首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Genetic studies recently unraveled the genetic cause of sclerosteosis, a rare skeletal dysplasia characterized by a generalized increase in bone mass. Different loss-of-function mutations were identified in SOST, a gene with no homology to any known gene. This SOST gene is also involved in the pathogenesis of van Buchem disease, a disorder closely resembling sclerosteosis, since a 52-kb deletion located downstream of SOST is found in patients diagnosed with this condition. Molecular studies showed a very restricted expression pattern of SOST and its gene product, sclerostin, with areas in the bone tissue, more precisely in cells of the osteoblast lineage, being the major sites of expression. Sclerostin is a secreted protein with a cysteine knot motif. In vitro studies demonstrated that sclerostin acts as a modulator of BMP signaling by binding to different members of the BMP growth factor family and acting on downstream BMP signal transduction events. The important function of sclerostin in bone metabolism has also been proven in vivo by the osteopenic phenotype of transgenic mice overexpressing SOST in bone. The identification of sclerostin as an important protein in bone metabolism opens new perspectives for the development of anabolic therapeutics to prevent and treat osteoporosis.  相似文献   

2.
SOST基因的表达调控   总被引:2,自引:0,他引:2  
秦龙娟  丁达霞  崔璐璐  黄青阳 《遗传》2013,35(8):939-947
硬化蛋白(Sclerostin, SOST)主要由骨细胞特异性表达, 是骨形成的负性调节因子。甲状旁腺激素和雌激素抑制SOST基因表达, 转录因子Osterix、Runx2和Mef2c促进SOST基因表达, 而转录因子Sirt1负调控SOST表达。此外, SOST基因表达还受DNA甲基化和microRNA等表观遗传学调控。SOST基因突变可引起骨硬缩症和Van Buchem病, 与骨质疏松症相关联。Wnt和BMP是骨代谢调节的两个重要信号途径, SOST可通过结合BMP的Ⅰ型或Ⅱ型受体和Wnt的共受体LRP5/6分别抑制BMP和Wnt信号途径来调控成骨细胞分化和骨形成。抑制SOST为骨质疏松症的治疗提供了新的途径。文章综述了SOST基因的结构、功能、表达调控、与人类疾病的关系、调节骨代谢的机制及其临床应用前景。  相似文献   

3.
The increase in bone resorption and/or the inhibition of bone regeneration caused by wear particles are the main causes of periprosthetic osteolysis. The SOST gene and Sclerostin, a protein synthesized by the SOST gene, are the characteristic marker of osteocytes and regulate bone formation and resorption. We aimed to verify whether the SOST gene was involved in osteolysis induced by titanium (Ti) particles and to investigate the effects of SOST reduction on osteolysis. The results showed osteolysis on the skull surface with an increase of sclerostin levels after treated with Ti particles. Similarly, sclerostin expression in MLO-Y4 osteocytes increased when treated with Ti particles in vitro. After reduction of SOST, local bone mineral density and bone volume increased, while number of lytic pores on the skull surface decreased and the erodibility of the skull surface was compensated. Histological analyses revealed that SOST reduction increased significantly alkaline phosphatase- (ALP) and osterix-positive expression on the skull surface which promoted bone formation. ALP activity and mineralization of MC3T3-E1 cells also increased in vitro when SOST was silenced, even if treated with Ti particles. In addition, Ti particles decreased β-catenin expression with an increase in sclerostin levels, in vivo and in vitro. Inversely, reduction of SOST expression increased β-catenin expression. In summary, our results suggested that reduction of SOST gene can activate the Wnt/β-catenin signalling pathway, promoting bone formation and compensated for bone loss induced by Ti particles. Thus, this study provided new perspectives in understanding the mechanisms of periprosthetic osteolysis.  相似文献   

4.
Sclerosteosis is a progressive sclerosing bone dysplasia. Sclerostin (the SOST gene) was originally identified as the sclerosteosis-causing gene. However, the physiological role of sclerostin remains to be elucidated. Sclerostin was intensely expressed in developing bones of mouse embryos. Punctuated expression of sclerostin was localized on the surfaces of both intramembranously forming skull bones and endochondrally forming long bones. Sclerostin-positive cells were identified as osteoclasts. Recombinant sclerostin protein produced in cultured cells was efficiently secreted as a monomer. We examined effects of sclerostin on the activity of BMP2, BMP4, BMP6, and BMP7 for mouse preosteoblastic MC3T3-E1 cells. Sclerostin inhibited the BMP6 and BMP7 activity but not the BMP2 and BMP4 activity. Sclerostin bound to BMP6 and BMP7 with high affinity but bound to BMP2 and BMP4 with lower affinity. In conclusion, sclerostin is a novel secreted osteoclast-derived BMP antagonist with unique ligand specificity. We suggest that sclerostin negatively regulates the formation of bone by repressing the differentiation and/or function of osteoblasts induced by BMPs. Since sclerostin expression is confined to the bone-resorbing osteoclast, it provides a mechanism whereby bone apposition is inhibited in the vicinity of resorption. Our findings indicate that sclerostin plays an important role in bone remodeling and links bone resorption and bone apposition.  相似文献   

5.
High bone mass diseases are caused both by activating mutations in the Wnt pathway and by loss of SOST, a bone morphogenetic protein (BMP) antagonist, leading to the activation of BMP signaling. Given the phenotypic similarity between mutations that activate these signaling pathways, it seems likely that BMPs and Wnts operate in parallel or represent components of the same pathway, modulating osteoblast differentiation. In this study, we show that in C3H10T1/2 cells, Wnt-3A and BMP-6 proteins were inducers of osteoblast differentiation, as measured by alkaline phosphatase (ALP) induction. Surprisingly, sclerostin, noggin, and human BMP receptor 1A (BMPR1A)-FC fusion proteins blocked Wnt-3A-induced ALP as well as BMP-6-induced ALP activity. Dkk-1, a Wnt inhibitor, blocked Wnt-induced ALP activity but not BMP-induced ALP activity. Early Wnt-3A signaling as measured by beta-catenin accumulation was not affected by the BMP antagonists but was blocked by Dkk-1. Wnt-3A induced the appearance of BMP-4 mRNA 12 h prior to that of ALP in C3H10T1/2 cells. We propose that sclerostin and other BMP antagonists do not block Wnt signaling directly. Sclerostin blocks Wnt-induced ALP activity by blocking the activity of BMP proteins produced by Wnt treatment. The expression of BMP proteins in this autocrine loop is essential for Wnt-3A-induced osteoblast differentiation.  相似文献   

6.
Sclerosteosis is an autosomal recessive disease that is characterized by overgrowth of bone tissue and is linked to mutations in the gene encoding the secreted protein SOST. Sclerosteosis shares remarkable similarities with "high bone mass" diseases caused by "gain-of-function" mutations in the LRP5 gene, which encodes a coreceptor for Wnt signaling proteins. We show here that SOST antagonizes Wnt signaling in Xenopus embryos and mammalian cells by binding to the extracellular domain of the Wnt coreceptors LRP5 and LRP6 and disrupting Wnt-induced Frizzled-LRP complex formation. Our findings suggest that SOST is an antagonist for Wnt signaling and that the loss of SOST function likely leads to the hyperactivation of Wnt signaling that underlies bone overgrowth seen in sclerosteosis patients.  相似文献   

7.
Bone morphogenetic proteins (BMPs) are known to induce ectopic bone. However, it is largely unknown how BMP signaling in osteoblasts directly regulates endogenous bone. This study investigated the mechanism by which BMP signaling through the type IA receptor (BMPR1A) regulates endogenous bone mass using an inducible Cre-loxP system. When BMPR1A in osteoblasts was conditionally disrupted during embryonic bone development, bone mass surprisingly was increased with upregulation of canonical Wnt signaling. Although levels of bone formation markers were modestly reduced, levels of resorption markers representing osteoclastogenesis were severely reduced, resulting in a net increase in bone mass. The reduction of osteoclastogenesis was primarily caused by Bmpr1a-deficiency in osteoblasts, at least through the RANKL-OPG pathway. Sclerostin (Sost) expression was downregulated by about 90% and SOST protein was undetectable in osteoblasts and osteocytes, whereas the Wnt signaling was upregulated. Treatment of Bmpr1a-deficient calvariae with sclerostin repressed the Wnt signaling and restored normal bone morphology. By gain of Smad-dependent BMPR1A signaling in mice, Sost expression was upregulated and osteoclastogenesis was increased. Finally, the Bmpr1a-deficient bone phenotype was rescued by enhancing BMPR1A signaling, with restoration of osteoclastogenesis. These findings demonstrate that BMPR1A signaling in osteoblasts restrain endogenous bone mass directly by upregulating osteoclastogenesis through the RANKL-OPG pathway, or indirectly by downregulating canonical Wnt signaling through sclerostin, a Wnt inhibitor and a bone mass mediator.  相似文献   

8.
9.
Enhancing bone morphogenetic protein (BMP) signaling increases bone formation in a variety of settings that target bone repair. However, the role of BMP in the maintenance of adult bone mass is not well understood. Targeted disruption of BMP3 in mice results in increased trabecular bone formation, whereas transgenic overexpression of BMP3 in skeletal cells leads to spontaneous fracture, consistent with BMP3 having a negative role in bone mass regulation. Here we investigate the importance of BMP3 as a mediator of BMP signaling in the adult skeleton. We find that osteoblasts (OBL) and osteocytes are the source of BMP3 in adult bone. Using in vitro cultures of primary bone marrow stromal cells, we show that overexpression of BMP3 suppresses OBL differentiation, whereas loss of BMP3 increases colony-forming unit fibroblasts and colony-forming unit OBL. The ability of BMP3 to affect OBL differentiation is due to its interaction with activin receptor type 2b (Acvr2b) because knockdown of endogenous Acvr2b in bone marrow stromal cells reduces the suppressive effect of BMP3 on OBL differentiation. These findings best fit a model in which BMP3, produced by mature bone cells, acts to reduce BMP signaling through Acvr2b in skeletal progenitor cells, limiting their differentiation to mature OBL. Our data further support the idea that endogenous BMPs have a physiological role in regulating adult bone mass.  相似文献   

10.
Recently, the role of several elements of the bone morphogenetic protein (BMP) family has been studied in the ovary, some of them being crucial for ovarian function. In the present work, we have studied bone morphogenetic protein 5 (BMP5) expression and its biological role in the rat ovary. BMP5 is expressed by rat granulosa cells (GCs) and exerts specific biological effects on proliferation and steroidogenesis of these cells in an autocrine manner. These effects were shown to be associated with an increase in cyclin D2 protein level and a decrease in steroidogenic acute regulatory (StAR) protein expression in GCs in vitro. Ultimately, BMP5 actions were inhibited by follistatin. Overall, these data show that BMP5 is a novel element of the BMP family that might play a fully paracrine role in rodent ovarian folliculogenesis.  相似文献   

11.
The liver, pancreas, and lungs are induced from endoderm progenitors by a series of dynamic growth factor signals from the mesoderm, but how the temporal-spatial activity of these signals is controlled is poorly understood. We have identified an extracellular regulatory loop required for robust bone morphogenetic protein (BMP) signaling in the Xenopus foregut. We show that BMP signaling is required to maintain foregut progenitors and induce expression of the secreted frizzled related protein Sizzled (Szl) and the extracellular metalloprotease Tolloid-like 1 (Tll1). Szl negatively regulates Tll activity to control deposition of a fibronectin (FN) matrix between the mesoderm and endoderm, which is required to maintain BMP signaling. Foregut-specific Szl depletion results in a loss of the FN matrix and failure to maintain robust pSmad1 levels, causing a loss of foregut gene expression and organ agenesis. These results have implications for BMP signaling in diverse contexts and the differentiation of foregut tissue from stem cells.  相似文献   

12.
BMPs (Bone morphogenetic proteins) such as BMP2 and BMP7 have been used about one decade as bone anabolic agents in orthopaedics. The BMP receptor ACVR1, which is a key receptor of BMP7, is expressed in bone. The pathological role of ACVR1 in humans has been reported: a point mutation in ACVR1 can cause fibrodysplasia ossificans progressiva (FOP) in which ectopic ossification occurs in skeletal muscles and deep connective tissues. The physiological function of ACVR1 in bone, however, is totally unknown. The purpose of this study is to investigate the endogenous role of ACVR1 in osteoblasts, one of the most dominant cell-types in bone. We generated Acvr1-null mice in an osteoblast-specific manner using an inducible Cre-loxP system. Surprisingly, we found that bone mass was increased in the Acvr1-null mice. Interestingly, canonical Wnt signaling was increased and expression levels of Wnt inhibitors Sost and Dkk1 were both suppressed in the null bones during the developmental stages. In addition, we confirmed that expression levels of both Sost and Dkk1 were upregulated by BMP7 dose-dependently in vitro. These results suggest that the Acvr1-deficiency can increase bone mass by activating Wnt signaling in which both Sost and Dkk1 expression levels are diminished. This study leads to a new concept of the BMP7-ACVR1-SOST/DKK1 axis in osteoblasts, in which BMP7 signaling through ACVR1 can reduce Wnt signaling via SOST/DKK1 and then inhibits osteogenesis. Although this concept is beyond the current known function of BMP7, it can explain the varied outcomes of BMP7 treatment. We believe BMP signaling can exhibit multifaceted effects by context and cell type.  相似文献   

13.
Cui Y  He S  Xing C  Lu K  Wang J  Xing G  Meng A  Jia S  He F  Zhang L 《The EMBO journal》2011,30(13):2675-2689
Smad ubiquitination regulatory factor 1 (Smurf1), an homologous to E6AP C-terminus (HECT)-type E3 ubiquitin ligase, performs a crucial role in the regulation of the bone morphogenetic protein (BMP) signalling pathway in both embryonic development and bone remodelling. How the stability and activity of Smurf1 are negatively regulated remains largely unclear. Here, we report that F-box and LRR domain-containing protein 15 (FBXL15), an F-box protein of the FBXL family, forms an Skp1-Cullin1-F-box protein-Roc1 (SCF)(FBXL15) ubiquitin ligase complex and targets Smurf1 for ubiquitination and proteasomal degradation. FBXL15, through its leucine-rich repeat domain, specifically recognizes the large subdomain within the N-lobe of the Smurf1 HECT domain and promotes the ubiquitination of Smurf1 on K355 and K357 within the WW-HECT linker region. In this way, FBXL15 positively regulates BMP signalling in mammalian cells. Knockdown of fbxl15 expression in zebrafish embryos by specific antisense morpholinos causes embryonic dorsalization phenocoping BMP-deficient mutants. Injection of FBXL15 siRNAs into rat bone tissues leads to a significant loss of bone mass and decrease in bone mineral density. Collectively, our results demonstrate that Smurf1 stability is suppressed by SCF(FBXL15)-mediated ubiquitination and that FBXL15 is a key regulator of BMP signalling during embryonic development and adult bone formation.  相似文献   

14.
Adenovirus-mediated BMP2 expression in human bone marrow stromal cells   总被引:13,自引:0,他引:13  
Recombinant adenoviral vectors have been shown to be potential new tools for a variety of musculoskeletal defects. Much emphasis in the field of orthopedic research has been placed on developing systems for the production of bone. This study aims to determine the necessary conditions for sustained production of high levels of active bone morphogenetic protein 2 (BMP2) using a recombinant adenovirus type 5 (Ad5BMP2) capable of eliciting BMP2 synthesis upon infection and to evaluate the consequences for osteoprogenitor cells. The results indicate that high levels (144 ng/ml) of BMP2 can be produced in non-osteoprogenitor cells (A549 cell line) by this method and the resultant protein appears to be three times more biologically active than the recombinant protein. Surprisingly, similar levels of BMP2 expression could not be achieved after transduction with Ad5BMP2 of either human bone marrow stromal cells or the mouse bone marrow stromal cell line W20-17. However, human bone marrow stromal cells cultured with 1 microM dexamethasone for four days, or further stimulated to become osteoblast-like cells with 50 microg/ml ascorbic acid, produced high levels of BMP2 upon Ad5BMP2 infection as compared to the undifferentiated cells. The increased production of BMP2 in adenovirus transduced cells following exposure to 1 microM dexamethasone was reduced if the cells were not given 50 microg/ml ascorbic acid. When bone marrow stromal cells were allowed to become confluent in culture prior to differentiation, BMP2 production in response to Ad5BMP2 infection was lost entirely. Furthermore, the increase in BMP2 synthesis seen during differentiation was greatly decreased when Ad5BMP2 was administered prior to dexamethasone treatment. In short, the efficiency of adenovirus mediated expression of BMP2 in bone marrow stromal cells appears to be dependent on the differentiation state of these cells.  相似文献   

15.
The low density lipoprotein (LDL) receptor-related protein 5 (LRP5) is a co-receptor for Wnt proteins and a major regulator in bone homeostasis. Human genetic studies have shown that recessive loss-of-function mutations in LRP5 are linked to osteoporosis, while on the contrary, dominant missense LRP5 mutations are associated with high bone mass (HBM) diseases. All LRP5 HBM mutations are clustered in a single region in the LRP5 extracellular domain and presumably result in elevated Wnt signaling in bone forming cells. Here we show that LRP5 HBM mutant proteins exhibit reduced binding to a secreted bone-specific LRP5 antagonist, SOST, and consequently are more refractory to inhibition by SOST. As loss-of-function mutations in the SOST gene are associated with Sclerosteosis, another disorder of excessive bone growth, our study suggests that the SOST-LRP5 antagonistic interaction plays a central role in bone mass regulation and may represent a nodal point for therapeutic intervention for osteoporosis and other bone diseases.  相似文献   

16.
ObjectiveThe Wnt signaling pathway is an important modulator of bone metabolism. This study aims to clarify the changes in Wnt antagonists in active and biochemically controlled acromegalic patients.MethodsWe recruited 77 patients recently diagnosed with acromegaly. Of those, 41 patients with complete follow-up data were included. Thirty healthy patients matched for age, sex, and body mass index served as controls. At baseline and posttreatment, Wnt antagonists (sclerostin [SOST], dickkopf-related protein 1 [DKK-1], and Wnt inhibitory factor 1 [WIF-1]), bone turnover markers (osteocalcin, procollagen type 1 N-terminal propeptide [P1NP], and C-terminal telopeptide of type 1 collagen [CTX]) and the bone remodeling index were investigated.ResultsAcromegalic patients had higher serum osteocalcin, P1NP, and CTX and a higher bone remodeling index than controls (P < .01). Serum SOST, DKK-1, and WIF-1 levels were significantly decreased in patients compared to controls (all P < .01). Serum SOST and WIF-1 levels were negatively correlated with growth hormone levels; SOST levels were positively correlated with WIF-1. After treatment, serum bone turnover markers and the bone remodeling index decreased, while SOST and WIF-1 significantly increased (P < .05). DKK-1 levels did not change compared to baseline (P > .05). In biochemically controlled patients, SOST and WIF-1 levels and bone turnover markers were restored and did not differ from those of the control participants (all P > .05).ConclusionPatients with active acromegaly exhibited significantly decreased Wnt antagonist levels. The reduction in Wnt antagonists is a compensatory mechanism to counteract increased bone fragility in active acromegaly.  相似文献   

17.
During spinal cord development, distinct classes of interneurons arise at stereotypical locations along the dorsoventral axis. In this paper, we demonstrate that signaling through bone morphogenetic protein (BMP) type 1 receptors is required for the formation of two populations of commissural neurons, DI1 and DI2, that arise within the dorsal neural tube. We have generated a double knockout of both BMP type 1 receptors, Bmpr1a and Bmpr1b, in the neural tube. These double knockout mice demonstrate a complete loss of D1 progenitor cells, as evidenced by loss of Math1 expression, and the subsequent failure to form differentiated DI1 interneurons. Furthermore, the DI2 interneuron population is profoundly reduced. The loss of these populations of cells results in a dorsal shift of the dorsal cell populations, DI3 and DI4. Other dorsal interneuron populations, DI5 and DI6, and ventral neurons appear unaffected by the loss of BMP signaling. The Bmpr double knockout animals demonstrate a reduction in the expression of Wnt and Id family members, suggesting that BMP signaling regulates expression of these factors in spinal cord development. These results provide genetic evidence that BMP signaling is crucial for the development of dorsal neuronal cell types.  相似文献   

18.
Osteoporosis is a systemic metabolic disease characterized by low bone mass with deterioration of the bony microstructure which leads to both bone brittleness and increased risk of fracture. Sclerostin is a protein encoded by the SOST gene which is specifically expressed in osteocyte. Monoclonal antibodies of sclerostin can promote bone formation by antagonizing its inhibitory action. However, the effectiveness of monoclonal antibodies to exert such effects are limited by the large molecular mass and high immunogenicity. Here, we report that we purified a high immune affinity, single-chain antibody of SOST: SOST–single-chain Fv (scFv). Real-time polymerase chain reaction amplification of the variable regions of the heavy- and light-chain gene from a secretory anti-SOST antibody was performed. Animal experiments showed that SOST–scFv promoted bone healing in a rat model of osteoporosis.  相似文献   

19.
Bone morphogenetic protein 2B (BMP 2B, also known as BMP 4) induces cartilage and bone morphogenesis in ectopic extraskeletal sites. BMP 2B is one of several bone morphogenetic proteins which along with activins and inhibins are members of the transforming growth factor-beta (TGF-beta) family. Both BMP 2B and activin A, but not TGF-beta 1, induce rat pheochromocytoma PC12 neuronal cell differentiation and expression of VGF, a nervous system-specific mRNA. PC12 cells exhibited approximately 2,500 receptors per cell for BMP 2B with an apparent dissociation constant of 19 pM. Extracellular matrix components, including fibronectin, laminin, and collagen type IV potentiated the activity of BMP and activin A, with the latter being the most active. Direct experiments demonstrated that radioiodinated BMP 2B bound to collagen type IV better than to either laminin or fibronectin. These data demonstrate a common neurotrophic activity of both BMP 2B and activin A, and suggest that these regulatory molecules alone and in conjunction with extracellular matrix components may play a role in both the development and repair of nervous tissue.  相似文献   

20.
Type 2 diabetes mellitus impairs osteogenesis in bone marrow stromal cells (BMSCs). Bone morphogenetic protein 2 (BMP2) has been extensively applied for bone defect restoration and has been shown to activate the Wnt signaling pathway. The objective of this study was to investigate the effects of BMP2 on the cell proliferation and osteogenesis of type 2 diabetic BMSCs in rats and explore whether BMP2 induced osteogenesis via the stimulation of Wnt signaling pathway. The cell experiments were divided into DM (diabetic BMSCs), BMP25 (induced with 25 ng/ml BMP2), BMP100 (induced with 100 ng/ml BMP2) and BMP25  + XAV groups. All cells with or without the different concentrations of BMP2 were cultured under the same experimental conditions. The in vitro results indicated that BMP2 enhanced cell proliferation by 130%–157% and osteogenic differentiation by approximately two-fold in type 2 diabetic BMSCs. The expression levels of β-catenin, cyclin D1, Runx2 and c-myc related to the Wnt signaling pathway were also upregulated from 180% to 212% in BMP2-induced type 2 diabetic rat BMSCs, while the level of GSK3β decreased to 43%. In BMP2-induced type 2 diabetic BMSCs with calcium phosphate cement (CPC) scaffolds for osteoblast study in vivo, the appearance of newly formed bone dramatically increased to 175% compared with type 2 diabetic BMSCs. These data demonstrated that BMP2 enhanced bone regeneration in diabetic BMSCs by stimulating the Wnt signaling pathway with the accumulation of β-catenin and the depressed expression of GSK3β. Diabetic BMSCs associated with BMP2 might be a potential tissue-engineered construct for bone defects in type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号