首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes, using electron spin resonance spectrometry/spin trapping technique, the increase superoxide dismutase (SOD) activity in the mitochondrial and cytosolic fraction of the cortex, midbrain, pons-medulla oblongata and cerebellum, and in thiobarbituric acid-reactive substances (TBARS) in the cortex, cerebellum and hippocampus of the aged rats. The results show that corresponding to the increased life span and improved physical conditions observed after peroral long-term treatment with Bio-catalyzer, a commercial natural fermented health food supplement marketed in Japan and in the Philippines and earlier reported to be a hydroxyl radical scavenger with weaker scavenging activity on superoxide radical (O 2 ), SOD which is involved in the metabolic degradation of O 2 was further increased, whereas TBARS decreased. These findings suggest that the increased SOD activity in the brain as a defense mechanism against age-related accumulation of reactive oxygen species, in particular superoxide radicals, was enhanced with Biocatalyzer treatment while age-related peroxidation of neuronal membrane, as measured by TBARS, was decreased.  相似文献   

2.
In a previous study we demonstrated that acute footshock stress increased glutathione peroxidase activity in the prefrontal cortex and striatum of adult male rats. Adolescents may respond differently to stress as life stressors may be greater than at other ages. The present study examined the effects of the acute footshock stress on superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities and thiobarbituric acid reactive substances (TBARS) levels in adolescent male and female rat brains. We demonstrated that acute footshock stress increased SOD activity in the prefrontal cortex, and increased GPx activity in the hippocampus in female rats. In males, acute footshock stress increased GPx activity in the prefrontal cortex and hippocampus. Footshock stress did not change TBARS levels. These results indicate a strong role of gender in the response of adolescent subjects to various aspects of stress.  相似文献   

3.
Previous studies have linked oxidative stress with aging and aging-related processes, including menopause. Abnormalities in the redox state similar to those observed in menopausal women can be modeled experimentally with rat ovariectomy. The aim of the present study was to investigate the effects of vitamin A (retinol palmitate) supplementation (500 or 1,500?IU?kg(-1)?day(-1) for 30?days) on behavioral parameters and brain redox profile in ovariectomized (OVX) and sham-operated rats. Ovariectomy caused pronounced uterine atrophy and decreased locomotor/exploratory activity. Moreover, we found increased hypothalamic and frontal cortex superoxide dismutase/catalase (SOD/CAT) ratio and decreased hippocampal thiol content, accompanied by increased frontal cortex lipid oxidative damage (TBARS) in OVX rats. Vitamin A at 1,500?IUkg(-1)?day(-1) decreased exploratory behavior and decreased total hippocampal thiol content in sham-operated rats, increased hippocampal SOD/CAT ratio and decreased total antioxidant potential in the hippocampus of both sham and OVX groups, and increased cortical TBARS levels in OVX rats. Thus, vitamin A may induce a pro-oxidant state in discrete brain regions of sham-operated and OVX rats. These results suggest some caution regarding the use of high doses of vitamin A supplementation during menopause.  相似文献   

4.
It has been shown that emotional stress may induce oxidative damage, and considerably change the balance between pro-oxidant and antioxidant factors in the brain. The aim of this study was to verify the effect of repeated restraint stress (RRS; 1 h/day during 40 days) on several parameters of oxidative stress in the hippocampus of adult Wistar rats. We evaluated the lipid peroxide levels (assessed by TBARS levels), the production of free radicals (evaluated by the DCF test), the total radical-trapping potential (TRAP) and the total antioxidant reactivity (TAR) levels, and antioxidant enzyme activities (SOD, GPx and CAT) in hippocampus of rats. The results showed that RRS induced an increase in TBARS levels and in GPx activity, while TAR was reduced. We concluded that RRS induces oxidative stress in the rat hippocampus, and that these alterations may contribute to the deleterious effects observed after prolonged stress.  相似文献   

5.
Previous studies have shown sex-specific oxidative changes in spinal cord of rats submitted to chronic stress, which may be due to gonadal hormones. Here, we assessed total radical-trapping potential (TRAP), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and lipid peroxidation (evaluated by the TBARS test) in the spinal cord of ovariectomized (OVX) female rats. Female rats were subjected to OVX, and half of the animals received estradiol replacement. Animals were subdivided into controls and chronically stressed (for 40 days). Our findings demonstrate that chronic stress decreased TRAP, and increased SOD activity in spinal cord homogenates from ovariectomized female rats and had no effect on GPx activity. On the other hand, groups receiving 17β-estradiol replacement presented a decreased GPx activity, but no alteration in TRAP and in SOD activity. No differences in the TBARS test were found in any of the groups analyzed. In conclusion, our results support the idea that chronic stress induces an imbalance between SOD and GPx activities, additionally decreasing TRAP. Estradiol replacement did not reverse the effects of chronic stress, but induced a decrease in GPx activity. Therefore, estradiol replacement in ovariectomized chronically stressed rats could make the spinal cord more susceptible to oxidative injury.  相似文献   

6.
The aim of this work was to investigate the production of oxidative damage in homogenized kidney, liver and brain of spontaneously hypertensive rats (SHR), as well as the involvement of angiotensin (Ang) II in this process. Groups of 12-week-old SHR and Wistar Kyoto rats (WKY) were given 10 mg/kg/day losartan in the drinking water during 14 days. Other groups of WKY and SHR without treatment were used as controls. The production of thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (Gpx) were determined. No significant difference in TBARS was observed between untreated SHR or WKY rats; GSH content was lower in the liver but higher in the brain of SHR compared to WKY rats. In tissues from the SHR group, SOD and Gpx activities were reduced, whereas CAT activity was slightly increased in kidney. TBARS levels did not change in WKY rats after losartan administration, but were reduced in SHR liver and brain. Losartan treatment decreased GSH content in WKY kidney, but increased GSH in SHR liver. The activity of the antioxidant enzymes was not modified by losartan in WKY rats; however, their activities increased in tissues from treated SHR. The lower activity of antioxidant enzymes in tissues from hypertensive rats compared to those detected in normotensive controls, indicates oxidative stress production. Ang II seems to play no role in this process in normotensive animals, although AT1 receptor blockade in SHR enhances the enzymatic activity indicating that Ang II is implicated in oxidative stress generation in the hypertensive animals.  相似文献   

7.
The protective effects of carvedilol, an antihypertensive agent, against oxidative injury caused by acetaminophen were studied in rat liver. Male Wistar rats (250 +/- 30 g) were pre-treated with carvedilol (3.6 mg/kg, p.o.) for 10 days and on the 11th day received an overdose of acetaminophen (800 mg/kg, p.o.). Four hours after acetaminophen administration, blood was collected to determine serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). After that, rats were killed and the livers were excised to determine reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and carbonyl protein contents, and the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST), and also the DNA damage index. Acetaminophen significantly increased the levels of TBARS, the DNA damage and SOD, AST and ALT activities. Carvedilol was able to prevent lipid peroxidation, protein carbonilation and DNA fragmentation caused by acetaminophen. Moreover, this drug prevented increases in SOD, AST and ALT activities. These results show that carvedilol exerts cytoprotective effects against oxidative injury caused by acetaminophen in rat liver. These effects are probably related to the O2*- scavenging property of carvedilol or its metabolites.  相似文献   

8.
Selenium (Se) is an essential mineral for mammals. It is a nutrient related to the complex metabolic and enzymatic functions. Although Se has important physiological functions in the cells, organic compounds of Se can be extremely toxic, and may affect the central nervous system. This study aims to investigate the effect of the chronic treatment with the vinyl chalcogenide 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on some parameters of oxidative stress in the brain of rats. Animals received the vinyl chalcogenide (125, 250 or 500 μg/kg body weight) intraperitoneally once a day during 30 days. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured in the brain. Results showed that the organoselenium enhanced TBARS in the cerebral cortex of rats but the compound was not able to change carbonyl levels. Furthermore, the organoselenium reduced thiol groups measured by the sulfhydryl assay in all tissues studied. The activity of the antioxidant enzyme CAT was increased by the organochalcogen in the cerebral cortex and in the cerebellum, and the activity of SOD was increased in the hippocampus. On the other hand, the activity of the antioxidant enzyme GPx was reduced in all brain structures. Our findings indicate that this organoselenium compound induces oxidative stress in different brain regions of rats, corroborating to the fact that this tissue is a potential target for organochalcogen action.  相似文献   

9.
The aim of this study was to investigate effect of dietary omega-3 fatty acid supplementation on the indices of in vivo lipid peroxidation and oxidant/antioxidant status of plasma in rats. The plasma thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) levels, and activities of xanthine oxidase (XO), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were studied in male Wistar Albino rats after ingestion of 0.4 g/kg fish oil (rich in omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid) for 30 days and compared to untreated control rats. The rats in the treated group had significantly higher SOD activity (P < 0.001), NO levels (P < 0.01) and decreased TBARS levels (P < 0.05) with respect to controls whereas GSH-Px and XO activities were not significantly different between the groups. None of the measured parameters had significant correlation with each other in both groups. We conclude that dietary supplementation of omega-3 fatty acids may enhance resistance to free radical attack and reduce lipid peroxidation. These results support the notion that omega-3 fatty acids may be effective dietary supplements in the management of various diseases in which oxidant/antioxidant defence mechanisms are decelerated.  相似文献   

10.
Antioxidant responses to chronic hypoxia in the rat cerebellum and pons   总被引:6,自引:0,他引:6  
Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH) and sleep fragmentation and deprivation. Exposure to CIH results in oxidative stress in the cortex, hippocampus and basal forebrain of rats and mice. We show that sustained and intermittent hypoxia induces antioxidant responses, an indicator of oxidative stress, in the rat cerebellum and pons. Increased glutathione reductase (GR) activity and thiobarbituric acid reactive substance (TBARS) levels were observed in the pons and cerebellum of rats exposed to CIH or chronic sustained hypoxia (CSH) compared with room air (RA) controls. Exposure to CIH or CSH increased GR activity in the pons, while exposure to CSH increased the level of TBARS in the cerebellum. The level of TBARS was increased to a greater extent after exposure to CSH than to CIH in the cerebellum and pons. Increased superoxide dismutase activity (SOD) and decreased total glutathione (GSHt) levels were observed after exposure to CIH compared with CSH only in the pons. We have previously shown that prolonged sleep deprivation decreased SOD activity in the rat hippocampus and brainstem, without affecting the cerebellum, cortex or hypothalamus. We therefore conclude that sleep deprivation and hypoxia differentially affect antioxidant responses in different brain regions.  相似文献   

11.
Hyperbaric oxygen (HBO) is known to cause oxidative stress in several organs and tissues. Due to its high rate of blood flow and oxygen consumption, the brain is one of the most sensitive organs to this effect. The present study was performed to elucidate the relation of HBO exposure time to its oxidative effects in rats’ brain cortex tissue. For this purpose, 49 rats were randomly divided into five groups. Except the control group, study groups were subjected to three atmospheres HBO for 30, 60, 90, and 120 min. Their cerebral cortex layer was taken immediately after exposure and used for analysis. Thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and nitrate–nitrite (NOX) levels were determined. TBARS and SOD levels were found to increase in a time-dependent manner. GSH-Px activity reflected an inconsistent course. NOX levels were found to be increased only in the 120 min exposed group. The results of this study suggests that HBO induced oxidative effects are strongly related with exposure time.  相似文献   

12.
Histidinemia is an inherited metabolic disorder biochemically characterized by high concentrations of histidine in biological fluids. Usually affected patients are asymptomatic although some individuals have mental retardation and speech disorders. Considering the high prevalence of histidinemia and the scarce information on the effects of maternal histidinemia on their progeny, we investigated various parameters of oxidative stress in brain cortex and hippocampus of the offspring from female rats that received histidine (0.5 mg/g of body weight) in the course of pregnancy and lactation. At 21 days of age we found a significant increase of thiobarbituric acid reactive substances (TBARS), 2′,7′-dihydrodichlorofluorescein oxidation, superoxide dismutase (SOD) activity, catalase (CAT) activity, total sulfhydryls and glutathione (GSH) content in cerebral cortex and hippocampus. We also verified that at 60 days of age, GSH, SOD and total sulfhydryls returned to normal levels in brain cortex, while the other parameters decreased in the same structure. In the hippocampus, at 60 days of age GSH returned to normal levels, CAT persisted elevated and the other parameters decreased. These results indicate that histidine administration to female rats can induce oxidative stress in the brain from the offspring, which partially recovers 40 days after breastfeeding stopped.  相似文献   

13.
Since there are no data about the protective role of selenium (Se) against cadmium (Cd)-induced oxidative damage in early life, we studied the effect of Se supplementation on antioxidative enzyme activity and lipid peroxidation (through thiobarbituric acid reactive substances; TBARS) in suckling Wistar rats exposed to Cd. Treated animals received either Se alone for 9 days (8 μmol, i.e., 0.6 mg Se as Na2SeO3 kg−1 b.w., daily, orally; Se group), Cd alone for 5 days (8 μmol, i.e., 0.9 mg Cd as CdCl2 kg−1 b.w., daily, orally; Cd group), or pre-treatment with Se for 4 days and then co-treatment with Cd for the following 5 days (Se + Cd group). Our results showed that selenium supplementation, with and without Cd, increased SOD activity in the brain and kidney, but not in the liver and GSH-Px activity across all tissues compared to control rats receiving distilled water. Relative to the Cd group, Se + Cd group had higher kidney and brain SOD and GSH-Px activity (but not the liver), while in the liver caused increased and in the brain decreased TBARS level. These results suggest that Se stimulates antioxidative enzymes in immature kidney and brain of Cd-exposed rats and could protect against oxidative damage.  相似文献   

14.
The role of oxidative stress in chronic cadmium (Cd) toxicity and its prevention by cotreatment with beta-carotene was investigated. Adult male rats were intragastrically administered 2 mg CdCl2/kg body weight three times a week intragastrically for 3 and 6 weeks. Brain and testicular thiobarbituric acid reactive substances (TBARS) was elevated after 3 and 6 weeks of Cd administration, indicating increased lipid peroxidation (LPO) and oxidative stress. Cellular damage was indicated by inhibition of adenosine triphosphatase (ATPase) activity and increased lactate dehydrogenase (LDH) activity in brain and testicular tissues. Chronic Cd administration resulted in a decline in glutathione (GSH) content and a decrease of superoxide dismutase (SOD) and glutathione S-transferase (GST) activity in both organs. Administration of beta-carotene (250 IU/kg i.g.) concurrent with Cd ameliorated Cd-induced LPO. The brain and testicular antioxidants, SOD, GST, and GSH, decreased by Cd alone, were restored by beta-carotene cotreatment. Concurrent treatment with beta-carotene also ameliorated the decrease in ATPase activity and the increase in LDH activity in brain and testis of Cd-treated rats, indicating a prophylactic action of beta-carotene on Cd toxicity. Therefore, the results indicate that the nutritional antioxidant beta-carotene ameliorated oxidative stress and the loss of cellular antioxidants and suggest that beta-carotene may control Cd-induced brain and testicular toxicity.  相似文献   

15.
The oxidative status of liver of female rats exposed to lead acetate and cadmium acetate either alone or in combination at a dose of 0.05?mg/kg body wt intraperitoneally for 15 days was studied. After the administration of lead alone, the activity of superoxide dismutase (SOD) decreased in liver, whereas no changes were observed in catalase (CAT) activity, and glutathione (GSH) and thiobarbituric acid (TBARS) levels. Cadmium exposure and combined exposure to lead and cadmium led to decrease in GSH content and increased TBARS levels. Moreover, animals exposed to either cadmium alone or in combination with lead showed a decrease in SOD activity and an increase in CAT activity. The in vitro experiments showed that vitamin E failed to restore the antioxidant enzyme activities in metal treated postmitochondrial supernatant fraction of liver. But Mn2+ ions protected the mitochondria from lipid peroxidation and could completely restore Mn-superoxide dismutase (Mn-SOD) activity following metal intoxication. The results of this study indicate that despite the ability of lead and cadmium to induce oxidative stress the effect in liver is not intensified by combined exposure to both lead and cadmium. The observed changes in various oxidative stress parameters in the liver of rats co-exposed to lead and cadmium may result from an independent effect of lead and /cadmium and also from their interaction such as changes in metal accumulation and content of essential elements like Cu, Zn and Fe. These results suggest that when lead and cadmium are present together in similar concentrations, cadmium mediates major effects due to its more reactive nature.  相似文献   

16.
The oxidative status of liver of female rats exposed to lead acetate and cadmium acetate either alone or in combination at a dose of 0.05 mg/kg body wt intraperitoneally for 15 days was studied. After the administration of lead alone, the activity of superoxide dismutase (SOD) decreased in liver, whereas no changes were observed in catalase (CAT) activity, and glutathione (GSH) and thiobarbituric acid (TBARS) levels. Cadmium exposure and combined exposure to lead and cadmium led to decrease in GSH content and increased TBARS levels. Moreover, animals exposed to either cadmium alone or in combination with lead showed a decrease in SOD activity and an increase in CAT activity. The in vitro experiments showed that vitamin E failed to restore the antioxidant enzyme activities in metal treated postmitochondrial supernatant fraction of liver. But Mn2+ ions protected the mitochondria from lipid peroxidation and could completely restore Mn-superoxide dismutase (Mn-SOD) activity following metal intoxication. The results of this study indicate that despite the ability of lead and cadmium to induce oxidative stress the effect in liver is not intensified by combined exposure to both lead and cadmium. The observed changes in various oxidative stress parameters in the liver of rats co-exposed to lead and cadmium may result from an independent effect of lead and /cadmium and also from their interaction such as changes in metal accumulation and content of essential elements like Cu, Zn and Fe. These results suggest that when lead and cadmium are present together in similar concentrations, cadmium mediates major effects due to its more reactive nature.  相似文献   

17.
The ability of aluminium to affect the oxidant status of specific areas of the brain (cerebellum, ventral midbrain, cortex, hippocampus, striatum) was investigated in rats intraperitoneally treated with aluminium chloride (10 mg Al3+/kg/day) for 10 days. The potential of aluminium to act as an etiological factor in Parkinson's disease (PD) was assessed by studying its ability to increase oxidative stress in ventral midbrain and striatum and the striatal dopaminergic neurodegeneration induced by 6-hydroxydopamine in an experimental model of PD. The results showed that aluminium caused an increase in oxidative stress (TBARS, protein carbonyl content, and protein thiol content) for most of the brain regions studied, which was accompanied by a decrease in the activity of some antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase). However, studies in vitro confirmed the inability of aluminium to affect the activity of those enzymes. The reported effects exhibited a regional-selective behaviour for all the cerebral structures studied. Aluminium also enhanced the ability of 6-hydroxydopamine to cause oxidative stress and neurodegeneration in the dopaminergic system, which confirms its potential as a risk factor in the development of PD.  相似文献   

18.
Activities of the antioxidant enzymes such as superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R) as well as the level of reduced glutathione and the concentration of thiobarbituric acid—reactive substance (TBARS) in brain regions in transiently hypoperfused rat brain with or without intravenous infusion of spermine were evaluated. Cerebral hypoperfusion was induced by temporary occlusion of common carotid arteries for 30 min and subsequently, by reperfusion for 60 min. Infusion of spermine reversed the decrease in SOD activity in the cerebral cortex, striatum, hippocampus, hypothalamus and midbrain, and amounted to 50.1 U, 61.5 U, 50.3 U, 30.0 U, 38.0 U, respectively, while GSH-Px restored to normal values only in the cerebral cortex and striatum and amounted to 100 u and 110 U, respectively. During hypoperfusion/reperfusion and after use of spermine no changes in GSSG-R were seen in the hypothalamus and midbrain. The activity of GSSG-R was in accordance with the control for the striatum and amounted to 39.0 IU after using spermine. GSH content returned to normal values in the striatum and midbrain after i.v. use of spermine and amounted to 210 and 240 nmol/g of wet tissue, respectively. In addition, the production of TBARS dropped markedly (P<0.05) in the hippocampus and midbrain and amounted to 100 and 105 μmol/g of wet tissue, respectively. Partially beneficial effect of spermine could result from the inhibition of free radical generation and capability of chelate formation with iron ions.  相似文献   

19.
To compare the effects of alpha-ketoglutarate (alpha-KG) and melatonin on 24-h rhythmicity of oxidative stress in N-nitrosodiethylamine (NDEA)-injected Wistar male rats, melatonin (5 mg/kg i.p.) or alpha-KG (2 g/kg through an intragastric tube) was given daily for 20 weeks. In blood collected at 6 time points during a 24-h period, serum activity of aspartate transaminase (AST) and alanine transaminase (ALT) and the levels of alpha-fetoprotein (alpha-FP) were measured as markers of liver function. To assess lipid peroxidation and the antioxidant status, plasma levels of thiobarbituric acid reactive substances (TBARS) and of reduced glutathione (GSH) were measured, together with the activity of erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST). NDEA augmented mesor and amplitude of rhythms in AST and ALT activity and plasma alpha-FP levels and mesor values of plasma TBARS, while decreasing mesor values of plasma GSH and erythrocyte SOD, CAT, GPx and GST. Acrophases were delayed by NDEA in all cases except for alpha-FP rhythm, which became phase-advanced. Co-administration of melatonin or alpha-KG partially counteracted the effects of NDEA. Melatonin decreased mesor of plasma TBARS and augmented mesor of SOD activity. The results indicate that melatonin and alpha-KG are effective in protecting from NDEA-induced perturbation of 24-h rhythms in oxidative stress. Melatonin augmented antioxidant defense in rats.  相似文献   

20.
Superoxide dismutase (SOD) activity was measured in the brain and liver of 24–26- and 3-month-old rats. No significant age-related differences in Cu/Zn-SOD activity were found in any of the tissues studied. A small but significant increase in total SOD activity was observed in the whole brain (10-20%), cerebral cortex (11%), and hypothalamus (18%) of old rats, whereas a much more important increase in Mn-SOD activity was found in the whole brain (48%), cerebral cortex (70%), striatum (60%), and hypothalamus (30%). The increase of Mn-SOD activity in the brain of old rats suggests the enzyme may play an important role in the process of aging. Mn-SOD is found only in the mitochondrion, which could be an important site of oxygen free radical production, and a significant increase in the enzyme activity was also found in the lung of hypoxic rats. A significant decrease in total SOD and Mn-SOD activity was observed in the liver of old rats. Preliminary experiments in 23–24-month-old mice similarly showed an increase and a decrease in total SOD and Mn-SOD activity, respectively, in the whole brain and liver. These results suggest that the regulatory mechanisms of Mn-SOD in the brain and liver vary differentially with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号