首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatiometabolic Stratification of Shewanella oneidensis Biofilms   总被引:1,自引:0,他引:1       下载免费PDF全文
Biofilms, or surface-attached microbial communities, are both ubiquitous and resilient in the environment. Although much is known about how biofilms form, develop, and detach, very little is understood about how these events are related to metabolism and its dynamics. It is commonly thought that large subpopulations of cells within biofilms are not actively producing proteins or generating energy and are therefore dead. An alternative hypothesis is that within the growth-inactive domains of biofilms, significant populations of living cells persist and retain the capacity to dynamically regulate their metabolism. To test this, we employed unstable fluorescent reporters to measure growth activity and protein synthesis in vivo over the course of biofilm development and created a quantitative routine to compare domains of activity in independently grown biofilms. Here we report that Shewanella oneidensis biofilm structures reproducibly stratify with respect to growth activity and metabolism as a function of size. Within domains of growth-inactive cells, genes typically upregulated under anaerobic conditions are expressed well after growth has ceased. These findings reveal that, far from being dead, the majority of cells in mature S. oneidensis biofilms have actively turned-on metabolic programs appropriate to their local microenvironment and developmental stage.  相似文献   

2.
3.
4.
5.
Shewanella oneidensis MR-1 is a facultative Fe(III)- and Mn(IV)-reducing microorganism and serves as a model for studying microbially induced dissolution of Fe or Mn oxide minerals as well as biogeochemical cycles. In soil and sediment environments, S. oneidensis biofilms form on mineral surfaces and are critical for mediating the metabolic interaction between this microbe and insoluble metal oxide phases. In order to develop an understanding of the molecular basis of biofilm formation, we investigated S. oneidensis biofilms developing on glass surfaces in a hydrodynamic flow chamber system. After initial attachment, growth of microcolonies and lateral spreading of biofilm cells on the surface occurred simultaneously within the first 24 h. Once surface coverage was almost complete, biofilm development proceeded with extensive vertical growth, resulting in formation of towering structures giving rise to pronounced three-dimensional architecture. Biofilm development was found to be dependent on the nutrient conditions, suggesting a metabolic control. In global transposon mutagenesis, 173 insertion mutants out of 15,000 mutants screened were identified carrying defects in initial attachment and/or early stages in biofilm formation. Seventy-one of those mutants exhibited a nonswimming phenotype, suggesting a role of swimming motility or motility elements in biofilm formation. Disruption mutations in motility genes (flhB, fliK, and pomA), however, did not affect initial attachment but affected progression of biofilm development into pronounced three-dimensional architecture. In contrast, mutants defective in mannose-sensitive hemagglutinin type IV pilus biosynthesis and in pilus retraction (pilT) showed severe defects in adhesion to abiotic surfaces and biofilm formation, respectively. The results provide a basis for understanding microbe-mineral interactions in natural environments.  相似文献   

6.
In the ubiquitous marine bacterium Pseudoalteromonas tunicata, subpopulations of cells are killed by the production of an autocidal protein, AlpP, during biofilm development. Our data demonstrate an involvement of this process in two parameters, dispersal and phenotypic diversification, which are of importance for the ecology of this organism and for its survival within the environment. Cell death in P. tunicata wild-type biofilms led to a major reproducible dispersal event after 192 h of biofilm development. The dispersal was not observed with a DeltaAlpP mutant strain. Using flow cytometry and the fluorescent dye DiBAC4(3), we also show that P. tunicata wild-type cells that disperse from biofilms have enhanced metabolic activity compared to those cells that disperse from DeltaAlpP mutant biofilms, possibly due to nutrients released from dead cells. Furthermore, we report that there was considerable phenotypic variation among cells dispersing from wild-type biofilms but not from the DeltaAlpP mutant. Wild-type cells that dispersed from biofilms showed significantly increased variations in growth, motility, and biofilm formation, which may be important for successful colonization of new surfaces. These findings suggest for the first time that the autocidal events mediated by an antibacterial protein can confer ecological advantages to the species by generating a metabolically active and phenotypically diverse subpopulation of dispersal cells.  相似文献   

7.
It has long been suspected that microbial biofilms harbor cells in a variety of activity states, but there have been few direct experimental visualizations of this physiological heterogeneity. Spatial patterns of DNA replication and protein synthetic activity were imaged and quantified in staphylococcal biofilms using immunofluorescent detection of pulse-labeled DNA and also an inducible green fluorescent protein (GFP) construct. Stratified patterns of DNA synthetic and protein synthetic activity were observed in all three biofilm systems to which the techniques were applied. In a colony biofilm system, the dimensions of the zone of anabolism at the air interface ranged from 16 to 38 microm and corresponded with the depth of oxygen penetration measured with a microelectrode. A second zone of activity was observed along the nutrient interface of the biofilm. Much of the biofilm was anabolically inactive. Since dead cells constituted only 10% of the biofilm population, most of the inactive cells in the biofilm were still viable. Collectively, these results suggest that staphylococcal biofilms contain cells in at least four distinct states: growing aerobically, growing fermentatively, dead, and dormant. The variety of activity states represented in a biofilm may contribute to the special ecology and tolerance to antimicrobial agents of biofilms.  相似文献   

8.
In the ubiquitous marine bacterium Pseudoalteromonas tunicata, subpopulations of cells are killed by the production of an autocidal protein, AlpP, during biofilm development. Our data demonstrate an involvement of this process in two parameters, dispersal and phenotypic diversification, which are of importance for the ecology of this organism and for its survival within the environment. Cell death in P. tunicata wild-type biofilms led to a major reproducible dispersal event after 192 h of biofilm development. The dispersal was not observed with a ΔAlpP mutant strain. Using flow cytometry and the fluorescent dye DiBAC4(3), we also show that P. tunicata wild-type cells that disperse from biofilms have enhanced metabolic activity compared to those cells that disperse from ΔAlpP mutant biofilms, possibly due to nutrients released from dead cells. Furthermore, we report that there was considerable phenotypic variation among cells dispersing from wild-type biofilms but not from the ΔAlpP mutant. Wild-type cells that dispersed from biofilms showed significantly increased variations in growth, motility, and biofilm formation, which may be important for successful colonization of new surfaces. These findings suggest for the first time that the autocidal events mediated by an antibacterial protein can confer ecological advantages to the species by generating a metabolically active and phenotypically diverse subpopulation of dispersal cells.  相似文献   

9.
Here we examined how water limitation (matric stress) and high osmolarity (solute stress) influence the extent of endogenous oxidative stress and cell death patterns within Pseudomonas putida biofilms. The temporal dynamics and spatial organization of reactive oxygen species (ROS) accumulation and dead cells in biofilms developed under water‐replete and solute stress conditions were similar to each other. Arrays of dead cells, typically one cell width in diameter, were distributed throughout the biofilm and occasionally they spanned the entire depth of the biofilm. These arrays of dead cells were not observed under water‐limiting conditions, although the extent of ROS accumulation and cell death was substantially greater. Despite the greater death rate under water‐limiting conditions, culturable population sizes were transiently maintained at levels comparable to those under water‐replete and solute stress conditions. There was greater spatial stratification of dead cells under water‐limiting than water‐replete conditions with viable cells primarily located at the air interface, which could facilitate cell dispersal following a wetting event. Under water‐limiting conditions, ROS accumulation is greater in an ΔalgD mutant compared with the wild type, suggesting that the exopolysaccharide alginate attenuates the extent of dehydration‐mediated oxidative stress. We conclude that endogenous ROS accumulation is correlated with cell death within P. putida biofilms, although mechanisms contributing to their accumulation may differ under water‐replete and water‐limiting conditions.  相似文献   

10.
The composition of extracellular polymeric substances (EPS) from Shewanella sp. HRCR-1 biofilms was investigated using infrared spectroscopy and proteomics to provide insight into potential ecophysiological functions and redox activity of the EPS. Both bound and loosely associated EPS were extracted from Shewanella sp. HRCR-1 biofilms prepared using a hollow-fibre membrane biofilm reactor. Fourier transform infrared spectra revealed the presence of proteins, polysaccharides, nucleic acids, membrane lipids and fatty acids in the EPS fractions. Using a global proteomic approach, a total of 58 extracellular and outer membrane proteins were identified in the EPS. These included homologues of multiple Shewanella oneidensis MR-1 proteins that potentially contribute to key physiological biofilm processes, such as biofilm-promoting protein BpfA, surface-associated serine protease, nucleotidases (CpdB and UshA), an extracellular lipase, and oligopeptidases (PtrB and a M13 family oligopeptidase lipoprotein). In addition, 20 redox proteins were found in extracted EPS. Among the detected redox proteins were the homologues of two S. oneidensis MR-1 c-type cytochromes, MtrC and OmcA, which have been implicated in extracellular electron transfer. Given their detection in the EPS of Shewanella sp. HRCR-1 biofilms, c-type cytochromes may contribute to the possible redox activity of the biofilm matrix and play important roles in extracellular electron transfer reactions.  相似文献   

11.
Advances in microscopic analysis and molecular genetics research methods promoted the acquisition of evidence that natural bacteria populations exist predominately as substrate attached biofilms. Bacteria in biofilms are able to exchange signals and display coordinated activity that is inherent to multicellular organisms. Formation of biofilm communities turned out to be one of the main survival strategies of bacteria in their ecological niche. Bacteria in attached condition in biofilm are protected from the environmental damaging factors and effects of antibacterial substances in the environment and host organism during infection. According to contemporary conception, biofilm is a continuous layer of bacterial cells that are attached to a surface and each other, and contained in a biopolymer matrix. Such bacterial communities may be composed of bacteria of one or several species, and composed of actively functioning cells as well as latent and uncultured forms. Particular attention has recently been paid to the role of biofilms in the environment and host organism. Microorganisms form biofilm on any biotic and abiotic surfaces which creates serious problems in medicine and various areas of economic activity. Currently, it is established that biofilms are one of the pathogenetic factors of chronic inflection process formation. The review presents data on ubiquity of bacteria existence as biofilms, contemporary methods of microbial community analysis, structural-functional features of bacterial biofilms. Particular attention is paid to the role of biofilm in chronic infection process formation, heightened resistance to antibiotics of bacteria in biofilms and possible mechanisms of resistance. Screening approaches for agents against biofilms in chronic infections are discussed.  相似文献   

12.
The survival of bacteria in nature is greatly enhanced by their ability to grow within surface-associated communities called biofilms. Commonly, biofilms generate proliferations of bacterial cells, called microcolonies, which are highly recalcitrant, 3-dimensional foci of bacterial growth. Microcolony growth is initiated by only a subpopulation of bacteria within biofilms, but processes responsible for this differentiation remain poorly understood. Under conditions of crowding and intense competition between bacteria within biofilms, microevolutionary processes such as mutation selection may be important for growth; however their influence on microcolony-based biofilm growth and architecture have not previously been explored. To study mutation in-situ within biofilms, we transformed Pseudomonas aeruginosa cells with a green fluorescent protein gene containing a +1 frameshift mutation. Transformed P. aeruginosa cells were non-fluorescent until a mutation causing reversion to the wildtype sequence occurs. Fluorescence-inducing mutations were observed in microcolony structures, but not in other biofilm cells, or in planktonic cultures of P. aeruginosa cells. Thus microcolonies may represent important foci for mutation and evolution within biofilms. We calculated that microcolony-specific increases in mutation frequency were at least 100-fold compared with planktonically grown cultures. We also observed that mutator phenotypes can enhance microcolony-based growth of P. aeruginosa cells. For P. aeruginosa strains defective in DNA fidelity and error repair, we found that microcolony initiation and growth was enhanced with increased mutation frequency of the organism. We suggest that microcolony-based growth can involve mutation and subsequent selection of mutants better adapted to grow on surfaces within crowded-cell environments. This model for biofilm growth is analogous to mutation selection that occurs during neoplastic progression and tumor development, and may help to explain why structural and genetic heterogeneity are characteristic features of bacterial biofilm populations.  相似文献   

13.
The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment.  相似文献   

14.
Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered and attached to the bottom of the plate when cells were grown in the presence of pyrimidinedione. Scanning electron microscopy analysis demonstrated the absence of an extracellular polysaccharide matrix in pyrimidinedione-grown biofilms compared to control-biofilms. Pyrimidinedione also significantly inhibited MRSA, MSSA, and Staphylococcus epidermidis biofilm growth in vitro. Furthermore, pyrimidinedione does not exhibit eukaryotic cell toxicity. In a microarray analysis, 56 genes were significantly up-regulated and 204 genes were significantly down-regulated. Genes involved in galactose metabolism were exclusively up-regulated in pyrimidinedione-grown biofilms. Genes related to DNA replication, cell division and the cell cycle, pathogenesis, phosphate-specific transport, signal transduction, fatty acid biosynthesis, protein folding, homeostasis, competence, and biofilm formation were down regulated in pyrimidinedione-grown biofilms. This study demonstrated that the small molecule Dam inhibitor, pyrimidinedione, inhibits pneumococcal biofilm growth in vitro at concentrations that do not inhibit planktonic cell growth and down regulates important metabolic-, virulence-, competence-, and biofilm-related genes. The identification of a small molecule (pyrimidinedione) with S. pneumoniae biofilm-inhibiting capabilities has potential for the development of new compounds that prevent biofilm formation.  相似文献   

15.
The metabolism of urea by urease enzymes of oral bacteria profoundly influences oral biofilm pH homeostasis and oral microbial ecology. The purpose of this study was to gain insight into the regulation of expression of the low pH-inducible urease genes in populations of Streptococcus salivarius growing in vitro in biofilms and to explore whether urease regulation or the levels of urease expression in biofilm cells differed significantly from planktonic cells. Two strains of S. salivarius harbouring urease promoter fusions to a chloramphenicol acetyltransferase (cat) gene were used: PurelCAT, containing a fusion to the full-length, pH-sensitive promoter; or Pureldelta100CAT, a constitutively derepressed deletion derivative of the urease gene promoter. The strains were grown in a Rototorque biofilm reactor in a tryptone-yeast extract-sucrose medium with or without pH control. Both CAT and urease activities in biofilms were measured at 'quasi-steady state' and after a 25mM glucose pulse. The results showed that CAT expression in PurelCAT was repressed at relatively neutral pH values, and that expression could be induced by acidic pH after carbohydrate challenge. Biofilms of PurelCAT grown at low pH, without buffering, had about 20-fold higher CAT levels, and only a modest further induction could be elicited with carbohydrate pulsing. The levels of CAT in biofilms of PurelCAT grown in buffered medium were slightly higher than those reported for planktonic cells cultured at pH 7.0, and the levels of CAT in Purel-CAT growing at low pH or after induction were similar to those reported for fully induced planktonic cells. CAT activity in Pureldelta100CAT was constitutively high, regardless of growth conditions. Interestingly, urease activity detected in biofilms of the parent strain, S. salivarius 57.1, could be as much as 130-fold higher than that reported for fluid chemostat cultures grown under similar conditions. The higher level of urease activity in biofilms was probably caused by the accumulation of the stable urease enzyme within biofilm cells, low pH microenvironments and the growth phase of populations of cells in the biofilm. The ability of S. salivarius biofilm cells to upregulate urease expression in response to pH gradients and to accumulate greater quantities of urease enzyme when growing in biofilms may have a significant impact on oral biofilm pH homeostasis and microbial ecology in vivo. Additionally, S. salivarius carrying the pH-sensitive urease gene promoter fused to an appropriate reporter gene may be a useful biological probe for sensing biofilm pH in situ.  相似文献   

16.
17.
Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms or how this is influenced by community composition or environmental parameters, because of the complications in obtaining biofilm samples and the difficulties in analysing EPS. Additionally, although biofilms may contain various microbial groups, research commonly focuses solely upon bacteria. This research applies an EPS analysis method based upon fluorescent confocal laser scanning microscopy (CLSM) in combination with digital image analysis (DIA), to concurrently characterize cells and EPS (carbohydrates and proteins) within drinking water biofilms from a full-scale DWDS experimental pipe loop facility with representative hydraulic conditions. Application of the EPS analysis method, alongside DNA fingerprinting of bacterial, archaeal and fungal communities, was demonstrated for biofilms sampled from different positions around the pipeline, after 28 days growth within the DWDS experimental facility. The volume of EPS was 4.9 times greater than that of the cells within biofilms, with carbohydrates present as the dominant component. Additionally, the greatest proportion of EPS was located above that of the cells. Fungi and archaea were established as important components of the biofilm community, although bacteria were more diverse. Moreover, biofilms from different positions were similar with respect to community structure and the quantity, composition and three-dimensional distribution of cells and EPS, indicating that active colonisation of the pipe wall is an important driver in material accumulation within the DWDS.  相似文献   

18.
Novel procedures and instrumentation are described for nuclear magnetic resonance (NMR) spectroscopy and imaging studies of live, in situ microbial films. A perfused NMR/optical microscope sample chamber containing a planar biofilm support was integrated into a recirculation/dilution flow loop growth reactor system and used to grow in situ Shewanella oneidensis strain MR-1 biofilms. Localized NMR techniques were developed and used to non-invasively monitor time-resolved metabolite concentrations and to image the biomass volume and distribution. As a first illustration of the feasibility of the methodology an initial 13C-labeled lactate metabolic pathway study was performed, yielding results consistent with existing genomic data for MR-1. These results represent progress toward our ultimate goal of correlating time- and depth-resolved metabolism and mass transport with gene expression in live in situ biofilms using combined NMR/optical microscopy techniques.  相似文献   

19.
Horizontal gene transfer by natural genetic transformation in Acinetobacter sp. strain BD413 was investigated by using gfp carried by the autonomously replicating plasmid pGAR1 in a model monoculture biofilm. Biofilm age, DNA concentration, and biofilm mode of growth were evaluated to determine their effects on natural genetic transformation. The highest transfer frequencies were obtained in young and actively growing biofilms when high DNA concentrations were used and when the biofilm developed during continuous exposure to fresh medium without the presence of a significant amount of cells in the suspended fraction. Biofilms were highly amenable to natural transformation. They did not need to advance to an optimal growth phase which ensured the presence of optimally competent biofilm cells. An exposure time of only 15 min was adequate for transformation, and the addition of minute amounts of DNA (2.4 fg of pGAR1 per h) was enough to obtain detectable transfer frequencies. The transformability of biofilms lacking competent cells due to growth in the presence of cells in the bulk phase could be reestablished by starving the noncompetent biofilm prior to DNA exposure. Overall, the evidence suggests that biofilms offer no barrier against effective natural genetic transformation of Acinetobacter sp. strain BD413.  相似文献   

20.
The limitation of pH inside electrode‐respiring biofilms is a well‐known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode‐respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the microelectrode was allowed to acclimatize inside the biofilm. Biotechnol. Bioeng. 2012; 109: 2651–2662. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号