首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A morphologically detectable cell coat, composed of glycoprotein, glycolipid, and glycosaminoglycan, is present on the external surface of most vertebrate cells. We have invetigated the composition and organization of glycosaminoglycans in the cell coat of cultured human embryo fibroblasts by labeling cells with 3H-glucosamine and Na235SO4 and subsequently treating cultures with specific enzymes. Components released were identified by chromatography and specific enzymatic digestion. In situ incubation with leech hyaluronidase (4 μg/ml) removed only hyaluronic acid from the cell surface whereas testicular hyaluronidase (0.5 mg/ml) removed both hyaluronic acid and chondroitin sulfate. Trypsin (0.1 mg/ml) released a large mass of glycopeptides in addition to hyaluronic acid, chondroitin sulfate, and heparan sulfate. The affinity of the cell coat for the cationic dye, ruthenium red, was reduced by leech hyaluronidase treatment. Sequential enzyme digestions of the cell surface showed that hyaluronic acid could be removed without the concomitant or subsequent release of sulfated glycosaminoglycans, suggesting that the hyaluronic acid is not a structural backbone for glycosaminoglycan complexes of the external cell surface.  相似文献   

2.
The glycosaminoglycans of neural retinas from 5-, 7-, 10-, and 14-day chick embryos were labeled in culture with [3H]glucosamine and 35SO4, extracted, and isolated by gel filtration. The incorporation of label per retina into glycosaminoglycans increased with embryonic age, but that per cell and per unit weight of uronic acid decreased. Specific enzyme methods coupled with gel filtration and paper chromatography demonstrated that [3H]glucosamine incorporation into chondroitin sulfate increased between 5 and 14 days from 7 to 34% of the total incorporation into glycosaminoglycans. During this period, incorporation into chondroitin-4-sulfate increased relative to that into chondroitin-6-sulfate. Between 5 and 10 days, incorporation into heparan sulfate showed a relative decline from 89 to 61%. Incorporation into hyaluronic acid always represented less than 2% of the total. A twofold greater increase in galactosamine concentration than in glucosamine concentration in the glycosaminoglycan fraction between 7 and 14 days supports the conclusion that chondroitin sulfate was the most rapidly accumulating glycosaminoglycan. ECTEOLA-cellulose chromatography revealed a heterogeneity in the size and/or net charge of chondroitin sulfate and heparan sulfate. We conclude that incorporation of exogenous precursors into glycosaminoglycans in the chick retina decreases relative to cell number as differentiation progresses from a period of high mitotic activity to one of tissue specialization, and that it is accompanied by a net accumulation of glycosaminoglycan and a change in the pattern of its synthesis.  相似文献   

3.
Glycosaminoglycans of the embryonic chicken vitreous were characterized and then were used as markers to establish which tissues synthesize the vitreous humor during development. The glycosaminoglycans are predominantly chondroitin sulfates by several criteria. They are resistant to streptomyces hyaluronidase, an enzyme which degrades only hyaluronate, and are digested by testicular hyaluronidase and chondroitinase AC, enzymes which degrade hyaluronate plus chondroitin 4- and 6-sulfates. On electrophoresis on cellulose acetate in 0.15 M phosphate buffer, pH 6.7, the vitreous glycosaminoglycans migrate slightly slower than authentic chondroitin sulfate, but, in 0.1 N HCl, they migrate very close to chondroitin sulfate standards. Finally, the disaccharides produced by digestion of these radioactively labeled glycosaminoglycans with chondroitinases AC and ABC were identified as Δdi-4S and Δdi-6S, as expected for chondroitin 4- and 6-sulfate. By using incorporation of radioactive precursors into chondroitin sulfates in vitro, we than determined which tissues synthesize the vitreous humor in the developing eye. Late in development, on Day 12–13, the isolated vitreous is very active in chondroitin sulfate synthesis, while the neural retina, the lens, and the pecten are less active and produce a high proportion of enzyme-resistant GAG. The eye tissues isolated from embryos labeled in ovo retain similar amounts and types of glycosaminoglycans, indicating that cells within the vitreous synthesize the vitreous humor glycosaminoglycans at this time. Earlier in development, from Days 6 to 8, the isolated vitreous incorporates very low levels of radioactivity into GAG, but the neural retina incorporates high levels of radioactivity into chondroitin sulfate. When the embryos are labeled in ovo and the same tissues are isolated following incorporation, the vitreous retains more radioactive chondroitin sulfate than does the neural retina. Thus, the vitreous humour glycosaminoglycan is initially synthesized by the neural retina and is secreted into the vitreous space.  相似文献   

4.
Glycosaminoglycans can be quantitated by determining the copper content of their alcian blue complexes. The use of this method is demonstrated with mixtures containing heparan sulfate, hyaluronic acid, and chondroitin sulfate after they have been resolved by cellulose acetate electrophoresis. Quantitation of alcian blue by atomic absorption is more sensitive than spectrophotometric techniques previously published. The method can be used to estimate the glycosaminoglycan composition in small amounts of tissue. This report demonstrates the use of this methodology in the quantitation of glycosaminoglycans in fetal and postnatal mouse brain and in the determination of the specific activities of glycosaminoglycans of fetal mouse brain labeled in vitro with [1-14C]glucosamine.  相似文献   

5.
Vitreous fibrosis was induced in rabbit eyes by intravitreal injection of erythrocytes. The fibrotic vitreous removed from experimental animals were then incubated with [3H]glucosamine at 37°C for 24 h. The newly synthesized 3H-labeled glycosaminoglycans were isolated by 4 M guanidium hydrochloride extraction followed by pronase digestion. The 3H-labeled glycosaminoglycans were then characterized by gel filtration column chromatography and by specific enzymatic degradation, i.e., hyaluronidase, chondroitinase AC, and/or chondroitinase ABC. The disaccharides derived from chondroitinase ABC degradation were identified by thin-layer chromatography. We previously demonstrated that 91% of the total glycosaminoglycan synthesized by normal vitreous was hyaluronic acid. Our present results indicate that in the fibrotic vitreous, the synthesis of hyaluronic acid was decreased to 26%, whereas the synthesis of chondroitin sulfate increased to 59% of the total newly synthesized glycosaminoglycans. These results suggest that cells present in fibrotic vitreous resemble fibroblasts with respect to their activities in glycosaminoglycans synthesis.  相似文献   

6.
Biosynthesis of glycosaminoglycans by cultured mastocytoma cells   总被引:3,自引:1,他引:2       下载免费PDF全文
Biosynthesis of glycosaminoglycans by several lines of cultured neoplastic mouse mast cells was studied by incorporation of [35S]sulphate (and in some cases [6-3H]glucosamine) into macromolecular materials found in both the cells and their growth media. Such intracellular and extracellular radioactively labelled materials (shown to be glycosaminoglycans by susceptibility to digestion with heparinase) were further characterized by ion-exchange chromatography and by digestion with testicular hyaluronidase and chondroitinase. All but one cell line produced chondroitin sulphate as the major sulphated glycosaminoglycan; the remainder of the glycosaminoglycan was heparin-like material. No [3H]hyaluronic acid was synthesized. Cells of a newly derived line, termed P815S, synthesized more glycosaminoglycan than the other lines. This glycosaminoglycan, found in both cells and growth medium, was almost entirely chondroitin 4-sulphate. No chondroitin 6-sulphate was found. The chondroitin 4-sulphate from the cells was shown by gel filtration to be smaller than the chondroitin 4-sulphate in the media of these cultures. This discovery of relatively high proportions of chondroitin 4-sulphate in these mastocytoma-derived cells is noteworthy, since mast cells have generally been considered to produce heparin as their major glycosaminoglycan.  相似文献   

7.
Microsomal preparations from Englebreth-Holm-Swarm mouse sarcoma were incubated with UDP-N-acetyl[3H] glucosamine and UDP-[14C]glucuronic acid to form proteoglycan containing [3H,14C]glycosaminoglycan with equimolar amounts of [3H]glucosamine and [14C]glucuronic acid. The labelled glycosaminoglycan was totally resistant to degradation by testicular hyaluronidase, but could be degraded readily by a crudeFlavobacter heparinum enzyme preparation which is capable of degrading heparin and heparan sulfate. Chromatography of the [3H,14C]glycosaminoglycan on DEAE-cellulose provided a pattern with three peaks: the first appearing before hyaluronic acid, the second and largest appearing at the site of hyaluronic acid, and a third appearing slightly beyond hyaluronic acid but before a standard of chondroitin sulfate. When 3-phosphoadenosine 5-phosphosulfate was also included in the reaction mixture, a change appeared in the [3H,14C]glycosaminoglycan so that chromatography on DEAE-cellulose presented a pattern with a significant amount of material which cochromatographed in the area where heparan sulfate would be found. There was no material that co-chromatographed with the more highly sulfated substance, heparin. This indicates that the microsomal preparation from the Englebreth-Holm-Swarm sarcoma is capable of producing a heparan sulfate-like molecule and is controlled in its sulfation of precursors so that heparin is not formed.  相似文献   

8.
Nuclei isolated from rat liver were purified extensively and then subjected to extraction of glycosaminoglycans by the conventional method with a slight modification including the treatments with amylase nucleases, (DNAase and RNAase), and sialidase in addition to the pronase treatment. The nuclear glycosaminoglycan fraction thus prepared was subjected to chromatography on Dowex 1-X2 (Cl?) and electrophoresis before or after digestion with specific enzymes such as Streptomyces hyaluronidase, chondroitinase ABC and AC. These results together with the results of chemical analyses have revealed that the purified nuclei from rat liver contain glycosaminoglycans equivalent to 0.2–0.3 μg hexuronic acid per mg DNA. A major component of the nuclear glycosaminoglycans has been identified as hyaluronic acid, while a minor component as chondroitin sulfate A (or C). Preliminary investigations have shown that most of the nuclear glycosaminoglycans are associated with the chromatin fraction.  相似文献   

9.
Streptococcus dysgalactiae IID 678, belonging to group C of the streptococci, secreted a large amount of hyaluronidase (hyaluronate lyase, EC 4.2.2.1) into a culture medium containing hyaluronic acid. The purification procedures of hyaluronidase were 70% ammonium sulfate precipitation, ECTEOLA-cellulose chromatography, phospho-cellulose chromatography, and gel filtration on Sephacryl S-300. The hyaluronidase was purified approximately 27,000-fold from the culture filtrate. The purified enzyme was homogeneous by SDS-poIyacrylamide gel electrophoresis. The enzyme degradated only hyaluronic acid and chondroitin to zl 4,5-unsaturated disaccharides and did not act on other glycosaminoglycans containing sulfate groups, while the degradation rate of chondroitin was about 1/60 of that of hyaluronic acid. The optimum pH was wide, from pH 5.8 to pH 6.6, and the optimum temperature was 37°C. Fe2 +, Cu2 +, Pb2 +, and Hg2 + ions inhibited the activity strongly and Zn2+ inhibited it by half. The molecular weight of the enzyme was estimated to be 125,000 by gel filtration and 117,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was different immunochemically from the hyaluronidase from Streptococcus pyogenes belonging to group A.  相似文献   

10.
A sulfated glycosaminoglycan has been isolated from the acid-soluble fraction of an established line of Chinese hamster fibroblasts grown in suspension culture. This material has a molecular weight between 5000 and 10,000, contains equimolar amounts of hexosamine and uronic acid (orcinol method), and about 0.6 sulfate groups per hexosamine residue. About 80% of the sulfate groups are N-sulfates on the basis of lability of the sulfate and the formation of equivalent numbers of free amino groups upon mild acid hydrolysis. The material is completely resistant to testicular hyaluronidase but is degraded to reducing monosaccharides and small oligosaccharides upon treatment with lyophilized cells of Flavobacterium heparinum that were grown on heparin. It is thought, therefore, to be related to the known N-sulfated glycosaminoglycans heparin and heparitin sulfate.  相似文献   

11.
Synopsis Treatment of tissue sections with enzymes which degrade specific types of glycosaminoglycans should provide a means for localizing glycosaminoglycans in tissue sections. The feasibility of this technique was examined by utilizing endogenously labelled glycosaminoglycans in chick and quail embryos. Less than 8% of the total glycosaminoglycans appear to be lost non-specifically during fixation and dehydration. BothStreptomyces hyaluronidase and chondroitinase ABC degraded more than 90% of their respective substrates and demonstrated minimal non-specific extraction of other glycosaminoglycans. The selectivity of chondroitinase ABC for sulphated glycosaminoglycans was substantially increased by raising the pH of the incubation buffer to 8.6. At this pH, chondroitinase ABC degraded negligible amounts of hyaluronic acid. Use of bothStreptomyces hyaluronidase and chondroitinase ABC confirmed that embryonic hyaluronic acid binds Alcian Blue under conditions that were previously believed specific for sulphated glycosaminoglycans. We suggest that this may be due to the increased molecular weight of embryonic hyaluronic acid compared to the hyaluronic acid in adult tissues. The results presented suggest that treatment of adjacent sections with buffer, chondroitinase ABC at pH 8.6, andStreptomyces hyaluronidase and subsequent staining with Alcian Blue provides a method for localizing and quantitating glycosaminoglycans in tissue sections.  相似文献   

12.
The synthesis of metabolically labeled proteoglycans and glycosaminoglycans from medium, cell layer and substrate attached material by rat glomerular mesangial cells in culture was characterized. The cellular localization of the labeled proteoglycans and glycosaminoglycans was determined by treating the cells with Flavobacterial heparinase. Of the total sulfated glycosaminoglycans, 33% were heparan sulfate; 55% of the cell layer material was heparan sulfate; 80% of sulfated proteins in the medium were chondroitin sulfate/dermatan sulfate. Putative glycosaminoglycan free chains of heparan sulfate and chondroitin sulfate were found in both the medium and cell layer; 95% of total proteoglycans and most (90%) of the putative heparan sulfate free chains were removed from the cell layer by the heparinase, whereas only 50% of the chondroitin sulfate and 25% of dermatan sulfate were removed. Large amounts of hyaluronic acid labeled with 3H glucosamine were found in the cell layer. In summary, approximately 60% of total sulfated glycoproteins was in the form of putative glycosaminoglycan free chains. Thus rat mesangial cells may synthesize large amounts of putative glycosaminoglycan free chains, which may have biological functions in the glomerulus independent of proteoglycans.  相似文献   

13.
Summary The ability of tannic acid to enhance binding of glycosaminoglycans to purified collagen was analysed in an in vitro system using amino sugar analysis on an amino acid analyser, transmission electron microscopy, and scanning electron microscopy. Collagen was purified by digestion with trypsin, papain, and hyaluronidase. Purified collagen was incubated with hyaluronic acid or with chondroitin sulphate glycosaminoglycan and then treated with tannic acid. Tannic acid was found to enhance retention during preparation for electron microscopy of either of the glycosaminoglycans onto collagen fibres. The ability of tannic acid to enhance binding of collagen and glycosaminoglycans might explain, at least in part, its structural reinforcement effect on resected synovial joint-apposing surfaces during preparation for scanning electron microscopy.  相似文献   

14.
Aggregation of cultured mouse cells was measured by the rate of disappearance of particles from a suspension of single cells. Treatment with several enzymes which degrade hyaluronic acid (testicular hyaluronidase, streptomyces hyaluronidase, streptococcal hyaluronidase and chondroitinase ABC) inhibited the aggregation of SV-3T3 and several other cell types. Since streptomyces and streptococcal hyaluronidases are specific for hyaluronic acid, it is suggested that hyaluronic acid is involved in the observed aggregation. Hyaluronidase-induced inhibition of aggregation was complete in the absence of divalent cations, but only partial in their presence. This finding is consistent with the hypothesis that two separate mechanisms are responsible for aggregation; one dependent upon and the other independent of calcium and magnesium. Aggregation was also inhibited by high levels of hyaluronic acid. A similar effect was obtained with fragments of hyaluronic acid consisting of six sugar residues or more. Chondroitin (desulfated chondroitin 6-sulfate) and to a lesser extent desulfated dermatan sulfate also inhibited aggregation. Other glycosaminoglycans (chondroitin 4-sulfate, chondroitin 6-sulfate, heparin and heparan sulfate) had little or no effect on aggregation. It is suggested that the hyaluronic acid inhibits aggregation by competing with endogenous hyaluronic acid for cell surface binding sites.  相似文献   

15.
The glycosaminoglycan microenvironment of testicular hyaluronidase was simulated by multipoint covalent attachment of the enzyme to glycans as a result of benzoquinone activation. The efficiency of their binding was assessed using gel chromatography, ultrafiltration, titration of surface amino groups of the enzyme, electrophoresis, as well as judging by the value of residual endoglycosidase activity and its inhibition with heparin. Copolymer glycosaminoglycans, such as dermatan sulfate and heparin, inactivated the endoglycosidase activity as a result the C-5 epimerization of hexuronic acid. It was shown that glucuronic acid and, to a lesser extent, N-acetylglucosamine determine the specificity of hyaluronidase. The chondroitin-sulfate microenvironment made the enzyme resistant to heparin inhibition because the equatorial orientation of the OH groups is similar to that in hyaluronic acid. Model experiments with dextran and dextran sulfate showed that sulfation of the glycan chain increased its rigidity, thus hampering the stabilizing effect on hyaluronidase. The effect of chondroitin sulfate on the endoglycosidase activity of hyaluronidase had additive character and did not directly affect the small fragment of the active site of the enzyme located at the bottom of a groove. The glycosaminoglycan microenvironment of hyaluronidase, containing an iduronic acid residue, the 1-3 and 1-4 glycosidic bond, inactivated the hyaluronidase activity of the enzyme, whereas simple polymers (such as gluco- and galactoaminoglycans) potentiated it due to a similar way of linking—(1e-4e) and (1e-3e). To understand the nature of these interactions in detail, the effect of oligomeric glycosaminoglycan fragments and their derivatives on hyaluronidase should be studied.  相似文献   

16.
The effect of retinoic acid on glycosaminoglycan biosynthesis was investigated in rat costal cartilage chondrocytes in vitro. At levels of 10?9 to 10?8m retinoic acid, 35SO4 uptake into glycosaminoglycans was reduced 50%. At these low levels of retinoic acid there was no evidence of lysosomal enzyme release. The results are explained best in terms of modification of glycosaminoglycan synthesis, rather than accelerated degradation. Retinoic acid selectively modified the incorporation of 35SO4 or [14C]glucosamine into individual glycosaminoglycans fractions under the conditions studied. The relative incorporation of radiolabeled precursor into heparan sulfate (and/or) heparin increased three- to fourfold. The relative incorporation of radiolabeled precursor remained constant for chondroitin 6-sulfate, whereas incorporation into chondroitin 4-sulfate and chondroitin (and/or) hyaluronic acid decreased. Under the conditions studied, retinoic acid did not appear to be cytotoxic and did exhibit selective control over glycosaminoglycan biosynthesis. It is suggested that the decreased incorporation of 35SO4 into glycosaminoglycans at hypervitaminosis A levels of retinol may be accounted for by the presence of low levels of retinoic acid, a naturally occurring metabolite.  相似文献   

17.
Cartilage regeneration in the adult rabbit ear was examined with respect to glycosaminoglycan (GAG) synthesis at various stages of the regeneration process. Increased hyaluronic acid and chondroitin sulfate synthesis was first seen 31 days after wounding, when a metachromatic cartilage matrix could be distinguished from blastemal cells. Analysis of cartilage and the overlying skin separately showed that 90% of the labeled chondroitin sulfate was found in the cartilage being regenerated. DEAE-cellulose chromatography of GAG preparations from 35-day regenerating cartilages showed hyaluronic acid and chondroitin sulfate peaks eluting in the same position as those isolated from normal cartilages. The identity of the hyaluronic acid and chondroitin sulfate peaks was confirmed by their susceptibility to Streptomyces hyaluronidase and chondroitinase ABC, respectively. Although the degree of sulfation in normal and regenerated cartilages was similar, the ratio of chondroitin 6-sulfate to chondroitin 4-sulfate was increased in regenerated cartilages. GAG preparations from unlabeled cartilages were digested with chondroitinase ABC and the disaccharide digestive products were identified and quantitiated. Normal cartilage had a ΔDi-6SΔDi-4S ratio of 0.27; the same ratio for the regenerated cartilage was 1.58.  相似文献   

18.
Rat liver parenchymal cells were evaluated after 2 days of primary culture for their ability to synthesize and accumulate heparan sulfate as the major component and low-sulfated chondroitin sulfate, dermatan sulfate, chondroitin sulfate and hyaluronic acid as the minor ones. The newly synthesized glycosaminoglycans secreted into the medium were different from those remaining with and/or on the cell layer. Low-sulfated chondroitin 4-sulfate, a major glycosaminoglycan in blood, was synthesized in the order of 320 μg/liver per day, more than 90% of which was secreted into the medium within 16 h and 40% of the glycan secreted was degraded during that time. On the other hand, heparan sulfate, the major glycosaminoglycan synthesized by the parenchymal cells, was mainly distributed in the cell layer. After 8 days of culture, the synthesis of glycosaminoglycans by the cells increased markedly, especially dermatan sulfate, chondroitin sulfate and hyaluronic acid.  相似文献   

19.
Oligosaccharides from hyaluronic acid and chondroitin 6-sulfate were prepared by digestion with testicular hyaluronidase and separated according to their degree of polymerization by gel-permeation chromatography. These materials were successively analyzed by negative-mode ion-spray mass spectrometry with an atmospheric-pressure ion source. An ion-spray interface was used to produce ions via the ion evaporation process, producing mass spectra containing a series of molecular species carrying multiple charges. Using two adjacent multiply charged molecular ions, the exact molecular weights up to the tetradecasaccharide were calculated with a precision of ±1 dalton. This type of mass spectrometry was also demonstrated to be feasible for the analysis of mixtures of oligosaccharides, including tetra-, hexa-, octa- and decasaccharides, from hyaluronic acid or chondroitin 6-sulfate without separation. Ion-spray mass spectrometry was thus shown to be applicable to the structural analysis of oligosaccharides from glycosaminoglycans.Abbreviations HA hyaluronic acid - Ch6S chondroitin 6-sulfate - GAG glycosaminoglycan - GlcA d-glucuronic acid - GlcNAc 2-acetamido-2-deoxy-d-glucose - GalNAc 2-acetamido-2-deoxy-d-galactose.  相似文献   

20.
Cultures of embryonic fibroblasts from Balb/c or CBA/J mice were given 12-h pulses of 14C-galactose, or were double-labelled with 3H-galactose and 35H-sulfate. The time course of the rates of labelling of glycosaminoglycans – galactose label was found in the uronic acid moiety – was studied in synchronously and asynchronously growing cultures. Partial synchrony was achieved by trypsinising quiescent, confluent cells and subsequent transfer of cells to new cultures with fresh medium. Synchrony was monitored by measurement of thymidine uptake in parallel cultures. The distribution of label in the hyaluronic acid, chondroitin sulfate, and heparan sulfate fractions from cells and culture media was determined at each time point. Peaks of DNA synthesis were accompanied by or followed 12 h later by a maximal rate of labelling with galactose of secreted glycosaminoglycans, and – with the exception of hyaluronic acid – also of cellular glycosaminoglycans. The rate of labelling with galactose of glycosphingolipids in parallel cultures followed a different time course. In double-label experiments the rates of labelling of glycosaminoglycan sulfates with 3H-galactose and 35S-sulfate did not go parallel. In older, quiescent cultures the labelling rate with galactose decreased while the sulfation rate increased. It is discussed that the labelling rate with galactose is indicative of the biosynthetic rate of the glycosaminoglycans. The conclusion is reached that glycosaminoglycans are preferentially synthesized and secreted after the S phase of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号