首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was undertaken to investigate the effect of Glomus mosseae on chlorophyll (Chl) content, Chl fluorescence parameters and chloroplast ultrastructure of beach plum seedlings under 2% NaCl stress. The results showed that compared to control, both Chl a and Chl b contents of NaCl + G. mosseae treatment were significantly lower during the salt stress, while Chl a/b ratio increased significantly. The increase of minimal fluorescence of darkadapted state (F0), and the decrease of maximal fluorescence of dark-adapted state (Fm) and variable fluorescence (Fv) values were inhibited. The maximum quantum yield of PSII photochemistry (Fv/Fm), the maximum energy transformation potential of PSII photochemistry (Fv/F0) and the effective quantum yield of PSII photochemistry (??PSII) increased significantly, especially the latter two variables. The values of the photochemical quenching coefficient (qP) and the nonphotochemical quenching (NPQ) were similar between G. mosseae inoculation and noninoculation. It could be concluded that G. mosseae inoculation could protect the photosystem II (PSII) of beach plum, enhance the efficiency of primary light energy conversion and improve the primitive response of photosynthesis under salinity stress. Meanwhile, G. mosseae inoculation was beneficial to maintain the integrity of thylakoid membrane and to protect the structure and function of chloroplast, which suggested that G. mosseae can alleviate the damage of NaCl stress to chloroplast.  相似文献   

2.
Artificially mediated linear (methylviologen) and cyclic (phenazine methosulfate) electron transport induced zeaxanthin-dependent and independent (constitutive) nonphotochemical quenching in osmotically shocked chloroplasts of pea (Pisum sativum L. cv Oregon). Nonphotochemical quenching was quantitated as Stern-Volmer quenching (SVN) calculated as (Fm/F′m)-1 where Fm is the fluorescence intensity with all PSII reaction centers closed in a nonenergized, dark-adapted state and F′m is the fluorescence intensity with all PSII reaction centers closed in an energized state. Reversal of quenching by nigericin and electron-transport inhibitors showed that both quenching types were energy-dependent SVN. Under light-induced saturating ΔpH, constitutive-SVN reached steady-state in about 1 minute whereas zeaxanthin-SVN continued to develop for several minutes in parallel with the slow kinetics of violaxanthin deepoxidation. SVN above the constitutive level and relative zeaxanthin concentration showed high linear correlations at steady-state and during induction. Furthermore, Fo quenching, also treated as Stern-Volmer quenching (SVO) and calculated as (Fo/F′o)-1, showed high correlation with zeaxanthin and consequently with SVN (Fo and F′o are fluorescence intensities with all PSII reaction centers in nonenergized and energized states, respectively). These results support the view that zeaxanthin increases SVN above the constitutive level in a concentration-dependent manner and that zeaxanthin-dependent SVN occurs in the pigment bed. Preforming zeaxanthin increased the rate and extent of SVN, indicating that slow events other than the amount of zeaxanthin also affect final zeaxanthin-SVN expression. The redox state of the primary electron acceptor of photosystem II did not appear to determine SVN. Antimycin, when added while chloroplasts were in a dark-adapted or nonenergized state, inhibited both zeaxanthin-SVN and constitutive-SVN induced by linear and cyclic electron transport. These similarities, including possible constitutive Fo quenching, suggest that zeaxanthin-dependent and constitutive SVN are mechanistically related.  相似文献   

3.
Photosystem II (PS II) efficiency, nonphotochemical fluorescence quenching, and xanthophyll cycle composition were determined in situ in the natural environment at midday in (i) a range of differently angled sun leaves ofEuonymus kiautschovicus Loesener and (ii) in sun leaves of a wide range of different plant species, including trees, shrubs, and herbs. Very different degrees of light stress were experienced by these leaves (i) in response to different levels of incident photon flux densities at similar photosynthetic capacities amongEuonymus leaves and (ii) as a result of very different photosynthetic capacities among species at similar incident photon flux densities (that were equivalent to full sunlight). ForEuonymus as well as the interspecific comparison all data fell on one single, close relationship for changes in intrinsic PSII efficiency, nonphotochemical fluorescence quenching, or the levels of zeaxanthin + antheraxanthin in leaves, respectively, as a function of the actual level of light stress. Thus, the same conversion state of the xanthophyll cycle and the same level of energy dissipation were observed for a given degree of light stress independent of species or conditions causing the light stress. Since all increases in thermal energy dissipation were associated with increases in the levels of zeaxanthin + antheraxanthin in these leaves, there was thus no indication of any form of xanthophyll cycle-independent energy dissipation in any of the twenty-four species or varieties of plants examined in their natural environment. It is also concluded that transient diurnal changes in intrinsic PSII efficiency in nature are caused by changes in the efficiency with which excitation energy is delivered from the antennae to PSII centers, and are thus likely to be purely photoprotective. Consequently, the possibility of quantifying the allocation of absorbed light into PSII photochemistry versus energy dissipation in the antennae from changes in intrinsic PSII efficiency is explored.Abbreviations A antheraxanthin - F actual level of fluorescence - Fa, F o minimal fluorescence in the absence, presence of thylakoid energization - Fm, F m maximal fluorescence in the absence, presence of thylakoid energization - Fm, - F)/F m actual PSII efficiency ( = percent of absorbed light utilized in PSII photochemistry) - Fv/Fm, F v /Fm/ PSII efficiency of open centers in the absence, presence of thylakoid energization - NPQ nonphotochemical fluorescence quenching - Fm/F m - 1; qp quenching coefficient for photochemical quenching - V violaxanthin - Z zeaxanthin  相似文献   

4.
After seven weeks of a combined magnesium and sulphur deficiency, spinach (Spinacea oleracea L.) plants showed a substantial accumulation of inactivated photosystem II (PSII) centres as indicated by a 40% decrease of the chlorophyll (Chl) fluorescence parameter Fv/Fm (Fv being the yield of variable fluorescence and Fm the yield of maximal fluorescence when all reaction centres are closed) together with a severe loss of leaf Chl content of 75%. The responses of the photosynthetic apparatus were examined when the deficient plants were transferred back to a rich nutrient medium. During the first 24 h of the recovery phase, thylakoid protein synthesis measured as incorporation of [14C]leucine per unit of Chl increased substantially. The synthesis rate of the D1 reaction-centre polypeptide of PSII, which in the deficient plants was reduced to 50% of the non-deficient control, was stimulated eight- to ninefold. D1-protein content, which in the deficient plants was reduced to 40% of the non-deficient control, started to increase 2 d later. Thus, D1-protein degradation was also enhanced. The increased D1-protein turnover led to a rapid repair of the existing PSII centres as indicated by the rise of Fv/Fm. It was completed at day 7 of the recovery phase. At day 2 of the recovery phase, the synthesis of other thylakoid proteins such as the D2 protein, cytochrome b 559, CP 47 and the 33-kDa polypeptide of the water-splitting system, became stimulated. This process resulted in an accumulation of new PSII centres. During the first week, formation of new PSII centres was not associated with an increase in leaf Chl content. The Chl content of the recovering leaves only started to increase when the ratio of PSII polypeptides versus LHCII (light-harvesting complex of PSII), which was substantially diminished in the deficient plants, became comparable to that of the control. The recovery process was accompanied by substantial changes in thylakoid protein phosphorylation. Their relevance to thylakoid protein turnover and stability is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed (after a saturating flash) under steady-state conditions - Fv yield of variable fluorescence, (difference between Foand Fm) - F yield of variable fluorescence under steady state conditions - LHC light-harvesting complex - PQ plastoquinone - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qP photochemical quenching - qn non-photochemical quenching The authors like to thank Dipl. Biol. Britta Untereiser for determining the chlorophyll fluorescence quenching factors. This work was supported by grants from the Bundesminister für Forschung und Technologie, the Project Europäisches Forschungszentrum and the German Israeli Foundation in cooperation with Prof. I. Ohad, Hebrew University, Jerusalem, Israel.  相似文献   

5.
Different pigments often occur together and affect photosynthetic characteristics of the respective leaf portions. In this study, photosynthetic activity in variegated leaves of five cultivars of the ornamental and medicinal plant, Coleus × hybridus hort., was estimated by image analysis and point data measurements of major chlorophyll (Chl) fluorescence parameters and related to the amount of photosynthetic pigments measured with a Chl meter or spectrophotometrically in leaf extracts. Significant differences in Chl and carotenoid (Car) contents were noticed among differentially pigmented sectors of a leaf and among the cultivars. Although the higher Chl concentration was noticed in purple parts compared to green parts of the leaves, the values of minimal and maximal fluorescence yield at the dark- and light-adapted state (F0, Fm, F0', Fm', respectively) were a little lower than those in the green sectors, indicating photoprotective effects provided by anthocyanins and Car, more abundant in the red parts. The lowest Chl and Car content was detected in creamy-yellow and pink sectors and this contributed to low F0, Fm, and Fm', maximal quantum yield of PSII photochemistry, and nonphotochemical and photochemical quenching but high PSII maximum efficiency and effective quantum yield of PSII photochemistry. Both methods of Chl fluorescence analysis revealed heterogeneity in capture, transfer, and dissipation of excitation energy but Chl fluorescence imaging was more suitable in examining very narrow pigmented leaf areas.  相似文献   

6.
昆仑山前山牧场海拔较高, 策勒绿洲海拔相对较低, 两者生境差异较大。以昆仑山前山牧场和策勒绿洲边缘两种不同生境条件下生长的6种牧草: 冰草(Agropyron cristatum)、无芒雀麦(Bromus inermis)、矮生高羊茅(Festuca elata)、披碱草(Elymus dahuricus )、红豆草(Onobrychis pulchella)及和田大叶(Medicago sativa var. luxurians)为试验材料, 研究了不同生境条件下牧草叶片叶绿素含量及叶绿素荧光动力学参数的变化情况。结果显示: (1)在两种生境条件下, 昆仑山前山牧场生境生长的牧草叶绿素a、叶绿素b、总叶绿素的含量明显较高, 生长在策勒绿洲生境的牧草品种叶绿素a/b值较高; (2)昆仑山前山牧场生境牧草最大荧光、光系统II (PSII)最大光化学效率、PSII潜在活性和单位面积反应中心的数量的值明显高于策勒绿洲生境品种, 而初始荧光、单位反应中心吸收的光能、单位反应中心捕获的能量、单位反应中心耗散的能量、荧光诱导曲线初始斜率值则低于策勒绿洲生境品种。因此, 两种生境下环境因子发生了改变, 对牧草产生综合的胁迫作用; 策勒绿洲生境明显对牧草生长产生了抑制, 策勒绿洲生境牧草的色素含量降低以及PSII的机构遭到损坏, 导致反应中心一部分失活或裂解, 剩余有活性的反应中心的效率增加, 昆仑山生境则相对比较适宜牧草生长; 两种生境不同牧草叶绿素含量和叶绿素荧光参数的变化幅度不同。  相似文献   

7.
The potential involvement of the xanthophyll cycle in photoprotection of overwintering evergreen plants was investigated. Leaves from five evergreen species. Pseudotsuga menziesii, Pinus panderosa, Euonyums kiautschovicus. Mahonia repens and Malva neglecta, were collected from the field predawn during winter and transferred to the laboratory where chlorophyll fluorescence emission as well as the chlorophyll and carotenoid composition were ascertained periodically for 4.5 days. Leaves and needles from all species were found to have retained large amounts of the xanthophyll cycle pigments zeaxanthin and antheraxanthin, and they exhibited sustained low values of the intrinsic efficiency of photosystem II (PSII; measured as the ratio of variable to maximal fluorescence, Fv/Fm) upon collection. The increase in PSII efficiency was biphasic, with a rapid phase (requiring several hours) and a slow phase (requiring several days). Changes in the conversion state of the xanthophyll cycle were found to correlate with increases in PSII efficiency in both phases, with the latter phase involving large increases in both Fm (maximal fluorescence) and Fo (minimal fluorescence) throughout the period of recovery. The relationship between Fm quenching (expressed as nonphotochemical or Stern-Volmer quenching [NPQ] of Fm, i.e. Fm/ Fm–1) and Fo quenching (Fo/Fo–1) was linear, as expected for changes in xanthophyll cycle-dependent energy dissipation in the antenna complexes. Furthermore, the relationship between Fv/Fm and NPQ during recovery followed the theoretical relationship predicted for changes in the rate constant for energy dissipation in the antenna complexes. This fit between the theoretical relationship and the actual data indicates that all changes in NPQ or Fv/Fm can be accounted for by changes in this rate constant. The results suggest a role for the photoprotective xanthophyll cycle-dependent dissipation process in the lowered efficiency of PSII observed in coldstressed evergreen plants in the field.  相似文献   

8.
Dithiothreitol, which completely inhibits the de-epoxidation of violaxanthin to zeaxanthin, was used to obtain evidence for a causal relationship between zeaxanthin and the dissipation of excess excitation energy in the photochemical apparatus in Spinicia oleracea L. In both leaves and chloroplasts, inhibition of zeaxanthin formation by dithiothreitol was accompanied by inhibition of a component of nonphotochemical fluorescence quenching. This component was characterized by a quenching of instantaneous fluorescence (Fo) and a linear relationship between the calculated rate constant for radiationless energy dissipation in the antenna chlorophyll and the zeaxanthin content. In leaves, this zeaxanthin-associated quenching, which relaxed within a few minutes upon darkening, was the major component of nonphotochemical fluorescence quenching determined in the light, i.e. it represented the `high-energy-state' quenching. In isolated chloroplasts, the zeaxanthin-associated quenching was a smaller component of total nonphotochemical quenching and there was a second, rapidly reversible high-energy-state component of fluorescence quenching which occurred in the absence of zeaxanthin and was not accompanied by Fo quenching. Leaves, but not chloroplasts, were capable of maintaining the electron acceptor, Q, of photosystem II in a low reduction state up to high degrees of excessive light and thus high degrees of nonphotochemical fluorescence quenching. When ascorbate, which serves as the reductant for violaxanthin de-epoxidation, was added to chloroplast suspensions, zeaxanthin formation at low photon flux densities was stimulated and the relationship between nonphotochemical fluorescence quenching and the reduction state in chloroplasts then became more similar to that found in leaves. We conclude that the inhibition of zeaxanthin-associated fluorescence quenching by dithiothreitol provides further evidence that there exists a close relationship between zeaxanthin and potentially photoprotective dissipation of excess excitation energy in the antenna chlorophyll.  相似文献   

9.
In this work, photosystem II (PSII) photochemistry, leaf water potential, and pigment contents of male and female Pistacia lentiscus L. were investigated during a seasonal cycle at three different, arid locations: superior semiarid, inferior semiarid, and arid. The results showed that the gender, season, and the site conditions interacted to influence the quantum yield and pigment contents in P. lentiscus. Predawn leaf water status was determined only by the site and season. The annual patterns of PSII maximum quantum efficiency (Fv/Fm) were characterized by a suboptimal activity during the winter, especially, populations with the more negative water potential exhibited a lower chlorophyll (Chl) a content and chronic photoinhibition irrespective of a gender. We also demonstrated that both photochemical or nonphotochemical mechanisms were involved to avoid the photoinhibition and both of them depended on the season. This plasticity of photosynthetic machinery was accompanied by changes in carotenoids and Chl balance. In the spring, the female Fv/Fm ratio was significantly higher than in male individuals, when the sexual dimorphism occurred during the fruiting stage, regardless of site conditions. P. lentiscus sex-ratio in Mediterranean areas, where precipitations exceeded 500 mm, was potentially female-biased. Among the fluorescence parameters investigated, nonphotochemical quenching coefficient appeared as the most useful one and a correlation was found between Chl a content and Fv/Fm. These results suggest that functional ecology studies would be possible on a large scale through light reflectance analysis.  相似文献   

10.
The chlorophyll (Chl) fluorescence imaging technique was applied to cashew seedlings inoculated with the fungus Lasiodiplodia theobromae to assess any disturbances in the photosynthetic apparatus of the plants before the onset of visual symptoms. Two-month-old cashew plants were inoculated with mycelium of L. theobromae isolate Lt19 or Lt32. Dark-adapted and light-acclimated whole plants or previously labelled, single, mature leaf from each plant were evaluated weekly for Chl fluorescence parameters. From 21 to 28 days, inoculation with both isolates resulted in the significantly lower maximal photochemical quantum yield of PSII (Fv/Fm) than those for control samples, decreasing from values of 0.78 to 0.62. In contrast, the time response of the measured fluorescence transient curve from dark-acclimated plants increased in both whole plants and single mature leaves in inoculated plants compared with controls. The Fv/Fm images clearly exhibited photosynthetic perturbations 14 days after inoculation before any visual symptoms appeared. Additionally, decays in the effective quantum yield of PSII photochemistry and photochemical quenching coefficient were also observed over time. However, nonphotochemical quenching increased during the evaluation period. We conclude that Fv/Fm images are the effective way of detecting early metabolic perturbations in the photosynthetic apparatus of cashew seedlings caused by gummosis in both whole plants and single leaves and could be potentially employed in larger-scale screening systems.  相似文献   

11.
In this study, the effects of lanthanum were investigated on contents of pigments, chlorophyll (Chl) fluorescence, antioxidative enzymes, and biomass of maize seedlings under salt stress. The results showed that salt stress significantly decreased the contents of Chl and carotenoids, maximum photochemical efficiency of PSII (Fv/Fm), photochemical quenching (qP), and quantum efficiency of PSII photochemistry (ΦPSII), net photosynthetic rate (PN), and biomass. Salt stress increased nonphotochemical quenching (qN), the activities of ascorbate peroxidase, catalase, superoxide dismutase, glutathione peroxidase, and the contents of malondialdehyde and hydrogen peroxide compared with control. Pretreatment with lanthanum prior to salt stress significantly enhanced the contents of Chl and carotenoids, Fv/Fm, qP, qN, ΦPSII, PN, biomass, and activities of the above antioxidant enzymes compared with the salt-stressed plants. Pretreatment with lanthanum also significantly reduced the contents of malondialdehyde and hydrogen peroxide induced by salt stress. Our results suggested that lanthanum can improve salt tolerance of maize seedlings by enhancing the function of photosynthetic apparatus and antioxidant capacity.  相似文献   

12.
Changes in chloroplast structure and rearrangement of chlorophyll-protein (CP) complexes were investigated in detached leaves of bean (Phaseolus vulgaris L. cv. Eureka), a chilling-sensitive plant, during 5-day dark-chilling at 1 °C and subsequent 3-h photoactivation under white light (200 μmol photons m−2 s−1) at 22 °C. Although, no change in chlorophyll (Chl) content and Chl a/b ratio in all samples was observed, overall fluorescence intensity of fluorescence emission and excitation spectra of thylakoid membranes isolated from dark-chilled leaves decreased to about 50%, and remained after photoactivation at 70% of that of the control sample. Concomitantly, the ratio between fluorescence intensities of PSI and PSII (F736/F681) at 120 K increased 1.5-fold upon chilling, and was fully reversed after photoactivation. Moreover, chilling stress seems to induce a decrease of the relative contribution of LHCII fluorescence to the thylakoid emission spectra at 120 K, and an increase of that from LHCI and PSI, correlated with a decrease of stability of LHCI-PSI and LHCII trimers, shown by mild-denaturing electrophoresis. These effects were reversed to a large extent after photoactivation, with the exception of LHCII, which remained partly in the aggregated form. In view of these data, it is likely that dark-chilling stress induces partial disassembly of CP complexes, not completely restorable upon photoactivation. These data are further supported by confocal laser scanning fluorescence microscopy, which showed that regular grana arrangement observed in chloroplasts isolated from control leaves was destroyed by dark-chilling stress, and was partially reconstructed after photoactivation. In line with this, Chl a fluorescence spectra of leaf discs demonstrated that dark-chilling caused a decrease of the quantum yield PSII photochemistry (Fv/Fm) by almost 40% in 5 days. Complete restoration of the photochemical activity of PSII required 9 h post-chilling photoactivation, while only 3 h were needed to reconstruct thylakoid membrane organization and chloroplast structure. The latter demonstrated that the long-term dark-chilled bean leaves started to suffer from photoinhibition after transfer to moderate irradiance and temperature conditions, delaying the recovery of PSII photochemistry, independently of photo-induced reconstruction of PSII complexes.  相似文献   

13.
Light modulation of the ability of three artificial quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duroquinone), to quench chlorophyll (Chl) fluorescence photochemically or non-photochemically was studied to simulate the functions of endogenous plastoquinones during the thermal phase of fast Chl fluorescence induction kinetics. DBMIB was found to suppress by severalfold the basal level of Chl fluorescence (Fo) and to markedly retard the light-induced rise of variable fluorescence (Fv). After irradiation with actinic light, Chl fluorescence rapidly dropped down to the level corresponding to Fo level in untreated thylakoids and then slowly declined to the initial level. DBMIB was found to be an efficient photochemical quencher of energy in Photosystem II (PSII) in the dark, but not after prolonged irradiation. Those events were owing to DBMIB reduction under light and its oxidation in the dark. At high concentrations, DCBQ exhibited quenching behaviours similar to those of DBMIB. In contrast, duroquinone demonstrated the ability to quench Fv at low concentration, while Fo was declined only at high concentrations of this artificial quinone. Unlike for DBMIB and DCBQ, quenched Fo level was attained rapidly after actinic light had been turned off in the presence of high duroquinone concentrations. That finding evidenced that the capacity of duroquinone to non-photochemically quench excitation energy in PSII was maintained during irradiation, which is likely owing to the rapid electron transfer from duroquinol to Photosystem I (PSI). It was suggested that DBMIB and DCBQ at high concentration, on the one hand, and duroquinone, on the other hand, mimic the properties of plastoquinones as photochemical and non-photochemical quenchers of energy in PSII under different conditions. The first model corresponds to the conditions under which the plastoquinone pool can be largely reduced (weak electron release from PSII to PSI compared to PSII-driven electron flow from water under strong light and weak PSI photochemical capacity because of inactive electron transport on its reducing side), while the second one mimics the behaviour of the plastoquinone pool when it cannot be filled up with electrons (weak or moderate light and high photochemical competence of PSI).  相似文献   

14.
The partial shading effect on the photosynthetic apparatus of the sunflower (Helianthus annuus L.) was examined by monitoring oxygen evolution, maximum quantum yield of PSII photochemistry in dark-adapted leaves (Fv/Fm), the chlorophyll (Chl) concentrations and the Rubisco contents, and leaf mass per area (LMA) at the leaf level and by determining the concentrations of cytochrome (Cyt) f and the reaction centres of photosystem (PS) I and PSII at the thylakoid level. In this experiment, partial shading was defined as the shading of 2nd leaves with shade cloths, and the whole treatment was defined as the covering of the whole individuals with shade cloths. In the leaf level responses, oxygen evolution, LMA, Chl concentrations and Rubisco contents decreased in all shade treatments administered for six days. Fv/Fm remained constant irrespective of the shade treatments. On the other hand, in the thylakoid-level responses, the concentrations of the thylakoid components per unit Chl and the stoichiometry of the two photosystems showed no statistical difference among the shade treatments. The data obtained from the present study indicate that the partial shading affected the leaf-level responses rather than the thylakoid-level responses. The light received at the lower leaves might serve as a factor in the regulation of the leaf properties of the upper leaves due to the whole plant photosynthesis, while this factor did not have an effect at the thylakoid level.  相似文献   

15.
Karlický  V.  Podolinská  J.  Nadkanská  L.  Štroch  M.  Čajánek  M.  Špunda  V. 《Photosynthetica》2010,48(3):475-480
The present study was conducted to examine changes in photosynthetic pigment composition and functional state of the thylakoid membranes during the individual steps of preparation of samples that are intended for a separation of pigmentprotein complexes by nondenaturing polyacrylamide gel electrophoresis. The thylakoid membranes were isolated from barley leaves (Hordeum vulgare L.) grown under low irradiance (50 μmol m−2 s−1). Functional state of the thylakoid membrane preparations was evaluated by determination of the maximal photochemical efficiency of photosystem (PS) II (FV/FM) and by analysis of excitation and emission spectra of chlorophyll a (Chl a) fluorescence at 77 K. All measurements were done at three phases of preparation of the samples: (1) in the suspensions of osmotically-shocked broken chloroplasts, (2) thylakoid membranes in extraction buffer containing Tris, glycine, and glycerol and (3) thylakoid membranes solubilized with a detergent decyl-β-D-maltosid. FV/FM was reduced from 0.815 in the first step to 0.723 in the second step and to values close to zero in solubilized membranes. Pigment composition was not pronouncedly changed during preparation of the thylakoid membrane samples. Isolation of thylakoid membranes affected the efficiency of excitation energy transfer within PSII complexes only slightly. Emission and excitation fluorescence spectra of the solubilized membranes resemble spectra of trimers of PSII light-harvesting complexes (LHCII). Despite a disrupted excitation energy transfer from LHCII to PSII antenna core in solubilized membranes, energy transfer from Chl b and carotenoids to emission forms of Chl a within LHCII trimers remained effective.  相似文献   

16.
The effect of exogenous applied nitric oxide on photosynthesis under heat stress was investigated in rice seedlings. High temperature resulted in significant reductions of the net photosynthetic rate (P N) due to non-stomatal components. Application of nitric oxide donors, sodium nitroprusside (SNP) or S-nitrosoglutathione (GSNO), dramatically alleviated the decrease of P N induced by high temperature. Chlorophyll fluorescence measurement revealed that high temperature caused significant increase of the initial fluorescence (F o) and non-photochemical quenching (NPQ) whereas remarkable decrease of the maximal fluorescence (F m), the maximal efficiency of PSII photochemistry (F v/F m), the actual PSII efficiency (ΦPSII), and photochemical quenching (q p). In the presence of SNP or GSNO pretreatment, the increase of F o and decrease of F m, F v/F m, ΦPSII and q p were markedly mitigated, but NPQ was further elevated. Moreover, with SNP or GSNO pretreatment, H2O2 accumulation and electrolyte leakage induced by heat treatment were significantly reduced, whereas zeaxanthin content and carotenoid content relative to chlorophyll were elevated. The potassium salt of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a specific NO scavenger, arrested NO donors mediated effects. These results suggest that NO can effectively protect photosynthesis from damage induced by heat stress. The activation effect of NO on photosynthesis may be mediated by acting as ROS scavenging, or/and alleviating oxidative stress via maintaining higher carotenoid content relative to chlorophyll or/and enhancing thermal dissipation of excess energy through keeping higher level of zeaxanthin content under heat stress.  相似文献   

17.
The wild-type barley (WT; Hordeum vulgare L.) and its chlorophyll (Chl) b-less mutant chlorina f2 (clo f2) grown under shaded conditions in a greenhouse were transferred to outdoor conditions in early June with predominantly bright sunny days. During 6 days following transfer of plants we monitored the content of photosynthetic pigments, functional state of photosystem II (PSII) by means of Chl fluorescence induction kinetics and epidermal UV-shielding efficiency using Chl fluorescence imaging technique. Clo f2 mutant was more sensitive to exposure to an enhanced natural solar irradiance than WT barley. Nevertheless, clo f2 as well as WT were able to cope with stressful outdoor conditions, as was documented by the recovery of Chl a content and the maximal photochemical efficiency of PSII (FV/FM) after an initial decline. This was due to the immediate carotenoid-mediated photoprotection, reflected by strongly increased total carotenoids content and thermal energy dissipation localized within light-harvesting complexes of PSII (assessed by non-photochemical quenching of minimal fluorescence level). The positive acclimation response was further documented by an enhanced light-saturated electron transport rate through PSII (ETR). Based on the ratios of blue- to UV-excited Chl fluorescence we found that for both WT and clo f2 epidermal UV-shielding increased clearly after transfer to outdoor conditions and reached a saturation level after 3 days. In comparison with WT, clo f2 exhibited lower ability to induce UV-shielding. The kinetics of UV-shielding development during the outdoor treatment was different for the particular leaf regions. We suggest that this is related to the different age and developmental stage of the tissue along the leaf blade. The complementarity of carotenoid-mediated photoprotection and UV-shielding in acclimation of the assimilatory apparatus to increased visible and UV radiation is discussed.  相似文献   

18.
The wild-type barley (WT; Hordeum vulgare L.) and its chlorophyll (Chl) b-less mutant chlorina f2 (clo f2) grown under shaded conditions in a greenhouse were transferred to outdoor conditions in early June with predominantly bright sunny days. During 6 days following transfer of plants we monitored the content of photosynthetic pigments, functional state of photosystem II (PSII) by means of Chl fluorescence induction kinetics and epidermal UV-shielding efficiency using Chl fluorescence imaging technique. Clo f2 mutant was more sensitive to exposure to an enhanced natural solar irradiance than WT barley. Nevertheless, clo f2 as well as WT were able to cope with stressful outdoor conditions, as was documented by the recovery of Chl a content and the maximal photochemical efficiency of PSII (FV/FM) after an initial decline. This was due to the immediate carotenoid-mediated photoprotection, reflected by strongly increased total carotenoids content and thermal energy dissipation localized within light-harvesting complexes of PSII (assessed by non-photochemical quenching of minimal fluorescence level). The positive acclimation response was further documented by an enhanced light-saturated electron transport rate through PSII (ETR). Based on the ratios of blue- to UV-excited Chl fluorescence we found that for both WT and clo f2 epidermal UV-shielding increased clearly after transfer to outdoor conditions and reached a saturation level after 3 days. In comparison with WT, clo f2 exhibited lower ability to induce UV-shielding. The kinetics of UV-shielding development during the outdoor treatment was different for the particular leaf regions. We suggest that this is related to the different age and developmental stage of the tissue along the leaf blade. The complementarity of carotenoid-mediated photoprotection and UV-shielding in acclimation of the assimilatory apparatus to increased visible and UV radiation is discussed.  相似文献   

19.
The interaction between photosynthetic electron transport and the activities of the thylakoid associated carbonic anhydrase (tCA), estimated as combined tCA activity in pea plants (Pisum sativum L. Borek cv., WT) and mutant form (costata 2/125) that differ in chlorophyll content have been compared. Chlorophyll a fluorescence changes after the inhibition of tCA by ethoxyzolamide (EZ), estimating possible role of tCA in PSII downregulation were investigated. Costata expresses higher tCA activity and higher O2 evolution in comparison to WT. Inhibition of tCA by EZ decreased effective PSII photochemistry that coincided with an enhancement in thermal dissipation, while maximal PSII quantum yield (Fv/Fm) did not significantly change. Ethoxyzolamide induced changes in fluorescence parameters that were more strongly expressed in costata 2/125. The results show that tCA is involved in the regulation of the proton gradient across thylakoid membranes and thus limits PSII downregulation.  相似文献   

20.
To investigate the photoinhibition of photosynthesis in ‘Honeycrisp’ apple (Malus domestica Borkh. cv. Gala) leaves with zonal chlorosis, we compared pigments, CO2 assimilation and chlorophyll (Chl) a fluorescence (OJIP) transient between chlorotic leaves and normal ones. Chl and carotenoids (Car) contents, Chl a/b ratio, and absorptance were lower in chlorotic leaves than in normal ones, whereas Car/Chl ratio was higher in the former. Although CO2 assimilation and stomatal conductance were lower in chlorotic leaves, intercellular CO2 concentration did not differ significantly between the two leaf types. Compared with normal leaves, chlorotic ones had increased deactivation of oxygen-evolving complexes (OEC), minimum fluorescence (F o), dissipated energy, relative variable fluorescence at L-, W-, J- and I-steps, and decreased maximum fluorescence (F m), maximum quantum yield for primary photochemistry (F v /F m or TRo/ABS), quantum yield for electron transport (ETo/ABS), quantum yield for the reduction of end acceptors of photosystem I (PSI) (φRo and REo/ABS), maximum amplitude of IP phase, amount of active photosystem II (PSII) reaction centers (RCs) per cross section (CS) and total performance index (PItot,abs). In conclusion, photoinhibition occurs at both the donor (i.e., the OEC) and the acceptor sides of PSII in chlorotic leaves. The acceptor side is damaged more severely than the donor side, which possibly is the consequence of over-reduction of PSII due to the slowdown of Calvin cycle. In addition to decreasing light absorptance by lowering Chl level, energy dissipation is enhanced to protect chlorotic leaves from photo-oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号