首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochemical and genetic evidence suggest that the SWI/SNF complex is involved in the remodeling of chromatin during gene activation. We have used antibodies specific against three human subunits of this complex to study its subnuclear localization, as well as its potential association with active chromatin and the nuclear skeleton. Immunofluorescence studies revealed a punctate nuclear labeling pattern that was excluded from the nucleoli and from regions of condensed chromatin. Dual labeling failed to reveal significant colocalization of BRG1 or hBRM proteins with RNA polymerase II or with nuclear speckles involved in splicing. Chromatin fractionation experiments showed that both soluble and insoluble active chromatin are enriched in the hSWI/SNF proteins as compared with bulk chromatin. hSWI/SNF proteins were also found to be associated with the nuclear matrix or nuclear scaffold, suggesting that a fraction of the hSWI/SNF complex could be involved in the chromatin organization properties associated with matrix attachment regions.  相似文献   

2.
3.
4.
The transport of proteins into the nucleus requires the recognition of a nuclear localization signal sequence. Several proteins that interact with these sequences have been identified, including one of about 66 kDa. We have prepared antibodies that recognize the 66-kDa nuclear localization signal binding protein (NLSBP) and inhibit nuclear localization in vitro. By immunofluorescence, it is seen that the NLSBP is predominantly cytoplasmic and is distributed peripherally around the nucleus and the microtubule organizing center. There is also a weak punctate staining of the surface of the nucleus. Methanol-fixed cells can also be stained directly with fluorescently labeled karyophilic proteins. These stains reveal the same cytoplasmic structures as anti-NLSBP. The expression of the NLSBP is growth dependent. When cells grown to confluence are examined, the cytoplasmic staining is greatly reduced, leaving the punctate nuclear staining as the predominant feature. In serum-starved cells, very little staining of either the cytoplasm or the nucleus can be seen. Upon simulation by the addition of serum, the original cytoplasmic and nuclear envelope staining is restored. Cells grown in the presence of colchicine or taxol have an altered NLSBP distribution but apparently normal cytoplasmic nuclear transport.  相似文献   

5.
Amino acid sequencing and mass spectrometry revealed identity of a human nuclear matrix protein, termed hNMP 265, with a predicted protein of gene KIAA0111. Two-dimensional electrophoresis and Northern hybridization showed the protein to ubiquitously occur in various human cell types. Exhibiting DEAD-box motifs characteristic for RNA helicases, hNMP 265 is highly similar to the human initiation factors eIF4A-I and -II. On the other hand, hNMP 265 greatly differs from the initiation factors by a N-terminal sequence rich in charged amino acids. Sequence searches and alignments indicate proteins related to hNMP 265 in other eukaryotes. Chimeras between hNMP 265 and green fluorescence protein or hapten appeared as speckles in extranucleolar regions in the nucleus, but not in the cytoplasm. Experiments with tagged deletion mutants indicated that the N-terminal amino acid sequence is necessary for nuclear localization. A putative role of hNMP 265 in pre-mRNA processing is discussed.  相似文献   

6.
A monoclonal antibody raised against nuclear matrix proteins detected a protein of basic pI in human nuclear matrix protein samples of various cellular origin. The ubiquitously occurring (common) nuclear matrix protein was identified as splicing factor PSF (PTB associated splicing factor). The interaction between the splicing factors PSF and PTB/hnRNP I was confirmed by co-immunoprecipitation from nuclear salt extracts. However, the nuclear localization of PSF and PTB and their distribution in subnuclear fractions differed markedly. Isolated nuclear matrices contained the bulk of PSF, but only minor amounts of PTB. In confocal microscopy both proteins appeared in speckles, the majority of which did not co-localize. Removing a large fraction of the soluble PTB structures by salt extraction revealed some colocalization of the more stable PTB fraction with PSF. These PTB/PSF complexes as well as the observed PSF-PTB interaction may reflect the previously reported presence of PTB and PSF in spliceosomal complexes during RNA processing. The present data, however, point to different cellular distribution and nuclear matrix association of the majority of PSF and PTB.  相似文献   

7.
AlphaB-Crystallin has for a long time been considered a specific eye lens protein. Later on it appeared that this protein belongs to the family of the small heat shock proteins and that it occurs also extra-lenticularly in many different cell types. AlphaB-Crystallin is mainly present in the cytoplasm, but there are some indications that it might have a function in the nucleus too. However, till now its presence in the nucleus is uncertain. We therefore compared the localization of alphaB-crystallin in nine cell lines cultured under normal conditions using four different antisera. All four antisera gave a diffuse staining for alphaB-crystallin in the cytoplasm, but one of the antibodies consistently showed nuclear staining in eight of the cell types, in the form of distinct speckles. These speckles are equally pronounced in the different cell types, whether or not cytoplasmic alphaB-crystallin is present. Preabsorption of the antiserum with alphaB-crystallin abolished the staining. Furthermore we demonstrate that if only minor amounts of alphaB-crystallin are present, the protein seems to be located exclusively in the nucleus. However, in case of higher amounts of protein, alphaB-crystallin is distributed between cytoplasm and nucleus. The nuclear alphaB-crystallin exists, like the cytoplasmic alphaB-crystallin, in non-phosphorylated and phosphorylated forms, is Triton-insoluble but can be extracted by 2 M NaCl. These data suggest that alphaB-crystallin might be bound to the nuclear matrix per se or to nuclear matrix proteins via other proteins. In agreement with other nuclear matrix proteins, nuclear alphaB-crystallin staining turns diffuse upon mitosis and leaves the chromosomes unstained. Double staining experiments revealed colocalization of alphaB-crystallin with the splicing factor SC35 in nuclear speckles, suggesting a role for alphaB-crystallin in splicing or protection of the splicing machinery.  相似文献   

8.
The serine/threonine kinase HIPK2 regulates gene expression programs controlling differentiation and cell death. HIPK2 localizes in subnuclear speckles, but the structural components allowing this localization are not understood. A point mutation analysis allowed mapping two nuclear localization signals and a SUMO interaction motif (SIM) that also occurs in HIPK1 and HIPK3. The SIM binds all three major isoforms of SUMO (SUMO-1-3), while only SUMO-1 is capable of covalent conjugation to HIPK2. Deletion or mutation of the SIM prevented SUMO binding and precluded localization of HIPK2 in nuclear speckles, thus causing localization of HIPK2 to the entire cell. Functional inactivation of the SIM prohibited recruitment of HIPK2 to PML nuclear bodies and disrupted colocalization with other proteins such as the polycomb protein Pc2 in nuclear speckles. Interaction of HIPK2 with Pc2 or PML in intact cells was largely dependent on a functional SIM in HIPK2, highlighting the relevance of SUMO/SIM interactions as a molecular glue that serves to enhance protein/protein interaction networks. HIPK2 mutants with an inactive SIM showed changed activities, thus revealing that non-covalent binding of SUMO to the kinase is important for the regulation of its function.  相似文献   

9.
The matrix (M) protein of vesicular stomatitis virus (VSV) functions from within the nucleus to inhibit bi-directional nucleocytoplasmic transport. Here, we show that M protein can be imported into the nucleus by an active transport mechanism, even though it is small enough (approximately 27 kDa) to diffuse through nuclear pore complexes. We map two distinct nuclear localization signal (NLS)-containing regions of M protein, each of which is capable of directing the nuclear localization of a heterologous protein. One of these regions, comprising amino acids 47-229, is also sufficient to inhibit nucleocytoplasmic transport. Two amino acids that are conserved among the matrix proteins of vesiculoviruses are important for nuclear localization, but are not essential for the inhibitory activity of M protein. Thus, different regions of M protein function for nuclear localization and for inhibitory activity.  相似文献   

10.
Approximately 100 proteins are targeted to the inner nuclear membrane (INM), where they regulate chromatin and nuclear dynamics. The mechanisms underlying trafficking to the INM are poorly understood. The Caenorhabditis elegans SUN protein UNC-84 is an excellent model to investigate such mechanisms. UNC-84 recruits KASH proteins to the outer nuclear membrane to bridge the nuclear envelope (NE), mediating nuclear positioning. UNC-84 has four targeting sequences: two classical nuclear localization signals, an INM sorting motif, and a signal conserved in mammalian Sun1, the SUN--nuclear envelope localization signal. Mutations in some signals disrupt the timing of UNC-84 nuclear envelope localization, showing that diffusion is not sufficient to move all UNC-84 to the NE. Thus targeting UNC-84 requires an initial step that actively transports UNC-84 from the peripheral endoplasmic reticulum to the NE. Only when all four signals are simultaneously disrupted does UNC-84 completely fail to localize and to function in nuclear migration, meaning that at least three signals function, in part, redundantly to ensure proper targeting of UNC-84. Multiple mechanisms might also be used to target other proteins to the INM, thereby ensuring their proper and timely localization for essential cellular and developmental functions.  相似文献   

11.
We report the sequence, conservation and cell biology of a novel protein, Psc1, which is expressed and regulated within the embryonic pluripotent cell population of the mouse. The Psc1 sequence includes an RS domain and an RNA recognition motif (RRM), and a sequential arrangement of protein motifs that has not been demonstrated for other RS domain proteins. This arrangement was conserved in a second mouse protein (BAC34721). The identification of Psc1 and BAC34721 homologues in vertebrates and related proteins, more widely throughout evolution, defines a new family of RS domain proteins termed acidic rich RS (ARRS) domain proteins. Psc1 incorporated into the nuclear speckles, but demonstrated novel aspects of subcellular distribution including localization to speckles proximal to the nuclear periphery and localization to punctate structures in the cytoplasm termed cytospeckles. Integration of Psc1 into cytospeckles was dependent on the RRM. Cytospeckles were dynamic within the cytoplasm and appeared to traffic into the nucleus. These observations suggest a novel role in RNA metabolism for ARRS proteins.  相似文献   

12.
《The Journal of cell biology》1989,109(6):2623-2632
Through a series of label transfer experiments, we have identified a HeLa cell nuclear protein that interacts with nuclear localization signals (NLSs). The protein has a molecular weight of 66,000 and an isoelectric point of approximately 6. It associates with a synthetic peptide that contains the SV-40 T antigen NLS peptide but not with an analogous peptide in which an asparagine is substituted for an essential lysine (un-NLS peptide). In addition to these peptides, several proteins have been tested as label donors. With the proteins, there is a correlation between nuclear localization (assayed with lysolecithin-permeabilized cells) and label transfer to the 66-kD protein. The NLS peptide (but not the un-NLS peptide) competes with the proteins in label transfer experiments, but neither wheat germ agglutinin nor ATP has an effect. These results suggest that the 66-kD protein functions as an NLS receptor in the first step of nuclear localization. In the course of this work, we have observed that the Staphylococcus aureus protein A is a strongly karyophilic protein. Its dramatic nuclear localization properties suggest that it may have multiple copies of an NLS.  相似文献   

13.
The major DNA-binding protein, or infected-cell protein 8 (ICP8), encoded by herpes simplex virus can localize to the cell nucleus independently of other viral proteins. To define the nuclear localization signals within ICP8, we performed several forms of mutagenesis on the cloned ICP8 gene. Deletion analysis of the ICP8 gene showed that several portions of ICP8 are involved in its nuclear localization. To determine whether these regions were independent localization signals, we introduced various portions of the ICP8 gene into a series of cassette plasmids which allowed expression of fusion proteins containing pyruvate kinase, normally a cytoplasmic protein, fused to various portions of ICP8. These results showed that the carboxyl-terminal 28 residues are the only portion of ICP8 capable of targeting protein kinase into the nucleus. However, inclusion of certain additional regions of ICP8 into the fusion protein led to an inhibition of nuclear localization. Therefore, the carboxyl-terminal 28 residues of ICP8 can act independently as a nuclear localization signal, but certain conformational constraints or folding or assembly requirements in the remainder of the protein can affect the nuclear localization of the protein. Our results demonstrate that sequences distant from a nuclear localization signal can affect its ability to function. A set of fusion vectors has been isolated which should be of general use for making 5' or 3' fusions in any reading frame to rapidly map localization signals.  相似文献   

14.
15.
NLSdb is a database of nuclear localization signals (NLSs) and of nuclear proteins. NLSs are short stretches of residues mediating transport of nuclear proteins into the nucleus. The database contains 114 experimentally determined NLSs that were obtained through an extensive literature search. Using 'in silico mutagenesis' this set was extended to 308 experimental and potential NLSs. This final set matched over 43% of all known nuclear proteins and matches no currently known non-nuclear protein. NLSdb contains over 6000 predicted nuclear proteins and their targeting signals from the PDB and SWISS-PROT/TrEMBL databases. The database also contains over 12 500 predicted nuclear proteins from six entirely sequenced eukaryotic proteomes (Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae). NLS motifs often co-localize with DNA-binding regions. This observation was used to also annotate over 1500 DNA-binding proteins. NLSdb can be accessed via the web site: http://cubic.bioc.columbia.edu/db/NLSdb/.  相似文献   

16.
17.
The basic carboxy terminus of p53 plays an important role in directing the protein into the nuclear compartment. The C terminus of the p53 molecule contains a cluster of several nuclear localization signals (NLSs) that mediate the migration of the protein into the cell nucleus. NLSI, the most active domain, is highly conserved in genetically diverged species and shares perfect homology with consensus NLS sequences found in other nuclear proteins. The other two NLSs, II and III, appear to be less effective and less conserved. Although nuclear localization is dictated primarily by the NLSs inherent in the primary amino acid sequence, the actual nuclear homing can be modified by interactions with other proteins expressed in the cell. Comparison between wild-type p53 and naturally occurring mutant p53 showed that both protein categories could migrate into the nucleus of rat primary embryonic fibroblasts by essentially similar mechanisms. Nuclear localization of both proteins was totally dependent on the existence of functional NLS domains. In COS cells, however, we found that NLS-deprived wild-type p53 molecules could migrate into the nucleus by complexing with another nuclear protein, simian virus 40 large-T antigen. Wild-type and mutant p53 proteins differentially complexed with viral or cellular proteins, which may significantly affect the ultimate compartmentalization of p53 in the cell; this finding suggests that the actual subcellular compartmentalization of proteins may differ in various cell type milieux and may largely be affected by the ability of these proteins to complex with other proteins expressed in the cell. Experiments designed to test the physiological significance of p53 subcellular localization indicated that nuclear localization of mutant p53 is essential for this protein to enhance the process of malignant transformation of partially transformed cells, suggesting that p53 functions within the cell nucleus.  相似文献   

18.
The superfamily of fibroblast growth factors (FGF), which counts 22 members in humans, exerts many functions during animal development and adult life. LET-756 is one of the two FGFs of the nematode C. elegans. Re-introduction of LET-756 in a null mutant strain restores viability, allowing the study of structural requirements for LET-756 trafficking and function. LET-756 protein has several regions and motifs, including a non-classical internal motif required for secretion. We show here that a main difference in the wild-type LET-756 molecule and a truncated molecule that mimics a partial loss-of-function mutant lies on subnuclear expression. Using Cos-1 cells and rescue activity we show that: (i) nuclear localization is due to various redundant NLS, one of them acting as a nucleolar localization signal; (ii) nuclear LET-756 is addressed to the speckles by a stretch of glutamine residues; (iii) nuclear LET-756 is trafficking between speckles and nucleoli; (iv) in the nucleolus, LET-756 is associated with proteins of the rRNA splicing compartment; (v) changing LET-756 secretion signal prevents its nuclear localization. We propose that LET-756 exerts its functions through a balance between secreted and nuclear forms due to two opposite addressing signals, (i) synergy of several NLS and (ii) attenuated secretion signal.  相似文献   

19.
Heat shock cognate protein 70 (Hsc70) serves nuclear transport of several proteins as a molecular chaperone. We have recently identified a novel variant of human Hsc70, heat shock cognate protein 54 (Hsc54), that lacks amino acid residues 464-616 in the protein binding and variable domains of Hsc70. In the present study, we examined nucleocytoplasmic localization of Hsc70 and Hsc54 by using green fluorescent protein (GFP) fusions. GFP-Hsc70 is localized in both the cytoplasm and the nucleus at 37 degrees C and accumulated into the nucleolus/nucleus after heat shock, whereas GFP-Hsc54 always remained exclusively in the cytoplasm under these conditions. Mutation studies indicated that 20 amino acid residues of nuclear localization-related signals, which are missing in Hsc54 but are retained in Hsc70, are required for proper nuclear localization of Hsc70. We further found that Hsc54 contains a functional leucine-rich nuclear export signal (NES, (394)LDVTPLSL(401)) which is differently situated from the previously proposed NES in Saccharomyces cerevisiae Ssb1p. The cytoplasmic localization of Hsc54 was impaired by a mutation in NES as well as by a nuclear export inhibitor, leptomycin B, suggesting that Hsc54 is actively exported from the nucleus to the cytoplasm through a CRM1-dependent mechanism. In contrast, the nucleocytoplasmic localization of Hsc70 was not affected by the same mutation of NES or leptomycin B. These results suggest that the nuclear localization-related signal could functionally mask NES leading to prolonged retention of Hsc70 in the nucleus. An additional mechanism for unmasking the NES may regulate nucleocytoplasmic trafficking of Hsc70.  相似文献   

20.
Despite rapid advances in our understanding of the function of the nuclear pore complex in nuclear transport, little is known about the role the nuclear envelope itself may play in this critical process. A small number of integral membrane proteins specific to the envelope have been identified in budding yeast, however, none has been reported to affect transport. We have identified an essential gene, BRR6, whose product, Brr6p, behaves like a nuclear envelope integral membrane protein. Notably, the brr6-1 mutant specifically affects transport of mRNA and a protein reporter containing a nuclear export signal. In addition, Brr6p depletion alters nucleoporin distribution and nuclear envelope morphology, suggesting that the protein is required for the spatial organization of nuclear pores. BRR6 interacts genetically with a subset of nucleoporins, and Brr6-green fluorescent protein (GFP) localizes in a punctate nuclear rim pattern, suggesting location at or near the nuclear pore. However, Brr6-GFP fails to redistribute in a (Delta)nup133 mutant, distinguishing Brr6p from known proteins of the pore membrane domain. We hypothesize that Brr6p is located adjacent to the nuclear pore and interacts functionally with the pore and transport machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号