首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal and metalloid resistances in plant species and genotypes/accessions are becoming increasingly better understood at the molecular and physiological level. Much of the recent focus into metal resistances has been on hyperaccumulators as these are excellent systems to study resistances due to their very abnormal metal(loid) physiology and because of their biotechnological potential. Advances into the mechanistic basis of metal(loid) resistances have been made through the investigation of metal(loid) transporters, the construction of mutants with altered metal(loid) transport and metabolism, a better understanding of the genetic basis of resistance and hyperaccumulation and investigations into the role of metal(loid) ion chelators. This review highlights these recent advances.  相似文献   

2.
Resistance to water flow in the sorghum plant   总被引:5,自引:2,他引:3       下载免费PDF全文
  相似文献   

3.
I. R. Cowan 《Planta》1972,106(3):221-226
Summary The currents generated in the analogue circuit represent vapour loss from leaves, heat loss from leaves, and liquid flow in plant and soil. The plant and soil resistances are defined in such a way that they are consistent with the resistances to transport of vapour in the atmosphere and there is continuity of potential at the analogue liquid: air interface in the leaves. The action of the environment on plant water movement is treated as an application of Thévenin's theorem of electric circuits.  相似文献   

4.
Genetic correlations between plant resistances to multiple natural enemies are important because they have the potential to determine the mode of selection that natural enemies impose on a host plant, the structure of herbivore and pathogen communities, and the success of plant breeding for resistance to multiple diseases and pests. We conducted a meta-analysis of 29 published studies of 16 different plant species reporting a total of 467 genetic correlations between resistances to multiple herbivores or pathogens. In general, genetic associations between resistances to multiple natural enemies tended to be positive regardless of the breeding design, type of attacker, and type of host plant. Positive genetic correlations between resistances were stronger when both attackers were pathogens or generalist herbivores and when resistance to different enemies was tested independently, suggesting that generalists may be affected by the same plant resistance traits and that interactions among natural enemies are common. Although the mean associations between resistances were positive, indicating the prevalence of diffuse selection and generalized defenses against multiple enemies, the large variation in both the strength and the direction of the associations suggests a continuum between pairwise and diffuse selection.  相似文献   

5.
Acid metabolism and gas exchange studies were conducted in situ on the cactus Opuntia basilaris Engelm. and Bigel. A pattern of significant seasonal variation was evident. The pattern was controlled by rainfall, which significantly influenced plant water potentials, total gas transfer resistances, and nocturnal organic acid synthesis. In winter and early spring, when plant water stress was mild, stomatal and mesophyll resistances remained low, permitting enhanced nocturnal assimilation of 14CO2. The day/night accumulation of acidity was large during these seasons. In summer and fall, plant water stress was moderate, although soil water stress was severe. The nocturnal assimilation of 14CO2 was very low during these seasons, even in stems with open stomata, indicating large mesophyll resistances restricting exogenous gas incorporation. The day/night accumulation of acidity was reduced, and a low level of acid metabolism persisted throughout this period. The rapid response to a midsummer rainfall emphasizes the importance of plant water potential as a parameter controlling over-all metabolic activity. The seasonal variations of acid metabolism and gas exchange significantly influenced the efficiency of water use and carbon dioxide assimilation. Periods of maximal efficiency followed rainfall throughout the course of the year.  相似文献   

6.
Hydroponic sunflower plants were used in a quantitative studyof the relationship between total plant and leaf resistancesto transpirational water movement and transpiration rate. Theresults demonstrate that both resistances are flux-dependentand decline 5–6-fold during a comparable increase in transpiration.The resistance of excised leaves including the petiole was approximatelyhalf the total plant resistance. Subsequent analyses of the water potential gradients and transpirationalfluxes in whole plants permitted calculation of the magnitudeof the partial resistances imposed by roots, stem, petiole,and leaf. The root and leaf resistances were approximately 50%and 30% of the total resistance respectively. Stem and petiolarresistances were relatively small and both influenced watermovement to the upper leaves similarly. The values obtainedare compared with previous published results obtained usingdiverse experimental techniques.  相似文献   

7.
Plants have the ability to dampen the effects of variability in water resources. Various mechanisms contribute to these properties: reduction of leaf area, increased rooting depth and stomatal conductance. To evaluate the differential roles and interactions of these mechanisms, we have built a model and simulated flows of water in Mediterranean evergreen scrub. The essential concept of this model is that the water status of the canopy is governed by the water lost by transpiration, the availability of soil water and the hydraulic resistances to water flow in soil and plant. The amount of water supplied by the roots is related to changes in water potential between the soil and the leaf. The amount of water lost to the atmosphere is regulated by an interaction between atmospheric demand and canopy water potential. Water uptake by plant is assumed equal to plant water loss. Leaf area appears to affect largely the annual water balance. The critical leaf water potential required to reduce the maximum stomatal conductance by half has a dominant effect on annual leaf water potential. Reducing rooting depth induces a new functional equilibrium for the plant. This new equilibrium is reached by decreasing leaf area and the critical leaf water potential. Our results show the complexity of interactions of these mechanisms and highlight the importance of the coordination between them. Finally, we suggest a reconsideration of these mechanisms in a context of the survival and long-term persistence of the plant.  相似文献   

8.
Part of the reason for the under‐exploitation of physical resistance traits in plant breeding is that the genetic basis and heritability of these traits is poorly characterised, and any associations of particular traits with pest and disease resistances have yet to be determined. In raspberry, some associations between architectural traits and disease resistances have been demonstrated, for example cane hairs and resistance to cane diseases. The aim of this work is to examine a range of traits, including leaf trichomes, leaf density, cane density, bush density, lateral length and lateral numbers, to determine the heritability and therefore breeding potential of these traits. The effect of these traits against aphids and spider mites, two important pests in raspberry, was examined. Chromosomal regions with candidate genes regulating these traits were identified as the first step to understanding the genetic control.  相似文献   

9.
A theoretical treatment is given of isothermal potential lossesdue to frictional resistances against water flow in plants.It becomes apparent that in the past two main difficulties havebeen widely ignored: the proper choice of dimensions for fluxesand resistances deserves consideration, and the original vanden Honert concept seems to be especially prone to misinterpretation.A revised equation is presented for total water potential ata certain point in the plant, and some implications of thisapproach are outlined.  相似文献   

10.
Xylem pressure potentials and stomatal diffusion resistances were measured in the field in Ilex opaca Ait. during days which differed in temperature and vapor pressure deficit. Water flux into leaves was calculated by combining the field data with laboratory determinations of the relation between tissue water deficit and water potential. Estimates of apparent plant resistance were then calculated from fluxes and differences between soil water potential and xylem tension. The resistance depended strongly on water flux, dropping by a factor of over 7 from low to high water flow rates. This extends the generality of variable plant resistances measured in controlled environment studies to I. opaca as it occurs naturally in the field. The relation of apparent plant resistance to water flux as estimated in this study can be useful in simulation models which calculate water uptake to leaves as a flux driven by a difference in soil and leaf water potentials across a resistance between the bulk soil and the leaf.  相似文献   

11.
《Trends in biotechnology》2023,41(8):1027-1040
Significant shares of harvests are lost to pests and diseases, therefore, minimizing these losses could solve part of the supply constraints to feed the world. Cisgenesis is defined as the insertion of genetic material into a recipient organism from a donor that is sexually compatible. Here, we review (i) conventional plant breeding, (ii) cisgenesis, (iii) current pesticide-based disease management, (iv) potential economic implications of cultivating cisgenic crops with durable disease resistances, and (v) potential environmental implications of cultivating such crops; focusing mostly on potatoes, but also apples, with resistances to Phytophthora infestans and Venturia inaequalis, respectively. Adopting cisgenic varieties could provide benefits to farmers and to the environment through lower pesticide use, thus contributing to the European Green Deal target.  相似文献   

12.
Tomato crops are parasitised by a large and ever increasing number of pathogens. For tomato, the genetic control of pathogens is very used in practice. The sources of resistance occur monogenic and dominant. Their sources are the wild species closely related to the cultivated form. Many open-pollinated varieties presently cultivated posses genetic resistance to three or four pathogens. With the increasing use of F1 hybrids it is possible to use varieties cumulating four to six resistances. During the last years several new resistances were identified and breeders are introducing these in modern varieties cumulating various resistances and particular qualities now required by specific markets, notably fruit long life and good taste. Some interesting resistances are difficult to select. There are the cases with the oligogenic partial resistances also when the resistance tests are difficult to carry out. In some cases using molecular markers can permit the selection. The wild species of Lycopersicon continue to be the hope to control diseases and pests. Nevertheless, modern varieties derived from interspecific crosses can be sources of new resistances sometimes linked to the expected resistances. New hopes appear with the transgenosis, notably to control various viruses. The present practical situation of the genetic resistance is presented for various cultural conditions.  相似文献   

13.
Root and foot diseases severely impede grain legume cultivation worldwide. Breeding lines with resistance against individual pathogens exist, but these resistances are often overcome by the interaction of multiple pathogens in field situations. Novel tools allow to decipher plant–microbiome interactions in unprecedented detail and provide insights into resistance mechanisms that consider both simultaneous attacks of various pathogens and the interplay with beneficial microbes. Although it has become clear that plant‐associated microbes play a key role in plant health, a systematic picture of how and to what extent plants can shape their own detrimental or beneficial microbiome remains to be drawn. There is increasing evidence for the existence of genetic variation in the regulation of plant–microbe interactions that can be exploited by plant breeders. We propose to consider the entire plant holobiont in resistance breeding strategies in order to unravel hidden parts of complex defence mechanisms. This review summarizes (a) the current knowledge of resistance against soil‐borne pathogens in grain legumes, (b) evidence for genetic variation for rhizosphere‐related traits, (c) the role of root exudation in microbe‐mediated disease resistance and elaborates (d) how these traits can be incorporated in resistance breeding programmes.  相似文献   

14.
A water flux model, which assumes that the dynamic functioning of the soil-plant-atmosphere continuum may be described by a series of steady states, was examined as a means for interpreting leaf water potential measurements in ‘Valencia’ orange trees (Citrus sinensis (L.) Osbeck). According to the model, leaf water potential should be related to transpirational flux, which in this experiment was estimated by the ratio of vapor pressure deficit of the atmosphere to leaf diffusion resistance (VPD/rleaf). Leaf water potentials decreased in a specific relationship with increasing values of VPD/rleaf provided that soil water was adequate and soil temperature was not too low, but regardless of season of the year or climatic or edaphic differences among 3 field locations. When soil water tensions exceeded 0.3 bar or when soil temperatures were lower than 15°C, deviations from the model occurred in the form of more negative leaf water potentials than predicted by VPD/rleaf. The model predicts from simple measurements made on intact plants that these differences were due to the modification of flow resistances by cool temperatures and the modification of both resistances and the potential of water at the source in the case of soil water depletion. The model may be a useful tool for interpreting plant water potential data under contrasting environmental conditions.  相似文献   

15.
Adaptation of populations to new environments is frequently costly due to trade‐offs between life history traits, and consequently, parasites are expected to be locally adapted to sympatric hosts. Also, during adaptation to the host, an increase in parasite fitness could have direct consequences on its aggressiveness (i.e. the quantity of damages caused to the host by the virus). These two phenomena have been observed in the context of pathogen adaptation to host's qualitative and monogenic resistances. However, the ability of pathogens to adapt to quantitative polygenic plant resistances and the consequences of these potential adaptations on other pathogen life history traits remain to be evaluated. Potato virus Y and two pepper genotypes (one susceptible and one with quantitative resistance) were used, and experimental evolutions showed that adaptation to a quantitative resistance was possible and resulted in resistance breakdown. This adaptation was associated to a fitness cost on the susceptible cultivar, but had no consequence either in terms of aggressiveness, which could be explained by a high tolerance level, or in terms of aphid transmission efficiency. We concluded that quantitative resistances are not necessarily durable but management strategies mixing susceptible and resistant cultivars in space and/or in time should be useful to preserve their efficiency.  相似文献   

16.
An immediate, marked response to small amounts of rainfall occurs in Opuntia basilaris, despite previous drought conditions. The effect of rainfall is upon plant water potential, which is the single most important parameter influencing stomatal opening, CO2 assimilation, and organic acid synthesis. Nocturnal stomatal opening is initiated following rainfall, and stomata remain open during the daytime. Decreasing stomatal and mesophyll resistances correlate with increasing rates of nocturnal assimilation of 14CO2. Photosynthetic rates of 14CO2 assimilation are low, despite high plant water potentials and low stomatal diffusion resistances. The decreased mesophyll resistances and increased rates of nocturnal 14CO2 assimilation correlate with the increases of nocturnal efficiency of water use and CO2 assimilation. The diurnal efficiency of water use and CO2 assimilation is lower than the nocturnal gas exchange efficiency values.  相似文献   

17.
土壤-植物-大气连续体水流阻力分布规律的研究   总被引:10,自引:0,他引:10  
康绍忠 《生态学报》1993,13(2):157-163
本文依据田间实测资料,分析了土壤-植物-大气连续体水流阻力的相对重要性,结果表明在连续体中的水流阻力主要分布于从叶气孔腔到大气的扩散过程和根系的吸水过程。叶-气之间的水流阻力比土-根之间要大50倍。最后,讨论了控制连续体水流运动的气孔阻力的变化规律及其与环境因素之间的关系。  相似文献   

18.
The influence of stem lacunar structure on the potential of diffusion and mass flow to meet estimated root O2 demands was evaluated and compared in four submersed aquatic plant species. Internodal lacunae formed large continuous gas canals which were constricted at the nodes by thin, perforated diaphragms. Gas transport studies showed that nodes had little effect on diffusion, but significantly reduced mass flow. Measured diffusive resistances approximated those predicted by Fick's first law, ranged from 203 to 5107 × 108 s m−4 and increased as lacunar area decreased in Potamogeton praelongus, two Myriophyllum species and Elodea canadensis. Our analysis suggested that diffusion could satisfy estimated root O2 demands given the development of relatively steep O2 gradients (0.15–0.35 mol O2 mor−1 per 0.5 m stem) between shoots and roots. Plants with high resistances (e.g. > 750 × 108 s m−4) and long lacunar pathlengths may be unable, even during active photosynthesis, to support the O2 demands of a large root system by diffusion alone. Measured nodal resistances to mass flow approximated those predicted by Hagen-Poiseuille law and ranged from 46 to 2029 × 108 Pa s m−3. Our analysis suggested that these resistances were quite low and that relatively small pressure differentials (< 150 Pa per 0.5 m stem) could drive mass flow at rates which would support root O2 demands. Possible mechanisms whereby plant architecture may serve to maintain these pressure differentials are proposed.  相似文献   

19.
I. R. Cowan 《Planta》1972,106(3):185-219
Summary Measurements of transpiration, leaf water content, and flux of water in a cotton plant exhibiting sustained oscillations, in stomatal conductance are presented, and a model of the mechanism causing this behaviour is developed. The dynamic elements, of the model are capacitors—representing the change of water content with water potential in mesophyll, subsidiary and guard cells—interconnected by resistances representing flow paths in the plant. Increase of water potential in guard cells causes an increase in stomatal conductance. Increase of water potential in the subsidiary cells has the opposite effect and provides the positive feed-back which can cause stomatal conductance to oscillate. The oscillations are shown to have many of the characteristics of free-running oscillations in real plants. The behaviour of the model has been examined, using an analogue computer, with constraints and perturbations representing some of those which could be applied to real plants in physiological experiments. Aspects of behaviour which have been simulated are (a) opening and closing of stomata under the influence of changes in illumination, (b) transient responses due to step changes in potential transpiration, root permeability and potential of water surrounding the roots, (c) the influence of these factors on the occurrence and shape of spontaneous oscillations, and (d) modulation of sustained oscillations due to a circadian rhythm in the permeability of roots.  相似文献   

20.
类黄酮化合物在植物胁迫反应中作用的研究进展   总被引:15,自引:0,他引:15  
植物胁迫发生时,一个明显的特征是在植物器官中积累红色与紫色类黄酮化合物。文章讨论了类黄酮化合物在植物胁迫保护中作用,如类黄酮化合物在抗植物UV—B辐射、抗病性以及铝毒害耐性等多方面的作用,也讨论了植物受胁迫时类黄酮积累的分子基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号