.和Stebbing N.及其同事(基因工程公司和Roche分子生物研究所)也得到类似结果。LeIFN基因最低限度有5个位点或10个位点,他们发现个体基因的核苷酸序列彼此约有15%的不同。然而不是所有的显性基因都能表达,基因工程公司研究工作者测定了其中8个核苷酸序列,发现一个含有终止信号,它阻止指令完全IFN蛋白的合成; 二、在LeIFN基因序列分析研究中发现LeIFN基因缺少间隙子(intron),其DNA片段定位于大多数真核基因,不编码蛋白质结构,迄今只有缺少IFN的其他真核生物基因中找到编码组蛋白,涉及基因表达的控制。 研究者在没有间隙子情况下较易建造生命,他是通过把人基因放入细菌细胞中而建造的细菌“IFN因子”,这就不必担忧细菌是否有产生蛋白质的机构(这种蛋白质是间隙子编码的,而间隙子在细菌细胞中又没有找到),事实上,基因工程公司和苏黎世研究者发现,LeIFN基因如系在细菌合适序列上,则细菌可制造LeIFN,为此,携带人IFN基因的细菌可产生IFN达200—250毫克/升菌液,据Weissmann的意见,基因工程方法产  相似文献   

11.
王秀云 《生物学通报》1993,28(2):11-13,45
在电镜下观察,细菌细胞中不存在真正的核,DNA被局限在细胞的中心部位,它被细胞的其他部分所包围。与真核细胞相比,这个局限细菌DNA的区域常常被称为细菌的“核”;而细胞的其余部分常常被称为细菌的“细胞质”。在这种核与细胞质之间,不存在使二者隔离的膜,即细菌没有核膜。而细菌的DNA,尽管并没有象真核细胞的DNA那样与蛋白质结合,也常常被称为细菌的“染色体”,其分子量大约是1~6×10~9道尔顿。在这种染色体上,排列着细菌遗传的全部或大部分基因,它是细菌赖以生存的基本遗传物质。  相似文献   

12.
Red同源重组技术研究进展   总被引:6,自引:0,他引:6  
伴随着分子生物学的发展,一种基于λ噬菌体Red重组酶的同源重组系统已应用于大肠杆菌基因工程研究。Red重组系统由三种蛋白组成:Exo蛋白是一种核酸外切酶,结合在双链DNA的末端,从5′端向3′端降解DNA,产生3′突出端;Beta蛋白结合在单链DNA上,介导互补单链DNA退火;Gam蛋白可与RecBCD酶结合,抑制其降解外源DNA的活性。Red同源重组技术具有同源序列短(40~60bp)、重组效率高的特点。这种技术可在DNA靶标分子的任意位点进行基因敲除、敲入、点突变等操作,无需使用限制性内切酶和连接酶。此外,这种新型重组技术可直接将目的基因克隆于载体上,目的基因既可来源于细菌人工染色体也可是基因组DNA。Red同源重组技术使难度较大的基因工程实验顺利进行,大大推动功能基因组研究的发展。  相似文献   

13.
我们建立了一种用来确定在4-5kb那样大的DNA片段上携带一个克隆基因的界线的方法。这种方法由下列步骤组成。用四核苷酸识别序列核酸内功酶处理产生两组限制性消化产物以及起始于这种DNA片段的两个末端的任何一端都是用酵母转化来测定它们的互补能力。然后利用两个最短互补片段的重迭来确定这个基因。  相似文献   

14.
给家畜饲喂抗生素可以导致人体产生抗生素抗性。伊利诺斯大学的Abigail Salyers断定抗生素抗性基因能够从猪、羊和牛消化道内的细菌中转移到人体内的远缘细菌中。由于抗生素抗性有扩散到人类病原体中的危险,Salyers认为必须花时间重新评价给动物饲喂大量抗生素这一事实。 经鉴定发现分离自家畜肠道细菌的四环素抗性基因(tetQ)的DNA序列与引起人牙周病的细菌的tetQ基因完全一致。Salyers从家畜肠道Prevotella、人肠道Bacteroides和人口腔Prevotella intermedia中获得12种tetQ基因,有3个基因具98%的DNA序列相似性,最低的相似性为94%。Prev-  相似文献   

15.
《自然》杂志首次登载了一张照片,其中一只小鼠大小正常,而另一只的体积却比同胞小鼠大两倍,这就是显微注射基因技术产生的“超级小鼠”。用显微注射方法将外来基因移植到小鼠内而使基因传给后代,这样产生的动物被称为转移基因动物。基因显微注射在显微镜下进行,因而可以看清移植的靶——卵细胞。每次移植,外来的DNA必须注入到受精卵细胞两个原核中的一个之内。一个灵巧熟练的能手能用异常的速度进行移植,宾夕法尼亚大学的微生物学家Myrna E.Trumbauer博士就能在一个半小时之内将基因注入300个卵细胞内。  相似文献   

16.
水母蛋白可使植物发光 据美国Biotech Reporter 1994年1月报道:英国爱丁堡大学细胞和分子生物学研究所的科学家,最近首次利用基因工程技术,将发光水母的蛋白(即多管水母蛋白aequorin)导入植物的基因组,使转基因植物在处于逆境时,可发出天蓝色的光。这种植物逆境发光的原因是,转入的多管水母蛋白对钙有高度亲合性,而植物处于逆境时,细胞内的钙浓度上升,从而使植物发光。  相似文献   

17.
Salete Newton及其同事们在斯坦福大学用一活的重组沙门氏菌(Salmonella)疫苗提高了小鼠对霍乱毒素的免疫反应。这增加了用这种方法成功地开发保护人类或动物不受其它微生物或病毒感染的疫苗的可能性。Stanford的研究者们首次构建了一个编码霍乱毒素蛋白B亚基中15个氨基酸部分的合成DNA序列,导入鞭毛蛋白的克隆基因中。鞭毛蛋白是在细菌鞭毛中发现的一种蛋白。鞭毛是很小的、从一些细菌表面凸出、使细菌移动的鞭状细丝。含霍乱毒素插入物的鞭毛蛋白基因构成用于转化不能产生自身鞭毛蛋白的、弱化的、非侵染性沙门氏菌菌株的部分质粒。  相似文献   

18.
最近的研究证明,光可以通过调节特定的基因表达而作用于植物的生理过程。研究人员用取自豌豆的可被光激活的DNA 区域,通过重组DNA技术构建了一个嵌合基因,用根癌土壤杆菌 Ti 质粒方法把它插入烟草中,发现基因表达是受光调节的。在 Glasshouse 作物研究所,B.R.Jordan 的小组一直在研究光调节基因操作投入商用的可能性。据他们说:“通过构建嵌合基因,现在已经能够使非光调基因受光控制”。这样也  相似文献   

19.
初生型发光杆菌属(Photorhabdus)及嗜线虫致病杆菌属(Xenorhabdus)细菌分别与异小杆线虫属(Heterorhabditis)和斯氏线虫属(Steinernema)昆虫病原线虫互惠共生.这类昆虫病原细菌在稳定生长期分别产生两种形态各异的胞内晶体蛋白.本文回顾了这类蛋白的研究历史和最新的研究进展,特别是胞内晶体蛋白的理化性质和生物学功能,同时讨论这种晶体蛋白的研究方法与技术.  相似文献   

20.
Guo FB 《遗传》2011,33(10):1039-1047
DNA复制是一个不对称的过程。不对称的一个体现是复制链分为前导链和滞后链,前者连续复制而后者的复制却不连续。这种不对称最终导致两条链上核酸组成的不对称。链特异的核酸组成偏差最先发现于棘皮类动物和脊椎动物的线粒体DNA上。随着全基因组的大量测序,越来越多的细菌被发现具有类似的链特异的核酸组成偏差,甚至很多真核生物的染色体基因组也被发现具有类似偏差。在某些细菌中,链特异的组成偏差强烈到足以使前导链和滞后链的基因间具有分离的密码子使用。至今,共有11种细菌被发现具有和复制相关的分离的密码子使用。这11种细菌无一例外都属于专性寄生(共生)菌。对于链组成偏差产生的内在机制以及特定细菌具有强烈链组成偏差的成因,目前学术界尚没有统一的理论解释。文章对这一遗传学及基因组学的重要问题进行了综述和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号