首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the cloning of the gene encoding the 1-cyclohexenylcarbonyl coenzyme A reductase (ChcA) of Streptomyces collinus, an enzyme putatively involved in the final reduction step in the formation of the cyclohexyl moiety of ansatrienin from shikimic acid. The cloned gene, with a proposed designation of chcA, encodes an 843-bp open reading frame which predicts a primary translation product of 280 amino acids and a calculated molecular mass of 29.7 kDa. Highly significant sequence similiarity extending along almost the entire length of the protein was observed with members of the short-chain alcohol dehydrogenase superfamily. The S. collinus chcA gene was overexpressed in Escherichia coli by using a bacteriophage T7 transient expression system, and a protein with a specific ChcA activity was detected. The E. coli-produced ChcA protein was purified and shown to have similar steady-state kinetics and electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels as the enoyl-coenzyme A reductase protein prepared from S. collinus. The enzyme demonstrated the ability to catalyze, in vitro, three of the reductive steps involved in the formation of cyclohexanecarboxylic acid. An S. collinus chcA mutant, constructed by deletion of a genomic region comprising the 5' end of chcA, lost the ChcA activity and the ability to synthesize either cyclohexanecarboxylic acid or ansatrienin. These results suggest that chcA encodes the ChcA that is involved in catalyzing multiple reductive steps in the pathway that provides the cyclohexanecarboxylic acid from shikimic acid.  相似文献   

2.
A novel aminoacylase was purified to homogeneity from culture broth of Streptomyces mobaraensis, as evidenced by SDS-polyacrylamide gel electrophoresis (PAGE). The enzyme was a monomer with an approximate molecular mass of 100 kDa. The purified enzyme was inhibited by the presence of 1,10-phenanthroline and activated by the addition of Co2+. It was stable at temperatures of up to 60 degrees C for 1 h at pH 7.2. It showed broad substrate specificity to N-acetylated L-amino acids. It catalyzed the hydrolysis of the amide bonds of various N-acetylated L-amino acids, except for Nepsilon-acetyl-L-lysine and N-acetyl-L-proline. Hydrolysis of N-acetyl-L-methionine and N-acetyl-L-histidine followed Michaelis-Menten kinetics with K(m) values of 1.3+/-0.1 mM and 2.7+/-0.1 mM respectively. The enzyme also catalyzed the deacetylation of 7-aminocephalosporanic acid (7-ACA) and cephalosporin C. Moreover, feruloylamino acids and L-lysine derivatives of ferulic acid derivatives were synthesized in an aqueous buffer using the enzyme.  相似文献   

3.
An extracellular protease derived from the culture broth of a microorganism, a Streptomyces species, produced Boc-Pro-Pro and diproline from Boc-Pro-Pro-Pro-Pro. The enzyme was purified 726-fold, with a yield of 2.6%, by ammonium sulfate fractionation, ion-exchange chromatography, and gel filtration chromatography. The molecular weight of the enzyme was determined to be 65,000 by gel filtration and 70,000 by SDS-PAGE. The enzyme released a C-terminal dipeptide from peptide substrates having a C-terminal proline and a penultimate proline or alanine residue, but did not hydrolyze angiotensin I or bradykinin. When the enzyme hydrolyzed Leu-Pro-Pro-Pro-Pro-Pro, it produced Leu-Pro-Pro-Pro and Pro-Pro before producing Leu-Pro. The enzyme thus seems to be a kind of dipeptidyl carboxypeptidase, its substrate specificity being very different from that of the well known dipeptidyl carboxypeptidases [EC 3.4.15.1] such as the angiotensin-converting enzyme.  相似文献   

4.
Erythritol biosynthesis is catalyzed by erythrose reductase, which converts erythrose to erythritol. Erythrose reductase, however, has never been characterized in terms of amino acid sequence and kinetics. In this study, NAD(P)H-dependent erythrose reductase was purified to homogeneity from Candida magnoliae KFCC 11023 by ion exchange, gel filtration, affinity chromatography, and preparative electrophoresis. The molecular weights of erythrose reductase determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography were 38,800 and 79,000, respectively, suggesting that the enzyme is homodimeric. Partial amino acid sequence analysis indicates that the enzyme is closely related to other yeast aldose reductases. C. magnoliae erythrose reductase catalyzes the reduction of various aldehydes. Among aldoses, erythrose was the preferred substrate (K(m) = 7.9 mM; k(cat)/K(m) = 0.73 mM(-1) s(-1)). This enzyme had a dual coenzyme specificity with greater catalytic efficiency with NADH (k(cat)/K(m) = 450 mM(-1) s(-1)) than with NADPH (k(cat)/K(m) = 5.5 mM(-1) s(-1)), unlike previously characterized aldose reductases, and is specific for transferring the 4-pro-R hydrogen of NADH, which is typical of members of the aldo/keto reductase superfamily. Initial velocity and product inhibition studies are consistent with the hypothesis that the reduction proceeds via a sequential ordered mechanism. The enzyme required sulfhydryl compounds for optimal activity and was strongly inhibited by Cu(2+) and quercetin, a strong aldose reductase inhibitor, but was not inhibited by aldehyde reductase inhibitors and did not catalyze the reduction of the substrates for carbonyl reductase. These data indicate that the C. magnoliae erythrose reductase is an NAD(P)H-dependent homodimeric aldose reductase with an unusual dual coenzyme specificity.  相似文献   

5.
We have purified an NADH-dependent ferredoxin reductase from crude extracts of Streptomyces griseus cells grown in soybean flour-enriched medium. The purified protein has a molecular weight of 60,000 as determined by sodium dodecyl sulfate gel electrophoresis. The enzyme requires Mg2+ ion for catalytic activity in reconstituted assays, and its spectral properties resemble those of many other flavin adenine dinucleotide-containing flavoproteins. A relatively large number of hydrophobic amino acid residues are found by amino acid analysis, and beginning with residue 7, a consensus flavin adenine dinucleotide binding sequence, GXGXXGXXXA, is revealed in this protein. In the presence of NADH, the ferredoxin reductase reduces various electron acceptors such as cytochrome c, potassium ferricyanide, dichlorophenolindophenol, and nitroblue tetrazolium. However, only cytochrome c reduction by the ferredoxin reductase is enhanced by the addition of ferredoxin. In the presence of NADH, S. griseus ferredoxin and cytochrome P-450soy, the ferredoxin reductase mediates O dealkylation of 7-ethoxycoumarin.  相似文献   

6.
7.
A 4.5-kb BamHI fragment of chromosomal DNA of Streptomyces collinus containing gene ftsZ was cloned and sequenced. Upstream of ftsZ are localized genes ftsQ, murG, and ftsW, and downstream is yfiH. Gene ftsA is not adjacent to ftsZ or other genes of the cloned fragment. Protein FtsZ was isolated and characterized with respect to its binding to GTP and GTPase activity. The binding of GTP to FtsZ was Ca(2+) or Mg(2+) dependent with an optimum at 10 mM. The rate of GTP hydrolysis by FtsZ was stimulated by KCl. The presence of Ca(2+) (3-5 mM) resulted in a significant increase of GTPase activity. Higher concentrations of Ca(2+) than 5 mM had an inhibitory effect on GTPase activity. These results indicate that divalent ions (Ca(2+) or Mg(2+)) can be involved in regulation of GTP binding and hydrolysis of FtsZ. The maximum level of FtsZ was detected in aerial mycelium when spiral loops and sporulation septa were formed. FtsZ is degraded after finishing sporulation septa.  相似文献   

8.
A new flavoenzyme using molecular oxygen to oxidize L-glutamic acid has been purified to homogeneity, as judged by polyacrylamide gel electrophoresis, from the culture medium of Streptomyces endus. Hydrogen peroxide, 2-oxoglutaric acid and ammonia are formed as products. Among 25 amino acids tested including D-glutamic acid, L-glutamine and L-aspartic acid, only L-glutamic acid is converted. The molecular mass of the enzyme was estimated to be about 90 kDa by gel chromatography and 50 kDa by SDS/PAGE. The subunit contains 1 molecule noncovalently bound FAD. The absorption spectrum shows maxima at 273, 355 and 457 nm and the isoelectric point is at pH 6.2. The Km value for L-glutamic acid in air-saturated phosphate pH 7.0 was estimated to be 1.1 mM, the Km for oxygen was calculated to be 1.86 mM at saturating concentration of L-glutamic acid. The enzymic reaction is inhibited by Ag+ and Hg2+ ions. The enzyme described here distinctly differs from two microbial L-glutamate oxidases purified hitherto, with regard to extremely high substrate specificity and to the subunit structure.  相似文献   

9.
Long chain enoyl coenzyme A hydratase from pig heart   总被引:7,自引:0,他引:7  
  相似文献   

10.
11.
Native polyacrylamide gels of extracellular proteins produced by several Streptomyces isolates grown with suberin were assayed in situ for esterase activity. Two pathogenic isolates of Streptomyces scabies from different geographical regions were found to produce a similar esterase activity that was not produced by nonpathogenic strains. After treatment with EDTA, suberin no longer induced esterase production. Expression was restored when EDTA-treated suberin was supplemented with zinc. The optimal concentration of zinc required for esterase production was 2 microM. This esterase was purified from one of the pathogenic isolates and characterized. The enzyme was 38,000 daltons when determined by gel filtration on Sephadex G-100 and 36,000 daltons when determined by denaturing polyacrylamide gel electrophoresis. The esterase showed maximal activity in sodium phosphate buffer above pH 8.0, was stable to temperatures of up to 60 degrees C, and had an apparent Km of 125 microM p-nitrophenyl butyrate.  相似文献   

12.
A nonsporulating strain of Streptomyces diastaticus producing alpha-L-arabinofuranosidase activity (EC 3.2-1.55) was isolated from soil. Two alpha-L-arabinosidases were purified by ion-exchange chromatography and chromatofocusing. The enzymes had molecular weights of 38,000 (C1) and 60,000 (C2) and pIs of 8.8 and 8.3, respectively. The optimum pH range of activity for both enzymes was between 4 and 7. The apparent Km values with p-nitrophenyl arabinofuranoside as the substrate were 10 mM (C1) and 12.5 mM (C2). C1 retained 50% of its activity after 8 h of incubation at 25 degrees C, while C2 retained 80% activity. After 3 h of incubation at 50 degrees C, C1 lost 90% of its initial activity while C2 lost only 40%. The purified enzymes hydrolyzed p-nitrophenyl alpha-L-arabinofuranoside and liberated arabinose from arabinoxylan and from a debranched beta-1,5-arabinan.  相似文献   

13.
Purification and characterization of a chitosanase from Streptomyces N174   总被引:1,自引:0,他引:1  
A highly efficient chitosanase producer, the actinomycete N174, identified by chemotaxonomic methods as belonging to the genus Streptomyces was isolated from soil. Chitosanase production by N174 was inducible by chitosan or d-glucosamine. In culture filtrates the chitosanase accounted for 50–60% of total extracellular proteins. The chitosanase was purified by polyacrylic acid precipitation, CM-Sepharose and gel permeation chromatography. The maximum velocity of chitosan degradation was obtained at 65° C when the pH was maintained at 5.5. The enzyme degraded chitosans with a range of acetylation degrees from 1 to 60% but not chitin or CM-cellulose. The enzyme showed an endo-splitting type of activity and the end-product of chitosan degradation contained a mixture of dimers and trimers of d-glucosamine.Correspondence to: R. Brzezinski  相似文献   

14.
Aldose reductase and aldehyde reductases have been purified to homogeneity from human kidney and have molecular weights of 32,000 and 40,000 and isoelectric pH 5.8 and 5.3, respectively. Aldose reductase, beside catalyzing the reduction of various aldehydes, reduces aldo-sugars, whereas aldehyde reductase, does not reduce aldo-sugars. Aldose reductase activity is expressed with either NADH or NADPH as cofactor, whereas aldehyde reductase utilizes only NADPH. Both enzymes are inhibited to varying degrees by aldose reductase inhibitors. Antibodies against bovine lens aldose reductase precipitated aldose reductase but not aldehyde reductase. The sequence of addition of the substrates to aldehyde reductase is ordered and to aldose reductase is random, whereas for both the enzymes the release of product is ordered with NADP released last.  相似文献   

15.
A nonsporulating strain of Streptomyces diastaticus producing alpha-L-arabinofuranosidase activity (EC 3.2-1.55) was isolated from soil. Two alpha-L-arabinosidases were purified by ion-exchange chromatography and chromatofocusing. The enzymes had molecular weights of 38,000 (C1) and 60,000 (C2) and pIs of 8.8 and 8.3, respectively. The optimum pH range of activity for both enzymes was between 4 and 7. The apparent Km values with p-nitrophenyl arabinofuranoside as the substrate were 10 mM (C1) and 12.5 mM (C2). C1 retained 50% of its activity after 8 h of incubation at 25 degrees C, while C2 retained 80% activity. After 3 h of incubation at 50 degrees C, C1 lost 90% of its initial activity while C2 lost only 40%. The purified enzymes hydrolyzed p-nitrophenyl alpha-L-arabinofuranoside and liberated arabinose from arabinoxylan and from a debranched beta-1,5-arabinan.  相似文献   

16.
S M Lau  P Powell  H Buettner  S Ghisla  C Thorpe 《Biochemistry》1986,25(15):4184-4189
The flavoprotein medium-chain acyl coenzyme A (acyl-CoA) dehydrogenase from pig kidney exhibits an intrinsic hydratase activity toward crotonyl-CoA yielding L-3-hydroxybutyryl-CoA. The maximal turnover number of about 0.5 min-1 is 500-1000-fold slower than the dehydrogenation of butyryl-CoA using electron-transferring flavoprotein as terminal acceptor. trans-2-Octenoyl- and trans-2-hexadecenoyl-CoA are not hydrated significantly. Hydration is not due to contamination with the short-chain enoyl-CoA hydratase crotonase. Several lines of evidence suggest that hydration and dehydrogenation reactions probably utilize the same active site. These two activities are coordinately inhibited by 2-octynoyl-CoA and (methylenecyclopropyl)acetyl-CoA [whose targets are the protein and flavin adenine dinucleotide (FAD) moieties of the dehydrogenase, respectively]. The hydration of crotonyl-CoA is severely inhibited by octanoyl-CoA, a good substrate of the dehydrogenase. The apoenzyme is inactive as a hydratase but recovers activity on the addition of FAD. Compared with the hydratase activity of the native enzyme, the 8-fluoro-FAD enzyme exhibits a roughly 2-fold increased activity, whereas the 5-deaza-FAD dehydrogenase is only 20% as active. A mechanism for this unanticipated secondary activity of the acyl-CoA dehydrogenase is suggested.  相似文献   

17.
The wild-type strain Streptomyces lividans 66 is resistant against the steroid-like antibiotic fusidic acid. Comparative studies of the wild-type strain and a fusidic acid-sensitive mutant allowed the identification of an extracellular enzyme which inactivates fusidic acid. With the help of a combination of ultrafiltration and chromatographies with Phenyl-Sepharose and an anion exchanger, the enzyme was highly purified. Its apparent molecular mass is 48 kDa, its optimal activity ranges between 45 and 55 degrees C, and its optimal pH is 6.0 to 9.0. It is stimulated by neither monovalent nor divalent ions. The enzyme acts as a specific esterase which removes the acetyl group at C-16 from fusidic acid. The resulting intermediate is unstable, and spontaneous lactonization between C-21 and C-16 occurs rapidly.  相似文献   

18.
Cr(VI) (chromate) is a widespread environmental contaminant. Bacterial chromate reductases can convert soluble and toxic chromate to the insoluble and less toxic Cr(III). Bioremediation can therefore be effective in removing chromate from the environment, especially if the bacterial propensity for such removal is enhanced by genetic and biochemical engineering. To clone the chromate reductase-encoding gene, we purified to homogeneity (>600-fold purification) and characterized a novel soluble chromate reductase from Pseudomonas putida, using ammonium sulfate precipitation (55 to 70%), anion-exchange chromatography (DEAE Sepharose CL-6B), chromatofocusing (Polybuffer exchanger 94), and gel filtration (Superose 12 HR 10/30). The enzyme activity was dependent on NADH or NADPH; the temperature and pH optima for chromate reduction were 80 degrees C and 5, respectively; and the K(m) was 374 microM, with a V(max) of 1.72 micromol/min/mg of protein. Sulfate inhibited the enzyme activity noncompetitively. The reductase activity remained virtually unaltered after 30 min of exposure to 50 degrees C; even exposure to higher temperatures did not immediately inactivate the enzyme. X-ray absorption near-edge-structure spectra showed quantitative conversion of chromate to Cr(III) during the enzyme reaction.  相似文献   

19.
Glutathione reductase (NAD(P)H:GSSG oxidoreductase EC 1.6.4.2.) was purified 1160-fold to homogeneity from the nonsulfurous purple bacteria Rhodospirillum rubrum (wild type). Specific activity of the pure preparation was 102 U/mg. The enzyme displayed a typical flavoprotein absorption spectrum with maxima at 274,365, and 459 nm and an absorbance ratio A280/A459 of 7.6. The amino acid analysis revealed an unusually high content of glycine and arginine residues. Titration of the enzyme with 5,5'-dithiobis(2-nitrobenzoic acid) showed a total of two free thiol groups per subunit, one of which is made accessible only under denaturing conditions. An isoelectric point of 5.2 was found for the native enzyme. Km values, determined at pH 7.5, were 6.1 and 90 microM for NADPH and GSSG, respectively. NADH was about 2% as active as NADPH as an electron donor. The enzyme's second choice in disulfide substrate was the mixed disulfide of coenzyme A and glutathione, for which the specific activity and Km values were 5.1 U/mg and 3.4 mM, respectively. A native molecular weight of 118,000 was found, while denaturing electrophoresis gave a value of 54,400 per subunit, thus suggesting that R. rubrum glutathione reductase exists as a dimeric protein. Other physicochemical constants of the enzyme, such as Stokes radius (4.2 nm) and sedimentation coefficient (5.71 S), were also consistent with a particle of 110,000.  相似文献   

20.
Extracellular xylanase (EC 3.2.1.8) from Streptomyces sp. K37 was purified 33.53 by ultrafiltration and cation exchange chromatography followed by gel filtration chromatography. The optimum pH and temperature for purified xylanase were found to be pH 6.0 and 60 degrees C. The Km and V(max) values of the purified xylanase were 15.4 mg ml(-1) and 0.67 micromole reducing sugar min(-1) ml(-1). High performance liquid chromatography (HPLC) gel filtration of the purified xylanase eluted xylanase activity as a peak corresponding to the molecular weight of about 24.3 kDa while the molecular weight determined by SDS-PAGE was found to be 26.4 kDa. The purified xylanase of Streptomyces sp. K37 was found to be endoxylanase and non arabinose liberating enzyme and was highly glycosylated (73.97%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号