首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sima J  Zhang SX  Shao C  Fant J  Ma JX 《FEBS letters》2004,564(1-2):19-23
Angiostatin is a potent angiogenic inhibitor. The present study identified a new activity of angiostatin: reducing vascular leakage, which is associated with diabetic macular edema, tumor growth and inflammation. An intravitreal injection of angiostatin significantly reduced retinal vascular permeability in rats with oxygen-induced retinopathy and in those with streptozotocin-induced diabetes, but not in normal rats. Consistent with its effect on permeability, angiostatin downregulated vascular endothelial growth factor (VEGF) expression in the retina in both the rat models but not in normal controls. These results suggest that the effect of angiostatin on vascular leakage is mediated, at least in part, through blockade of VEGF overexpression.  相似文献   

2.
Pigment epithelium-derived factor (PEDF) is the most potent inhibitor of angiogenesis, suggesting that loss of PEDF contributes to proliferative diabetic retinopathy. However, the role of PEDF against retinal vascular hyperpermeability remains to be elucidated. We investigated here whether and how PEDF could inhibit the advanced glycation end product (AGE) signaling to vascular hyperpermeability. Intravenous administration of AGEs to normal rats not only increased retinal vascular permeability by stimulating vascular endothelial growth factor (VEGF) expression but also decreased retinal PEDF levels. Simultaneous treatments with PEDF inhibited the AGE-elicited VEGF-mediated permeability by down-regulating mRNA levels of p22(phox) and gp91(phox), membrane components of NADPH oxidase, and subsequently decreasing retinal levels of an oxidative stress marker, 8-hydroxydeoxyguanosine. PEDF also inhibited the AGE-induced vascular hyperpermeability evaluated by transendothelial electrical resistance by suppressing VEGF expression. Furthermore, PEDF decreased reactive oxygen species (ROS) generation in AGE-exposed endothelial cells by suppressing NADPH oxidase activity via down-regulation of mRNA levels of p22(PHOX) and gp91(PHOX). This led to blockade of the AGE-elicited Ras activation and NF-kappaB-dependent VEGF gene induction in endothelial cells. These results indicate that the central mechanism for PEDF inhibition of the AGE signaling to vascular permeability is by suppression of NADPH oxidase-mediated ROS generation and subsequent VEGF expression. Substitution of PEDF may offer a promising strategy for halting the development of diabetic retinopathy.  相似文献   

3.

Background

Diabetic maculopathy, the leading cause of vision loss in patients with type 2 diabetes, is characterized by hyper-permeability of retinal blood vessels with subsequent formation of macular edema and hard exudates. The degree of hyperglycemia and duration of diabetes have been suggested to be good predictors of retinal complications. Intervention studies have determined that while intensive treatment of diabetes reduced the development of proliferative diabetic retinopathy it was associated with a two to three-fold increased risk of severe hypoglycemia. Thus we hypothesized the need to identify downstream glycemic targets, which induce retinal vascular permeability that could be targeted therapeutically without the additional risks associated with intensive treatment of the hyperglycemia. Betacellulin is a 32 kD member of the epidermal growth factor family with mitogenic properties for the retinal pigment epithelial cells. This led us to hypothesize a role for betacellulin in the retinal vascular complications associated with diabetes.

Methods and Findings

In this study, using a mouse model of diabetes, we demonstrate that diabetic mice have accentuated retinal vascular permeability with a concomitant increased expression of a cleaved soluble form of betacellulin (s-Btc) in the retina. Intravitreal injection of soluble betacellulin induced retinal vascular permeability in normoglycemic and hyperglycemic mice. Western blot analysis of retinas from patients with diabetic retinopathy showed an increase in the active soluble form of betacellulin. In addition, an increase in the levels of A disintegrin and metalloproteinase (ADAM)-10 which plays a role in the cleavage of betacellulin was seen in the retinas of diabetic mice and humans.

Conclusions

These results suggest that excessive amounts of betacellulin in the retina may contribute to the pathogenesis of diabetic macular edema.  相似文献   

4.
The aim of this study was to determine the reasons why the intravitreal level of extracellular-superoxide dismutase (EC-SOD) increases in proliferative diabetic retinopathy patients by the investigation of two possibilities: first, change of EC-SOD expression in the retina; and secondly, leakage of EC-SOD through the endothelial monolayer by the treatment with endoplasmic reticulum (ER) stress inducers because ER stress is known to be involved in the vascular impairment in diabetic retinopathy. Intravitreous injection of tunicamycin in mice increased the permeability of tracer dye across retinal blood vessels while the retinal EC-SOD mRNA level was not changed. The leakage of EC-SOD through the retinal endothelial cell layer was elevated by the treatment with thapsigargin or tunicamycin. The expression of claudin-5 was significantly decreased by the treatment with the ER stress inducers. These phenomena were significantly suppressed by the pre-treatment of endothelial cells with a chemical chaperone 4-phenylbutyric acid. Our observations suggest that ER stress leads to the down-regulation of claudin-5 among tight junction proteins and may induce the elevation of endothelial permeability and leakage of EC-SOD into the vitreous body.  相似文献   

5.
Diabetic retinopathy is the leading cause of blindness in the industrialized world. Hyperglycaemia induces retinal hypoxia that upregulates a range of vasoactive factors which may lead to macular oedema and/or angiogenesis and hence potentially sight threatening retinopathy. In this study, we have focused on the association of CD105 and vascular endothelial growth factor (VEGF) with the development and progression of diabetic retinopathy by means of quantifying their expression in the plasma and vitreous of diabetic patients. CD105 levels were quantified in the plasma of 38 type I diabetic patients at various stages of retinopathy and 15 non-diabetic controls. In an additional cohort of 11 patients with advanced proliferative retinopathy and 23 control subjects, CD105 and VEGF were measured in the vitreous. The values were expressed as median (range) and statistical analysis was carried out using the non-parametric Mann-Whitney U test. Plasma CD105 levels were significantly increased in diabetic patients [1.8 (1.1-2.4) ng/ml] compared with non-diabetic controls [0.7 (0.3-1.8) ng/ml] (p<0.01). Plasma CD105 levels were elevated in diabetic patients with all stages of retinopathy, the highest level was observed in background retinopathy [2.3 (2.1-2.5) ng/ml] followed by proliferative retinopathy [2.1 (0.9-2.8) ng/ml] and advanced proliferative retinopathy [1.4 (0.6-1.8) ng/ml]. Vitreous contents of CD105 did not differ between controls and patients with advanced proliferative retinopathy, but vitreous levels of VEGF were elevated by approximately 3-fold in patients with advanced proliferative retinopathy [7.2 (1.90-15.60) ng/ml] compared with the control subjects [1.80 (1.10-2.210)] (p<0.01). These observations indicate that plasma levels of CD105 and vitreous levels of VEGF are associated with diabetic retinopathy, suggesting that CD105 and the angiogenic factor VEGF may play a critical role in the development and progression of diabetic retinopathy. Further studies are required to determine whether circulating CD105 levels could serve as a surrogate marker for early stage retinopathy and for monitoring disease progression.  相似文献   

6.
《Free radical research》2013,47(9):1083-1092
Abstract

The aim of this study was to determine the reasons why the intravitreal level of extracellular-superoxide dismutase (EC-SOD) increases in proliferative diabetic retinopathy patients by the investigation of two possibilities: first, change of EC-SOD expression in the retina; and secondly, leakage of EC-SOD through the endothelial monolayer by the treatment with endoplasmic reticulum (ER) stress inducers because ER stress is known to be involved in the vascular impairment in diabetic retinopathy. Intravitreous injection of tunicamycin in mice increased the permeability of tracer dye across retinal blood vessels while the retinal EC-SOD mRNA level was not changed. The leakage of EC-SOD through the retinal endothelial cell layer was elevated by the treatment with thapsigargin or tunicamycin. The expression of claudin-5 was significantly decreased by the treatment with the ER stress inducers. These phenomena were significantly suppressed by the pre-treatment of endothelial cells with a chemical chaperone 4-phenylbutyric acid. Our observations suggest that ER stress leads to the down-regulation of claudin-5 among tight junction proteins and may induce the elevation of endothelial permeability and leakage of EC-SOD into the vitreous body.  相似文献   

7.
BACKGROUND: Our previous results showed that in retinas from streptozotocin (STZ)-induced diabetic rats there is an increased level of interleukin-1beta (IL-1beta). This cytokine may be involved in the expression of the inducible isoform of the nitric oxide synthase (iNOS), with consequent synthesis of large amounts of NO and blood-retinal barrier (BRB) breakdown. AIMS: The aim of this work was to examine whether the administration of cyclosporin-A (Cs-A) to STZ-induced diabetic rats inhibits the synthesis of IL-1beta and the expression of the inducible proteins, iNOS and cyclo-oxygenase-2 (COX-2) in retinal cells, and whether the activity of these proteins contribute to BRB breakdown. METHODS: The level of IL-1beta was evaluated by ELISA and the NO production by L-[3H]-citrulline formation. Expression of iNOS and COX-2 proteins was determined by two methods, western blot and immunohistochemistry. The permeability of the BRB was assessed by quantification of the vitreous protein. RESULTS AND DISCUSSION: Our results indicated that the levels of IL-1beta and NO in retinas from Cs-A-treated diabetic rats are significantly reduced, as compared to that in non-treated diabetic rats. The treatment of diabetic rats with Cs-A also significantly inhibited the expression of the inducible proteins, iNOS and COX-2. The evaluation of the vitreous protein content revealed that Cs-A also reduces the BRB permeability. Taken together, these results suggest that the increased production of the inflammatory mediators, IL-1beta and NO, in diabetes may affect the BRB permeability and therefore contribute to the development of diabetic retinopathy.  相似文献   

8.
The vascular complications associated with type 1 diabetes are to some extent related to the dysfunction of the endothelium leading to an increased vascular permeability and plasma extravasation in the surrounding tissues. The various micro- and macro-vascular complications of diabetes develop over time, leading to nephropathy, retinopathy and neuropathy and cardiomyopathy. In the present study, the effect of a novel selective bradykinin B1 receptor (BKB1-R) antagonist, R-954, was investigated on the changes of vascular permeability in the skin and retina of streptozotocin (STZ)-induced type 1 diabetic rats. Plasma extravasation increased in the skin and retina of STZ-diabetic rats after 1 week and persisted over 4 weeks following STZ injection. Acute treatment with R-954 (2 mg/kg, bolus s.c.) highly reduced the elevated vascular permeability in both 1- and 4-week STZ-diabetic rats. These results showed that the inducible BKB1-R subtype modulates the vascular permeability of the skin and retina of type 1 diabetic rats and suggests that BKB1-R antagonists could have a beneficial role in diabetic neuropathy and retinopathy.  相似文献   

9.
Blood-retinal barrier (BRB) breakdown is a key event in diabetic retinopathy and other ocular disorders that leads to increased retinal vascular permeability. This causes edema and tissue damage resulting in visual impairment. Insulin-like growth factor-I (IGF-I) is involved in these processes, although the relative contribution of increased systemic versus intraocular IGF-I remains controversial. Here, to elucidate the role of this factor in BRB breakdown, transgenic mice with either local or systemic elevations of IGF-I have been examined. High intraocular IGF-I, resulting from overexpression of IGF-I in the retina, increased IGF-I receptor content and signaling and led to accumulation of vascular endothelial growth factor. This was parallel to up-regulation of vascular Intercellular adhesion molecule I and retinal infiltration by bone marrow-derived microglial cells. These alterations resulted in increased vessel paracellular permeability to both low and high molecular weight compounds in IGF-I-overexpressing retinas and agreed with the loss of vascular tight junction integrity observed by electron microscopy and the altered junctional protein content. In contrast, mice with chronically elevated serum IGF-I did not show alterations in the retinal vasculature structure and permeability, indicating that circulating IGF-I cannot initiate BRB breakdown. Consistent with a key role of IGF-I signaling in retinal diseases, a strong up-regulation of the IGF-I receptor in human retinas with marked gliosis was also observed. Thus, this study demonstrates that intraocular IGF-I, but not systemic IGF-I, is sufficient to trigger processes leading to BRB breakdown and increased retinal vascular permeability. Therefore, therapeutic interventions designed to counteract local IGF-I effects may prove successful to prevent BRB disruption.The BRB5 is a selective diffusion barrier that isolates the retina from the blood, maintaining the appropriate milieu for optimal retinal function and excluding potentially harmful stimuli, therefore acting as a critical protective barrier. The BRB consists of outer and inner components. The outer BRB is formed by the retinal pigmentary epithelium, which separates photoreceptors from choroidal permeable vessels. The inner BRB is determined by the presence of tight junctions (TJs) between the endothelial cells of retinal vessels, which limits paracellular flux. In addition, retinal vessels are partially sheathed by glial end-foot processes. Although not considered direct components of the inner BRB, glial cells could play a key role in its formation, maintenance, and breakdown (1). The disruption of the BRB is an important feature not only of non-proliferative and proliferative diabetic retinopathy but also of other diverse ocular disorders (2, 3). Increased vascular permeability results in extravasation of plasma components leading to edema. If the accumulation of fluids threatens the macula it poses a serious risk to visual function. Indeed, macular edema is a leading cause of visual loss among diabetic patients (3).IGF-I has been associated with the pathogenesis of BRB breakdown. Although most studies report an increase of intraocular IGF-I levels in diabetic patients (4, 5), the source of IGF-I is not clear (6, 7), and the relative contribution of local versus serum IGF-I in initiating ocular pathology is unknown. IGF-I is a potent inducer of vascular endothelial growth factor (VEGF) (8), a pro-angiogenic factor that increases vessel permeability (1). We and others have shown in animal models that IGF-I participates in the pathophysiology of diabetic retinopathy by inducing retinal VEGF expression (9, 10). In diabetic retinopathy there is a correlation between VEGF vitreous levels and macular edema (11). Aqueous humor levels of VEGF are also higher in diabetic patients with macular edema, and levels correlate with disease severity (12, 13). Moreover, the early BRB breakdown observed in experimental diabetes coincides with an increase in VEGF (14).To discern the contribution of intraocular versus circulating IGF-I in triggering VEGF production and BRB disruption, in this study we have examined the retinas of two transgenic animal models with elevated IGF-I levels either locally or in the serum. We have found that only IGF-I generated within the eye may trigger the breakdown of the BRB in mice, whereas increased circulating IGF-I did not alter retinal vascular permeability. Therefore, therapeutic interventions designed to counteract local IGF-I effects may prove successful to prevent BRB disruption.  相似文献   

10.
Fibronectin (FN), a key extracellular matrix protein, is upregulated in target organs of diabetic angiopathy and in cultured cells exposed to high levels of glucose. FN has also been reported to undergo alternative splicing to produce the extra domain-B (ED-B) containing isoform, which is exclusively expressed during embryogenesis, tissue repair, and tumoral angiogenesis. The present study was aimed at elucidating the role and mechanism of endothelins (ETs) in FN and ED-B FN expression in diabetes. We investigated vitreous samples for ED-B FN expression from patients undergoing vitrectomy for proliferative diabetic retinopathy. Our results show increased FN and ED-B FN expression in the vitreous of diabetic patients in association with augmented ET-1. Using an antibody specific to the ED-B segment of FN, we show an increase in serum ED-B FN levels in patients with diabetic retinopathy and nephropathy. We further examined retinal tissues, as well as renal and cardiac tissues, from streptozotocin-induced diabetic rats. Diabetes increased FN and ED-B FN in all three organs, which was prevented by ET antagonist bosentan. To provide insight into the mechanism of glucose-induced and ET-mediated ED-B FN upregulation, we assayed endothelial cells (ECs). Inhibition of mitogen-activated protein kinase with pharmacological inhibitors and protein kinase B with dominant negative transfections prevented glucose- and ET-1-mediated FN and ED-B FN expression. Furthermore, treatment of cells exposed to high levels of glucose with ET antagonist prevented the activation of all signaling pathways studied and normalized glucose-induced ED-B FN expression. We then determined the functional significance of ED-B in ECs and show that ED-B FN is involved in vascular endothelial growth factor expression and cellular proliferation. These studies show that glucose-induced and ET-mediated FN and ED-B FN expressions involve complex interplays between signaling pathways and that ET may represent an ideal target for therapy in chronic diabetic complications.  相似文献   

11.
Vascular endothelial growth factor-A (VEGF-A), first described as “vascular permeability factor”, is a critical molecule in the pathogenesis of diabetic retinopathy at several levels. Previous studies have outlined the importance of VEGF-A in mediating vascular pathology in both experimental models and clinical diabetic retinopathy, which are characterized by retinal vascular leakage, preretinal neovascularisation and neuronal degeneration. Paradoxically, recent reports have emphasized the potential neurotrophic effects of VEGF-A on the quiescent vasculature, as well as its direct and indirect protective effects on retinal neurons. VEGF-A has also been identified as an important signalling regulator in the normal central nervous system. Consequently, anti-VEGF therapy for diabetic retinopathy has become a controversal issue. This review outlines recently developed concepts relating to the role of VEGF-A in the pathogenesis of diabetic retinopathy, with particular emphasis on its implications for clinical practice.  相似文献   

12.
While the mouse retina has emerged as an important genetic model for inherited retinal disease, the mouse vitreous remains to be explored. The vitreous is a highly aqueous extracellular matrix overlying the retina where intraocular as well as extraocular proteins accumulate during disease.1-3 Abnormal interactions between vitreous and retina underlie several diseases such as retinal detachment, proliferative diabetic retinopathy, uveitis, and proliferative vitreoretinopathy.1,4 The relative mouse vitreous volume is significantly smaller than the human vitreous (Figure 1), since the mouse lens occupies nearly 75% of its eye.5 This has made biochemical studies of mouse vitreous challenging. In this video article, we present a technique to dissect and isolate the mouse vitreous from the retina, which will allow use of transgenic mouse models to more clearly define the role of this extracellular matrix in the development of vitreoretinal diseases.  相似文献   

13.
The polyol pathway consists of two enzymes, aldose reductase (AR) and sorbitol dehydrogenase (SDH). There is a growing body of evidence to suggest that acceleration of the polyol pathway is implicated in the pathogenesis of diabetic vascular complications. However, a functional role remains to be elucidated for SDH in the development and progression of diabetic retinopathy. In this study, cultured bovine retinal capillary pericytes were used to investigate the effects of SDH overexpression on glucose toxicity. High glucose modestly increased reactive oxygen species (ROS) generation, decreased DNA synthesis, and up-regulated vascular endothelial growth factor (VEGF) mRNA levels in cultured pericytes. SDH overexpression was found to significantly stimulate ROS generation in high glucose-exposed pericytes and subsequently potentiate the cytopathic effects of glucose. Fidarestat, a newly developed AR inhibitor, and N-acetylcysteine, an antioxidant, completely prevented these deleterious effects of SDH overexpression on pericytes. Furthermore, fidarestat administration was found to significantly prevent vascular hyperpermeability, the characteristic changes of the early phase of diabetic retinopathy, in streptozotocin-induced diabetic rats. Our present results suggest that SDH-mediated conversion of sorbitol to fructose and the resultant ROS generation may play an active role in the pathogenesis of diabetic retinopathy. Blockage of sorbitol formation by fidarestat could be a promising therapeutic strategy for the treatment of early phase of diabetic retinopathy.  相似文献   

14.
Endothelial barrier integrity is essential for vascular homeostasis and increased vascular permeability and has been implicated in many pathological processes, including diabetic retinopathy. Here, we investigated the effect of Rk1, a ginsenoside extracted from sun ginseng, on regulation of endothelial barrier function. In human retinal endothelial cells, Rk1 strongly inhibited permeability induced by VEGF, advanced glycation end-product, thrombin, or histamine. Furthermore, Rk1 significantly reduced the vessel leakiness of retina in a diabetic mouse model. This anti-permeability activity of Rk1 is correlated with enhanced stability and positioning of tight junction proteins at the boundary between cells. Signaling experiments revealed that Rk1 induces phosphorylation of myosin light chain and cortactin, which are critical regulators for the formation of the cortical actin ring structure and endothelial barrier. These findings raise the possibility that ginsenoside Rk1 could be exploited as a novel prototype compound for the prevention of human diseases that are characterized by vascular leakage.  相似文献   

15.

Background

Investigations into the mechanism of diffuse retinal edema in diabetic subjects have been limited by a lack of animal models and techniques that co-localized retinal thickness and hydration in vivo. In this study we test the hypothesis that a previously reported supernormal central retinal thickness on MRI measured in experimental diabetic retinopathy in vivo represents a persistent and diffuse edema.

Methodology/Principal Findings

In diabetic and age-matched control rats, and in rats experiencing dilutional hyponatremia (as a positive edema control), whole central retinal thickness, intraretinal water content and apparent diffusion coefficients (ADC, ‘water mobility’) were measured in vivo using quantitative MRI methods. Glycated hemoglobin and retinal thickness ex vivo (histology) were also measured in control and diabetic groups. In the dilutional hyponatremia model, central retinal thickness and water content were supernormal by quantitative MRI, and intraretinal water mobility profiles changed in a manner consistent with intracellular edema. Groups of diabetic (2, 3, 4, 6, and 9 mo of diabetes), and age-matched controls were then investigated with MRI and all diabetic rats showed supernormal whole central retinal thickness. In a separate study in 4 mo diabetic rats (and controls), MRI retinal thickness and water content metrics were significantly greater than normal, and ADC was subnormal in the outer retina; the increase in retinal thickness was not detected histologically on sections of fixed and dehydrated retinas from these rats.

Conclusions/Significance

Diabetic male Sprague Dawley rats demonstrate a persistent and diffuse retinal edema in vivo, providing, for the first time, an important model for investigating its pathogenesis and treatment. These studies also validate MRI as a powerful approach for investigating mechanisms of diabetic retinal edema in future experimental and clinical investigations.  相似文献   

16.
Glycosphingolipid changes induced by advanced glycation end-products   总被引:3,自引:0,他引:3  
The effects of advanced glycation end-products (AGEs) on retinal microvascular cell glycosphingolipids were investigated as a potential pathogenic mechanism of diabetic retinopathy. The results obtained showed that, in microvascular retinal endothelial cells and pericytes, AGEs increased the amount of all glycosphingolipids studied (from 25 to 115% depending on the glycosphingolipid species), except for a specific ganglioside, GD3, which decreased by 35% only in pericytes. Glycosphingolipid profiles and GM3 fatty acid analysis did not show any qualitative differences after incubation with AGEs, suggesting that AGEs only induced quantitative changes in cell glycosphingolipids. These results show a new metabolic effect of AGEs, which could be involved in the microvascular alterations observed in diabetic retinopathy.  相似文献   

17.
To investigate the effect of protein kinase C (PKC)-ζ inhibition on vascular leakage in diabetic retinopathy, streptozotocin-induced diabetic mice were intravitreously injected with siPKC-ζ. According to the fluorescein angiography of the retinal vessels, suppression of PKC-ζ effectively attenuated vascular leakage in diabetic retina. Further evaluation on the retina with western blot analysis and immunohistochemistry revealed accompanying restoration of tight junction proteins on retinal vessels. As two major contributors to vascular leakage in diabetic retinopathy, vascular endothelial growth factor (VEGF) and advanced glycation end products (AGEs) were investigated on the tight junction protein expression in endothelial cells. Inhibition of PKC-ζ attenuated VEGF-induced decrease of tight junction proteins and accompanying hyperpermeability in human retinal microvascular endothelial cells (HRMECs). PKC-ζ inhibition also attenuated AGE-induced decrease of tight junction proteins in HRMECs. Our findings suggest that inhibition of PKC-ζ could be an alternative treatment option for compromised blood-retinal barrier in diabetic retinopathy.  相似文献   

18.
Diabetic retinopathy (DR), one of the most serious causes of blindness, is often associated with the upregulation of vascular endothelial growth factor (VEGF) in retina. Recently, leukocyte adhesion (leukostasis) is blamed for the occlusion of retinal capillary vascularity, which ultimately contributes to the progression of diabetic retinopathy. In addition, intercellular adhesion molecule-1 (ICAM-1), a representative factor for leukostasis, is increased in the diabetic retina. Endothelin (ET)-1, a potent vasoconstrictor peptide, is deeply linked to the pathogenesis of diabetic retinopathy. Different therapeutic interventions concerning VEGF have already been proposed to prevent diabetic retinopathy. However, no study yet has reported whether ET-1 dual receptor antagonist could alter the upregulated VEGF and ICAM-1 levels in the diabetic retina. The present study investigated the effect of ET(A/B) dual receptor antagonist (SB209670; 1 mg/rat/day) on the expression of VEGF and ICAM-1 in the diabetic rat retina. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in Sprague-Dawley rats, whereas control rats (non-DM control) received only citrate buffer. After 1 week, the STZ-administered rats were randomly divided into two groups: one group (DM+SB209670) received ET(A/B) dual receptor antagonist for 2 weeks, and a vehicle group (DM+vehicle) was treated only with saline. After the treatment period, the retinas were removed from the eyeballs. In DM+vehicle group, the VEGF expression of the retinas was significantly increased (32.8 pg/mg) in comparison to that in the non-DM control group (26.2 pg/mg); this upregulation of VEGF was reversed in the DM+SB209670 group (28.6 pg/mg). The expression of retinal ICAM-1 was increased in the DM+vehicle group (152.2 pg/mg) compared with the non-DM control group (121.6 pg/mg). However, SB209670 treatment did not alter the expression of retinal ICAM-1 level (154.8 pg/ml) in DM rats. Thus we conclude that an ET(A/B) dual receptor antagonist could reverse the expression level of VEGF in the diabetic retina while failing to normalize the upregulated ICAM-1 expression.  相似文献   

19.
BackgroundThe accumulation of advanced glycated end products (AGEs) in retinal blood vessels is one of the major etiological factors contributing to diabetic retinopathy. Aminoguanidine (AG) is one of the most extensively used inhibitors of AGEs formation. The aim of this study was to investigate whether AG could protect the development of diabetic retinopathy through inhibition of AGEs.MethodsRat diabetes was induced by intraperitoneal injection with streptozotocin (STZ). AG was given to rats in drinking water. Retina was extracted 3 and 6 months following STZ and AG administration. Immunochemistry and transmission electron microscope were used to detect the expression of AGEs and retina morphology.ResultsExtensive staining of AGEs was detected in retinal blood vessels of 3- and 6-month diabetic rats, while no significant staining was found in the control non-diabetic retina or AG treated groups. Pericyte loss, endothelial cell proliferation, increased ratio of endothelial cells/pericytes, acellular capillaries and capillary occlusion were observed in the retina of 6-month diabetic rats. The increased electron density of retinal capillary basement membrane, mitochondrial swelling in pericytes and endothelial cells were also found in 6-month diabetic rats. The 3-month diabetic rats and the AG-treated rats did not have similar morphological changes compared to control group. The AGEs staining in AG-treated rats was still weakly positive.ConclusionsAGEs plays pivotal roles in diabetic retinopathy. AGE deposition occurs prior to retinal microvasculature changes. AG could prevent the onset and development of diabetic retinopathy through inhibition of AGEs.  相似文献   

20.
Hyperglycemia-induced retinal oxidative and nitrative stress can accelerate vascular cell aging, which may lead to vascular dysfunction as seen in diabetes. There is no information on whether this may contribute to the progression of diabetic retinopathy (DR). In this study, we have assessed the occurrence of senescence-associated markers in retinas of streptozotocin-induced diabetic rats at 8 and 12 weeks of hyperglycemia as compared to normoglycemic aging (12 and 14 months) and adult (4.5 months) rat retinas. We have found that in the diabetic retinas there was an up-regulation of senescence-associated markers SA-β-Gal, p16INK4a and miR34a, which correlated with decreased expression of SIRT1, a target of miR34a. Expression of senescence-associated factors primarily found in retinal microvasculature of diabetic rats exceeded levels measured in adult and aging rat retinas. In aging rats, retinal expression of senescence associated-factors was mainly localized at the level of the retinal pigmented epithelium and only minimally in the retinal microvasculature. The expression of oxidative/nitrative stress markers such as 4-hydroxynonenal and nitrotyrosine was more pronounced in the retinal vasculature of diabetic rats as compared to normoglycemic aging and adult rat retinas. Treatments of STZ-rats with the anti-nitrating drug FeTPPS (10mg/Kg/day) significantly reduced the appearance of senescence markers in the retinal microvasculature. Our results demonstrate that hyperglycemia accelerates retinal microvascular cell aging whereas physiological aging affects primarily cells of the retinal pigmented epithelium. In conclusion, hyperglycemia-induced retinal vessel dysfunction and DR progression involve vascular cell senescence due to increased oxidative/nitrative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号