首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the Cbl family of ubiquitin ligases have emerged as crucial negative regulators of tyrosine kinase signaling. These proteins preferentially interact with and target activated tyrosine kinases for ubiquitinylation, thereby facilitating the lysosomal sorting of receptor tyrosine kinases or proteasomal degradation of nonreceptor tyrosine kinases. Recent work has indicated a crucial role of the target kinase activity in Cbl-dependent ubiquitinylation and degradation, but the biochemical basis for this requirement is not understood. Here, we have used the Src-family kinase Fyn, a well characterized Cbl target, to address this issue. Using defined Fyn mutants, we demonstrate that the kinase activity of Fyn is crucial for its Cbl-dependent ubiquitinylation and degradation, but a low level of ubiquitinylation and degradation of kinase-inactive Fyn mutants was consistently observed. Mutational induction of an open conformation enhanced the susceptibility of kinase-active Fyn to Cbl but was insufficient to promote the ubiquitinylation and degradation of kinase-inactive Fyn. Notably, the Cbl-dependent degradation of Fyn did not require the Fyn-mediated phosphorylation of Cbl. Finally, we show that the major determinant of the susceptibility of Fyn protein to Cbl-dependent ubiquitinylation and degradation is the extent to which it physically associates with Cbl; kinase activity of Fyn serves as a critical determinant to promote its association with Cbl, which we demonstrate is mediated by multiple protein-protein interactions. Our results strongly suggest that promotion of association with Cbl is the primary mechanism by which the kinase activity of the targets of Cbl contributes to their susceptibility to Cbl.  相似文献   

2.
Src-family kinases (SFKs) are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12) to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.  相似文献   

3.
Fertilization involves the activation of Src-family protein kinases which play a role at multiple stages of the egg activation process. The objective of the present study was to determine the mechanism by which one of these kinases, the Fyn kinase, is activated in response to fertilization of the zebrafish egg. Inhibitor studies demonstrated that many aspects of egg activation, including Fyn activation, require phosphotyrosyl phosphatase activity. A phosphotyrosyl phosphatase was found to be tightly associated with Fyn kinase and this interaction was mapped to the SH2 domain of Fyn. Coimmunoprecipitation studies identified rPTPalpha as a phosphatase that is complexed with Fyn in the egg, raising the possibility that rPTPalpha is part of the regulatory mechanism responsible for activating Fyn at fertilization.  相似文献   

4.
5.
Hematopoietic cell kinase (Hck) is a member of the Src-family of protein tyrosine kinases. We have found that upon enzymatic activation of Hck by the heavy metal mercuric chloride, there was a rapid increase in the levels of tyrosine phosphorylation of several proteins including the proto-oncogene p120(Cbl). Fibroblasts that are transformed with an activated allele of Hck exhibit constitutive Cbl phosphorylation. Upon Fcgamma receptor activation, a more physiologically relevant extracellular signal, Cbl is tyrosine phosphorylated and the Src-family selective inhibitor, PP1, can prevent this phosphorylation on Cbl. Hck phosphorylates Cbl in vitro and the interaction between Cbl and Hck is direct, requiring Hck's unique, SH3 and SH2 domains for optimal binding. Using a novel estrogen-regulated chimera of Hck we have shown a hormone-dependent association between Hck and Cbl in murine fibroblasts. This work suggests that Cbl serves as a key mediator of Hck induced signalling in hematopoietic cells.  相似文献   

6.
N Rao  A K Ghosh  S Ota  P Zhou  A L Reddi  K Hakezi  B K Druker  J Wu  H Band 《The EMBO journal》2001,20(24):7085-7095
The negative regulator Cbl functions as a ubiquitin ligase towards activated receptor tyrosine kinases and facilitates their transport to lysosomes. Whether Cbl ubiquitin ligase activity mediates its negative regulatory effects on cytoplasmic tyrosine kinases of the Syk/ZAP-70 family has not been addressed, nor is it known whether these kinases are regulated via ubiquitylation during lymphocyte B-cell receptor engagement. Here we show that B-cell receptor stimulation in Ramos cells induces the ubiquitylation of Syk tyrosine kinase which is inhibited by a dominant-negative mutant of Cbl. Intact tyrosine kinase-binding and RING finger domains of Cbl were found to be essential for Syk ubiquitylation in 293T cells and for in vitro Syk ubiquitylation. These same domains were also essential for Cbl-mediated negative regulation of Syk as measured using an NFAT-luciferase reporter in a lymphoid cell. Association with Cbl did not alter the kinase activity of Syk. Altogether, our results support an essential role for Cbl ubiquitin ligase activity in the negative regulation of Syk, and establish that ubiquitylation provides a mechanism of Cbl-mediated negative regulation of cytoplasmic targets.  相似文献   

7.
The B cell antigen receptor complex (BCR) is composed of membrane Ig and heterodimers of Ig-alpha and Ig-beta/gamma. Recent findings indicate that Ig-alpha associates with Src-family kinases, including Fyn and Lyn, via an approximately 26 amino acid motif termed ARH1. Studies reported here (i) define two mechanisms whereby this motif binds Fyn and (ii) reveal an important functional consequence of binding, i.e. kinase activation. Mutational analysis indicates that specific low-affinity binding is determined by a short sequence, -DCSM-, in the motif and is not dependent on motif tyrosine residues. In contrast, the doubly tyrosine phosphorylated motif binds independently of DCSM and with high affinity. Importantly, this binding leads to Fyn activation. Taken together with studies which map low-affinity binding of Fyn or Lyn to the kinase's N-terminal unique region and high-affinity binding to the kinase's SH2 domain, these results suggest a mechanism of BCR activation in which the non-phosphorylated resting receptor is associated with Src-family kinases and, upon stimulation, tyrosine phosphorylation of Ig-alpha leads to reorientation and activation of receptor-associated kinases.  相似文献   

8.
Recent studies have demonstrated that Cbl, the 120-kDa protein product of the c-cbl proto-oncogene, serves as a substrate of a number of receptor-coupled tyrosine kinases and forms complexes with SH3 and SH2 domain-containing proteins, pointing to its role in signal transduction. Based on genetic evidence that the Caenorhabditis elegans Cbl homolog, SLI-1, functions as a negative regulator of the LET-23 receptor tyrosine kinase and our demonstration that Cbl's evolutionarily conserved N-terminal transforming region (Cbl-N; residues 1 to 357) harbors a phosphotyrosine binding (PTB) domain that binds to activated ZAP-70 tyrosine kinase, we examined the possibility that oncogenic Cbl mutants may activate mitogenic signaling by deregulating cellular tyrosine kinase machinery. Here, we show that expression of Cbl-N and two other transforming Cbl mutants (CblY368 delta and Cbl366-382 delta or Cb170Z), but not wild-type Cbl, in NIH 3T3 fibroblasts leads to enhancement of endogenous tyrosine kinase signaling. We identified platelet-derived growth factor receptor alpha (PDGFR alpha) as one target of mutant Cbl-induced deregulation. In mutant Cbl transfectants, PDGFR alpha was hyperphosphorylated and constitutively complexed with a number of SH2 domain-containing proteins. PDGFR alpha hyperphosphorylation and enhanced proliferation of mutant Cbl-transfected NIH 3T3 cells were drastically reduced upon serum starvation, and PDGF-AA substituted for the maintenance of these traits. PDGF-AA stimulation of serum-starved Cbl transfectants induced the in vivo association of transfected Cbl proteins with PDGFR alpha. In vitro, Cbl-N directly bound to PDGFR alpha derived from PDGF-AA-stimulated cells but not to that from unstimulated cells, and this binding was abrogated by a point mutation (G306E) corresponding to a loss-of-function mutation in SLI-1. The Cbl-N/G306E mutant protein, which failed to induce enhanced growth and transformation of NIH 3T3 cells, also failed to induce hyperphosphorylation of PDGFR alpha. Altogether, these findings identify a novel mechanism of Cbl's physiological function and oncogenesis, involving its PTB domain-dependent direct interaction with cellular tyrosine kinases.  相似文献   

9.
The c-Cbl proto-oncogene product Cbl has emerged as a negative regulator of receptor and non-receptor tyrosine kinases, a function dependent on its recently identified ubiquitin ligase activity. Here, we report that EphA2, a member of Eph receptor tyrosine kinases is negatively regulated by Cbl. The negative regulation of EphA2 mediated by Cbl is dependent on the activity of EphA2, as the kinase inactive mutant of EphA2 cannot be regulated by Cbl. Moreover, a point mutation (G306E-Cbl) in TKB region of Cbl that has been reported to abolish Cbl binding to RTKs and non-receptor tyrosine kinases impaired the binding to active EphA2. The dominant negative mutant 70Z-Cbl, which has a 17-amino acids deletion in the N-boundary of the RING finger domain, defuncted negative regulatory function of Cbl to EphA2. These results demonstrate that the TKB domain and RING finger domain of Cbl are essential for this negative regulation.  相似文献   

10.
Src family kinases (SFKs) play critical roles in the regulation of many cellular functions by growth factors, G-protein-coupled receptors and ligand-gated ion channels. Recent data have shown that SFKs serve as a convergent point of multiple signaling pathways regulating N-methyl-d-aspartate (NMDA) receptors in the central nervous system. Multiple SFK molecules, such as Src and Fyn, closely associate with their substrate, NMDA receptors, via indirect and direct binding mechanisms. The NMDA receptor is associated with an SFK signaling complex consisting of SFKs; the SFK-activating phosphatase, protein tyrosine phosphatase α; and the SFK-inactivating kinase, C-terminal Src kinase. Early studies have demonstrated that intramolecular interactions with the SH2 or SH3 domain lock SFKs in a closed conformation. Disruption of the interdomain interactions can induce the activation of SFKs with multiple signaling pathways involved in regulation of this process. The enzyme activity of SFKs appears 'graded', exhibiting different levels coinciding with activation states. It has also been proposed that the SH2 and SH3 domains may stimulate catalytic activity of protein tyrosine kinases, such as Abl. Recently, it has been found that the enzyme activity of neuronal Src protein is associated with its stability, and that the SH2 and SH3 domain interactions may act not only to constrain the activation of neuronal Src, but also to regulate the enzyme activity of active neuronal Src. Collectively, these findings demonstrate novel mechanisms underlying the regulation of SFKs.  相似文献   

11.
Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that gamma-tubulin (gamma-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, gamma-tubulin, and with anti-phosphotyrosine antibody revealed that gamma-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in gamma-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated gamma-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing gamma-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of gamma-tubulin interaction with tubulin dimers or other proteins during neurogenesis.  相似文献   

12.
Fibroblast growth factors (FGFs) play an important regulatory role in skeletal development and bone formation. However, the FGF signaling mechanisms controlling osteoblast function are poorly understood. Here, we identified a role for the Src family members Lyn and Fyn in osteoblast differentiation promoted by constitutive activation of FGF receptor-2 (FGFR2). We show that the overactive FGFR2 S252W mutation induced decreased Src family kinase tyrosine phosphorylation and activity associated with decreased Lyn and Fyn protein expression in human osteoblasts. Pharmacological stimulation of Src family kinases or transfection with Lyn or Fyn vectors repressed alkaline phosphatase (ALP) up-regulation induced by overactive FGFR2. Inhibition of proteasome activity restored normal Lyn and Fyn expression and ALP activity in FGFR2 mutant osteoblasts. Immunoprecipitation studies showed that Lyn, Fyn, and FGFR2 interacted with the ubiquitin ligase c-Cbl and ubiquitin. Transfection with c-Cbl in which the RING finger was disrupted or with c-Cbl with a point mutation that abolishes the binding ability of the Cbl phosphotyrosine-binding domain restored Src kinase activity and Lyn, Fyn, and FGFR2 levels and reduced ALP up-regulation in mutant osteoblasts. Thus, constitutive FGFR2 activation induces c-Cbl-dependent Lyn and Fyn proteasome degradation, resulting in reduced Lyn and Fyn kinase activity, increased ALP expression, and FGFR2 down-regulation. This reveals a common Cbl-mediated negative feedback mechanism controlling Lyn, Fyn, and FGFR2 degradation in response to overactive FGFR2 and indicates a role for Cbl-dependent down-regulation of Lyn and Fyn in osteoblast differentiation induced by constitutive FGFR2 activation.  相似文献   

13.
Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation.  相似文献   

14.
Src family protein-tyrosine kinases are regulated by intramolecular binding of the SH2 domain to the C-terminal tail and association of the SH3 domain with the SH2 kinase-linker. The presence of two regulatory interactions raises the question of whether disruption of both is required for kinase activation. To address this question, we engineered a high affinity linker (HAL) mutant of the Src family member Hck in which an optimal SH3 ligand was substituted for the natural linker. Surface plasmon resonance analysis demonstrated tight intramolecular binding of the modified HAL sequence to SH3. Hck-HAL was then combined with a tail tyrosine mutation (Y501F) and expressed in Rat-2 fibroblasts. Surprisingly, Hck-HAL-Y501F showed strong transforming and kinase activities, demonstrating that intramolecular SH3-linker release is not required for SH2-based kinase activation. In Saccharomyces cerevisiae, which lacks the negative regulatory tail kinase Csk, wild-type Hck was more strongly activated in the presence of an SH3-binding protein (human immunodeficiency virus-1 Nef), indicating persistence of native SH3-linker interaction in an active Hck conformation. Taken together, these data support the existence of multiple active conformations of Src family kinases that may generate unique downstream signals.  相似文献   

15.
Recent studies have shown that trans-phosphorylation of the Abl SH3 domain at Tyr89 by Src-family kinases is required for the full transforming activity of Bcr-Abl. Tyr89 localizes to a binding surface of the SH3 domain that engages the SH2-kinase linker in the crystal structure of the c-Abl core. Displacement of SH3 from the linker is likely to influence efficient downregulation of c-Abl. Hydrogen-deuterium exchange (HX) and mass spectrometry (MS) were used to investigate whether Tyr89 phosphorylation affects the ability of the SH3 domain to interact intramolecularly with the SH2-kinase linker in cis as well as other peptide ligands in trans. HX MS analysis of SH3 binding showed that when various Abl constructs were phosphorylated at Tyr89 by the Src-family kinase Hck, SH3 was unable to engage a high-affinity ligand in trans and that interaction with the linker in cis was reduced dramatically in a construct containing the SH3 and SH2 domains plus the linker. Phosphorylation of the Abl SH3 domain on Tyr89 also interfered with binding to the negative regulatory protein Abi-1 in trans. Site-directed mutagenesis of Tyr89 and Tyr245, another tyrosine phosphorylation site located in the linker that may also influence SH3 binding, implicated Tyr89 as the key residue necessary for disrupting regulation after phosphorylation. These results imply that phosphorylation at Tyr89 by Src-family kinases prevents engagement of the Abl SH3 domain with its intramolecular binding partner leading to enhanced Abl kinase activity and cellular signaling.  相似文献   

16.
17.
The Abl-interactor (Abi) proteins are involved in the regulation of actin polymerization and have recently been shown to modulate epidermal growth factor receptor (EGFR) endocytosis. Here we describe the identification of a novel complex between Abi-1 and the Cbl ubiquitin ligase that is induced by stimulation with EGF. Notably, an Abi-1 mutant lacking the SH3 domain (DeltaSH3) fails to interact with Cbl and inhibits EGFR internalization. We show that expression of the Abi-1DeltaSH3 mutant inhibits Cbl accumulation at the plasma membrane after EGF treatment. We have previously shown that the oncogenic Abl tyrosine kinase inhibits EGFR internalization. Here we report that the oncogenic Abl kinase disrupts the EGF-inducible Abi-1/Cbl complex, highlighting the importance of Abl kinases and downstream effectors in the regulation of EGFR internalization. Thus, our work reveals a new role for oncogenic Abl tyrosine kinases in the regulation of the Abi-1/Cbl protein complex and uncovers a role for the Abi-1/Cbl complex in the regulation of EGFR endocytosis.  相似文献   

18.
CIN85 is a multidomain adaptor protein implicated in Cbl-mediated down-regulation of receptor tyrosine kinases. CIN85 binding to Cbl is increased after growth factor stimulation and is critical for targeting receptor tyrosine kinases to clathrin-mediated endocytosis. Here we report the identification of a novel polyproline-arginine motif (PXXXPR), specifically recognized by the SH3 domains of CIN85 and its homologue CMS/CD2AP. This motif was indispensable for CIN85 binding to Cbl/Cbl-b, to other CIN85 SH3 domains' effectors, and for mediating an intramolecular interaction between the SH3-A domain and the proline-rich region of CIN85. Individual SH3 domains of CIN85 bound to PXXXPR peptides of Cbl/Cbl-b with micromolar affinities, whereas an extended structure of two or three SH3 domains bound with higher stoichiometry and increased affinity to the same peptides. This enabled full size CIN85 to simultaneously interact with multiple Cbl molecules, promoting their clustering in mammalian cells. The ability of CIN85 to cluster Cbl was important for ligand-induced stabilization of CIN85.Cbl.epidermal growth factor receptor complexes, as well as for epidermal growth factor receptor degradation in the lysosome. Thus, specific interactions of CIN85 SH3 domains with the PXXXPR motif in Cbl play multiple roles in down-regulation of receptor tyrosine kinases.  相似文献   

19.
Nef is an HIV accessory protein required for high-titer viral replication and AIDS progression. Previous studies have shown that the SH3 domains of Hck and Lyn bind to Nef via proline-rich sequences in vitro, identifying these Src-related kinases as potential targets for Nef in vivo. Association of Nef with Hck causes displacement of the intramolecular interaction between the SH3 domain and the SH2-kinase linker, leading to kinase activation both in vitro and in vivo. In this study, we investigated whether interaction with Nef induces activation of other Src family kinases (Lyn, Fyn, Src, and Lck) following coexpression with Nef in Rat-2 fibroblasts. Coexpression with Nef induced Hck kinase activation and fibroblast transformation, consistent with previous results. In contrast, coexpression of Nef with Lyn was without effect, despite equivalent binding of Nef to full-length Lyn and Hck. Furthermore, Nef was found to suppress the kinase and transforming activities of Fyn, the SH3 domain of which exhibits low affinity for Nef. Coexpression with Nef did not alter c-Src or Lck tyrosine kinase or transforming activity in this system. Differential modulation of Src family members by Nef may produce unique downstream signals depending on the profile of Src kinases expressed in a given cell type.  相似文献   

20.
Src family kinases are suppressed by a "tail bite" mechanism, in which the binding of a phosphorylated tyrosine in the C terminus of the protein to the Src homology (SH) 2 domain in the N-terminal half of the protein forces the catalytic domain into an inactive conformation stabilized by an additional SH3 interaction. In addition to this intramolecular suppressive function, the SH2 domain also mediates intermolecular interactions, which are crucial for T cell antigen receptor (TCR) signaling. To better understand the relative importance of these two opposite functions of the SH2 domain of the Src family kinase Lck in TCR signaling, we created three mutants of Lck in which the intramolecular binding of the C terminus to the SH2 domain was strengthened. The mutants differed from wild-type Lck only in one to three amino acid residues following the negative regulatory tyrosine 505, which was normally phosphorylated by Csk and dephosphorylated by CD45 in the mutants. In the Lck-negative JCaM1 cell line, the Lck mutants had a much reduced ability to transduce signals from the TCR in a manner that directly correlated with SH2-Tyr(P)(505) affinity. The mutant with the strongest tail bite was completely unable to support any ZAP-70 phosphorylation, mitogen-activated protein kinase activation, or downstream gene activation in response to TCR ligation, whereas other mutants had intermediate abilities. Lipid raft targeting was not affected. We conclude that Lck is regulated by a weak tail bite to allow for its activation and service in TCR signaling, perhaps through a competitive SH2 engagement mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号