首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Video observation has shown that feeding-current-producing calanoid copepods modulate their feeding currents by displaying a sequence of different swimming behaviours during a time period of up to tens of seconds. In order to understand the feeding-current modulation process, we numerically modelled the steady feeding currents for different modes of observed copepod motion behaviours (i.e. free sinking, partial sinking, hovering, vertical swimming upward and horizontal swimming backward or forward). Based on observational data, we also reproduced numerically a modulated feeding current associated with an unsteadily swimming copepod. We found that: (i) by changing its propulsive force, a copepod can switch between different swimming behaviours, leading to completely different flow-field patterns in self-generated surrounding flow; (ii) by exerting a time-varying propulsive force, a copepod can modulate temporally the basic flow modes to create an unsteady feeding current which manipulates precisely the trajectories of entrained food particles over a long time period; (iii) the modulation process may be energetically more efficient than exerting a constant propulsive force onto water to create a constant feeding current of a wider entrainment range. A probable reason is that the modulated unsteady flow entrains those water parcels containing food particles and leaves behind those without valuable food in them.  相似文献   

2.
Three-dimensional, numerical simulations of the flow field arounda freely swimming model-copepod were performed using a finite-volumecode. The model copepod had a realistic body shape representedby a curvilinear body-fitted coordinate system. The beatingmovement of the cephalic appendages was replaced by a distributedforce field acting on the water ventrally adjacent to the copepod'sbody. In the simulations, we took into account that freely swimmingcopepods are self-propelled bodies through properly couplingthe Navier–Stokes equations with the dynamic equationfor the copepod's body. Flow fields were calculated for fivesteady motions: (1) hovering, (2) sinking, (3) upwards swimming,(4) backwards swimming and (5) forwards swimming. The numericalresults confirm the conclusions drawn from the theoretical analysisusing Stokes flow models by Jiang et al. [in a companion paper(Jiang et al., 2002a)] for a spherical copepod shape and showthat the geometry of the flow field around a freely swimmingcopepod varies significantly with the different swimming behaviours.When a copepod hovers in the water, or swims very slowly, itgenerates a cone-shaped and wide flow field. In contrast, whena copepod sinks, or swims fast, the flow geometry is not cone-shaped,but cylindrical, narrow and long. The relationships betweencopepods' swimming behaviour and body orientation, hydrodynamicconspicuousness, energetics as well as feeding efficiency werediscussed, based on the simulation data. It is shown that thebehaviour of hovering or swimming slowly is more energeticallyefficient in terms of relative capture volume per energy expendedthan the behaviour of swimming fast, i.e. for a same amountof energy expended a hovering or slow-swimming copepod is ableto scan more water than a fast-swimming one. The numerical resultsalso suggest that the flow field generated by a fast-swimmingcopepod enables the copepod to use mechanoreception to perceivethe food/prey and therefore increases the food concentrationin the swept volume and that the flow field around a free-sinkingcopepod favours the copepod's mechanoreception while minimizingthe energy expense, so that the energy budget can still be maintainedfor both cases.  相似文献   

3.
Zooplankton feed in any of three ways: they generate a feeding current while hovering, cruise through the water or are ambush feeders. Each mode generates different hydrodynamic disturbances and hence exposes the grazers differently to mechanosensory predators. Ambush feeders sink slowly and therefore perform occasional upward repositioning jumps. We quantified the fluid disturbance generated by repositioning jumps in a millimetre-sized copepod (Re ∼ 40). The kick of the swimming legs generates a viscous vortex ring in the wake; another ring of similar intensity but opposite rotation is formed around the decelerating copepod. A simple analytical model, that of an impulsive point force, properly describes the observed flow field as a function of the momentum of the copepod, including the translation of the vortex and its spatial extension and temporal decay. We show that the time-averaged fluid signal and the consequent predation risk is much less for an ambush-feeding than a cruising or hovering copepod for small individuals, while the reverse is true for individuals larger than about 1 mm. This makes inefficient ambush feeding feasible in small copepods, and is consistent with the observation that ambush-feeding copepods in the ocean are all small, while larger species invariably use hovering or cruising feeding strategies.  相似文献   

4.
Although there is a scarcity of supporting empirical evidence,it has long been suspected that calanoid copepods use mechanoreceptionto detect the presence and location of potential prey itemsentrained in the feeding current. In this study, we documentthe first observations showing a freely swimming calanoid copepod,Skistodiaptomus oregonensis, attacking prey-sized, non-motile,inert particles entrained in the feeding current before theparticles contact the copepod's sensory appendages. Feedingcurrent geometry, fluid velocities and associated behavioursthat characterize these interactions are described. The resultsof this study show how copepod swimming behaviour, coupled witha low-velocity feeding current, not only increases copepod encounterrates with inert prey by increasing direct contact rates, butalso increases the probability of detecting and capturing remotelylocated prey that have well-developed escape responses. In turbulentregimes, a far-reaching, low-velocity feeding current shouldincrease encounter rates, but only if coupled with behavioursthat quickly minimize separation distances once prey is detected.  相似文献   

5.
The three-dimensional flow field around a free-swimming copepodin steady motion was studiedtheoretically. This study was basedon coupling the Navier–Stokes equations with the dynamicequations for an idealized body of a copepod. To allow analyticalsolutions to the flow field, three simplifications were made:(a) to simulate the effect of the beating movement of the cephalicappendages, a force-field was added to the Navier–Stokesequations, (b) to linearize the problem, Stokes flow was used,and (c) to simplify the morphologies of the copepods, a sphericalbody shape was assumed. Analytical solutions were derived forfive steady motions: (1) hovering, (2) sinking, (3) upwardsswimming, (4) backwards swimming and (5) forwards swimming.The results show that thegeometry of the flow field around afreely swimming copepod varies significantly with the differentswimming behaviours. When a copepod hovers in the water, orswims very slowly, it generates a wide, cone-shaped flow field.In contrast, when a copepod sinks, or swims fast, the flow geometryis not cone-shaped, but cylindrical, narrow and long. Theseresults are consistent with published observations on live copepods.It is shown that the differences in the flow geometry with thedifferent swimming behaviours are due to the relative importancebetween the two factors in generating the flow field: the copepod'sswimming motion and the requirement to counterbalance the copepod'sexcess weight. The results also highlight the importance ofconsidering freely swimming copepods as self-propelled ratherthan as towed bodies. ‘Self-propelled’ means a freelyswimming copepod must gain thrust from the surrounding waterin order to counterbalance the drag force by water and its excessweight. Regardless of swimming behaviours and velocities, thefar-field velocity field decays to that of the velocity fieldgenerated by a point force of magnitude equal to the copepod'sexcess weight in an infinite domain. On the other hand, usingthe towed body model yields a flow field with much differentfar- and near-field flow characteristics. Hence, the towed bodymodel is inherently unable to reproduce fundamental characteristicsof the flow field around a freely swimming copepod.  相似文献   

6.
Hydrodynamic interaction between two copepods: a numerical study   总被引:1,自引:0,他引:1  
Numerical simulations were carried out to compute the flow fieldaround two tethered, stationary or swimming model-copepods withvaried separation distances between them and for different relativebody positions and orientations. Based on each simulated flowfield, the power expended by each copepod in generating theflow field and volumetric flux through the capture area of eachcopepod were calculated. The geometry of the flow field aroundeach copepod was visualized by tracking fluid particles to constructstream tubes. The hydrodynamic force on each copepod was calculated.Also, velocity magnitudes and deformation rates were calculatedalong a line just above the antennules of each copepod. Allthe results were compared to the counterpart results for a solitarycopepod (stationary or swimming) to evaluate the hydrodynamicinteraction between the two copepods. The calculations of thepower and volumetric flux show that no energetic benefits areavailable for two copepods in close proximity. The results ofthe stream tube and force calculations show that when two copepodsare in close proximity, the hydrodynamic interaction betweenthem distorts the geometry of the flow field around each copepodand changes the hydrodynamic force on each copepod. Two beneficialroles of the hydrodynamic interactions are suggested for copepodswarms: (1) to maintain the integrity of the swarms and (2)to separate the swarming members with large nearest neighbourdistances (usually more than five body lengths). To preventstrong hydrodynamic interactions, copepods in swarms have toavoid positions of strong interactions, such as those directlyabove or below their neighbours. The results of the velocitymagnitudes and deformation rates demonstrate that the hydrodynamicinteraction between two copepods generates the hydrodynamicsignals detectable by the setae on each copepod's antennules.Based on the threshold of Yen et al. (1992), the results showthat the detection distance between two copepods of comparablesize is about two to five body lengths. Copepods may employa simple form of pattern recognition to detect the distance,speed and direction of an approaching copepod of comparablesize.  相似文献   

7.
High-resolution video showed freely swimming Diaptomus sicilisattacking and capturing inert 5O µm polystyrene beadsthat were outside the influence of the copepod feeding current.The beads were frequently more than half a body length awayand were attacked after the ‘bow wake’ of the movingcopepod displaced the bead away from the copepod. To investigatethe hypothesis that deformation of streamlines around the copepodand its first antennae stimulated the attack response, a finiteelement numerical model was constructed. The model describedthe fluid interactions between a large object approaching asmaller object in a laminar flow at Reynolds number 5, whichis characteristic of the fluid regime experienced by foragingcopepods. The model revealed that fluid velocity fluctuationsand streamline deformations arose in the region between thetwo objects as separation distance between the objects decreased.The video observations and the model results support the hypothesesthat chemoreception is not required for the detection and captureof large phytoplankton cells [Vanderploeg et ai, in Hughes,R.N. (ed.), Behavioral Mechanisms of Food Selection. NATO ASISeries G20, 1990; DeMott and Watson, /. Plankton Res., 13, 1205-1222,1991], and that swimming behavior plays an integral role inprey detection. 4Present address: Academy of Natural Sciences Estuarine ResearchCenter, 10545 Mackall Road, St Leonard, MD 20685, USA  相似文献   

8.
Seuront L 《PloS one》2011,6(10):e26283
The mating behavior and the mating success of copepods rely on chemoreception to locate and track a sexual partner. However, the potential impact of the water-soluble fraction of hydrocarbons on these aspects of copepod reproduction has never been tested despite the widely acknowledged acute chemosensory abilities of copepods. I examined whether three concentrations of the water-soluble fraction of diesel oil (0.01%, 0.1% and 1%) impacts (i) the swimming behavior of both adult males and females of the widespread calanoid copepod Temora longcornis, and (ii) the ability of males to locate, track and mate with females. The three concentrations of the water-soluble fraction of diesel oil (WSF) significantly and non-significantly affect female and male swimming velocities, respectively. In contrast, both the complexity of male and female swimming paths significantly decreased with increasing WSF concentrations, hence suggesting a sex-specific sensitivity to WSF contaminated seawater. In addition, the three WSF concentrations impacted both T. longicornis mating behavior and mating success. Specifically, the ability of males to detect female pheromone trails, to accurately follow trails and to successfully track a female significantly decreased with increasing WSF concentrations. This led to a significant decrease in contact and capture rates from control to WSF contaminated seawater. These results indicate that hydrocarbon contamination of seawater decreases the ability of male copepods to detect and track a female, hence suggest an overall impact on population fitness and dynamics.  相似文献   

9.
The mechanical basis of prey capture and behaviour of Phyllorhiza punctata von Lendenfeld, 1884, as with most members of the Order Rhizostomeae, has not been described. Free-swimming medusae were videotaped in order to quantitatively describe the feeding process of P. punctata. Kinematic data demonstrated that adult medusae were surrounded by relatively high Re (102–103) flows while swimming. Therefore, momentum dominated these flows and the motions of particles entrained in the fluid surrounding swimming P. punctata. Artemia salina nauplii entrained within these flows contacted two principle capture surfaces: the oral arm cylinder and the underside of the subumbrellar surface. Prey were ingested by small polyp-like mouthlets located on these surfaces. Ingestion followed capture at these sites. P. punctata's body morphology is highly modified to channel flows into these capture surfaces and feeding is dependent upon this pattern. Swimming activity, and hence the creation of flows used for prey capture, is continuous, as is feeding, and plays a central role in this medusa's foraging behaviour.  相似文献   

10.
Three-dimensional, numerical simulations of the feeding current around a tethered copepod were performed using a finite-volume code. The copepod's body shape was modeled to resemble Euchaeta norvegica, and was represented by a curvilinear body-fitted coordinate system. In the simulations, the appendages that generate the feeding current were replaced by a distribution of forces acting on the water adjacent and ventrally to the body. First, the accuracy of the code was verified by simulating two viscous, zero-Reynolds-number flows for which analytical solutions are available. Then, simulations with realistic body shape and Reynolds numbers were carried out. The main features of the computed feeding current were compared with observations from Yen and Strickler (Invert. Biol., 115, 191-205, 1996), and good agreement was obtained. The entrainment region, as visualized by tracking particles in the feeding current and by plotting the resulting stream-tube, is quite large. The result can be used to quantify how the copepod takes advantage of the feeding current to trap the algal particles in its capture area. The configuration of the feeding current near to the body surface of the copepod is controlled by how the copepod forces the feeding current and by the copepod's morphology. These parameters were varied and their effects studied in a systematic manner. Specifically, by comparing various spatial distributions of the same amount of total force, it was shown that a distributed force dissipates less energy (and increases the entrainment rate) than a concentrated force, it is thus energetically more desirable. Variations of the copepod's body shape and of the distribution of forces showed little effect on the far field of the feeding current, and therefore do not appear to affect the detectability by other mechano-receptional organisms. The length scale of the influence field of the feeding current was shown to be anisotropic in three directions, extending 5-7 mm above or ventrally to the copepod, <1 mm dorsally to the copepod and >1 cm down from the abdomen. The results also suggest that the net reaction force on the copepod from the feeding current is of the same order of magnitude as the excess weight of the copepod, but is not sufficient to balance the excess weight completely.   相似文献   

11.
Although the lobate ctenophore Mnemiopsis leidyi is an influentialplanktonic predator, the mechanisms enabling it to capture itscharacteristically wide range of prey have not been systematicallyexamined. We recorded interactions between free-swimming M.leidyiand two stages (nauplii, adults) of the calanoid copepod Acartiatonsa in order to determine a mechanistic explanation of thisfeeding process. Prey encounter with Mnemiopsis involved twodifferent processes. The first depended on fluid motions createdby the nearly continuous beating of cilia lining the four auricles.These cilia created a low-velocity flow in which A.tonsa naupliiwere entrained (94% of naupliar encounters) and transportedpast the oral lobes onto the tentillae (oral tentacles). Thenauplii, although capable of rapid escape responses, generallyappeared to be insensitive to the current in which they werecarried. The second process relied upon the collision of swimmingprey with the inner surfaces of the oral lobes and was not obviouslyinfluenced by the auricular feeding currents. Adult A.tonsawere rarely entrained in the auricular flow, but, instead, propelledthemselves into contact with the oral lobes (97% of adult encounters).Both prey capture processes functioned simultaneously. The synergisticfunctioning of these processes probably explains the broad patternsof prey ingestion found by in situ studies of Mnemiopsis feeding.  相似文献   

12.
Biflagellated algae swim in mean directions that are governed by their environments. For example, many algae can swim upward on average (gravitaxis) and toward downwelling fluid (gyrotaxis) via a variety of mechanisms. Accumulations of cells within the fluid can induce hydrodynamic instabilities leading to patterns and flow, termed bioconvection, which may be of particular relevance to algal bioreactors and plankton dynamics. Furthermore, knowledge of the behavior of an individual swimming cell subject to imposed flow is prerequisite to a full understanding of the scaled-up bulk behavior and population dynamics of cells in oceans and lakes; swimming behavior and patchiness will impact opportunities for interactions, which are at the heart of population models. Hence, better estimates of population level parameters necessitate a detailed understanding of cell swimming bias. Using the method of regularized Stokeslets, numerical computations are developed to investigate the swimming behavior of and fluid flow around gyrotactic prolate spheroidal biflagellates with five distinct flagellar beats. In particular, we explore cell reorientation mechanisms associated with bottom-heaviness and sedimentation and find that they are commensurate and complementary. Furthermore, using an experimentally measured flagellar beat for Chlamydomonas reinhardtii, we reveal that the effective cell eccentricity of the swimming cell is much smaller than for the inanimate body alone, suggesting that the cells may be modeled satisfactorily as self-propelled spheres. Finally, we propose a method to estimate the effective cell eccentricity of any biflagellate when flagellar beat images are obtained haphazardly.  相似文献   

13.
Zooplankton responses to toxic algae are highly variable, even towards taxonomically closely related species or different strains of the same species. Here, the individual level feeding behavior of a copepod, Temora longicornis, was examined which offered 4 similarly sized strains of toxic dinoflagellate Alexandrium spp. and a non-toxic control strain of the dinoflagellate Protoceratium reticulatum. The strains varied in their cellular toxin concentration and composition and in lytic activity. High-speed video observations revealed four distinctly different strain-specific feeding responses of the copepod during 4 h incubations: (i) the ‘normal’ feeding behavior, in which the feeding appendages were beating almost constantly to produce a feeding current and most (90%) of the captured algae were ingested; (ii) the beating activity of the feeding appendages was reduced by ca. 80% during the initial 60 min of exposure, after which very few algae were captured and ingested; (iii) capture and ingestion rates remained high, but ingested cells were regurgitated; and (iv) the copepod continued beating its appendages and captured cells at a high rate, but after 60 min, most captured cells were rejected. The various prey aversion responses observed may have very different implications to the prey and their ability to form blooms: consumed but regurgitated cells are dead, captured but rejected cells survive and may give the prey a competitive advantage, while reduced feeding activity of the grazer may be equally beneficial to the prey and its competitors. These behaviors were not related to lytic activity or overall paralytic shellfish toxins (PSTs) content and composition and suggest that other cues are responsible for the responses.  相似文献   

14.
The biological function of anatomical specializations in the mechanosensory lateral line of elasmobranch fishes is essentially unknown. The gross and histological features of the lateral line in the Atlantic stingray, Dasyatis sabina, were examined with special reference to its role in the localization and capture of natural invertebrate prey. Superficial neuromasts are arranged in bilateral rows near the dorsal midline from the spiracle to the posterior body disk and in a lateral position along the entire length of the tail. All dorsal lateral line canals are pored, contain sensory neuromasts, and have accessory lateral tubules that most likely function to increase their receptive field. The pored ventral canal system consists of the lateral hyomandibular canal along the disk margin and the short, separate mandibular canal on the lower jaw. The extensive nonpored and relatively compliant ventral infraorbital, supraorbital, and medial hyomandibular canals form a continuous complex on the snout, around the mouth, and along the abdomen. Vesicles of Savi are small mechanosensory subdermal pouches that occur in bilateral rows only along the ventral midline of the rostrum. Superficial neuromasts are best positioned to detect water movements along the transverse body axis such as those produced by tidal currents, conspecifics, or predators. The pored dorsal canal system is positioned to detect water movements created by conspecifics, predators, or possibly distortions in the flow field during swimming. Based upon the stingray lateral line morphology and feeding behavior, we propose the Mechanotactile Hypothesis, which states that the ventral nonpored canals and vesicles of Savi function as specialized tactile mechanoreceptors that facilitate the detection and capture of small benthic invertebrate prey. J. Morphol. 238:1–22, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
The swimming behavior of the copepod Metridia pacifica was studied.Animals exposed to algae showed lower average swimming speedand fewer high-speed bursts. Animals exposed to Artemia naupliialone exhibited no change in swimming behavior.  相似文献   

16.
Many marine planktonic organisms create water currents to entrainand capture food items. Rheotactic prey entrained within thesefeeding currents often exibit escape reactions. If the directionof escape is away from the feeding current, the prey may successfullydeter predation. If the escape is towards the center of thefeeding current, the prey will be re-entrained towards its predatorand remain at risk of predation. The direction of escape isdependent on (i) the ability of the prey to escape in a directiondifferent than its pre-escape orientation and (ii) the orientationcaused by the interaction of the prey's body with the movingfluid. In this study, the change in orientation of Acartia hudsonicanauplii as a result of entrainment within the feeding currentof Euchaeta rimana, a planktonic predatory copepod, was examined,When escaping in still water, A.hudsonica nauplii were ableto vary their pre-escape direction by only 10. This allowsonly a limited ability to escape in a direction different thantheir pre-escape orientation. Analyses of the feeding currentof E.rimana show the flow speed to be most rapid in the centralregion with an exponential decrease in speed distally. In contrast,flow vorticity is minimal in the center of the feeding currentand maximal at 1.75 mm along the antennae. As a result, thedegree of rotation of the prey towards the center of the feedingcurrent shows a strong dependency on the prey's location withinthe feeding current. The feeding current of E.rimana rotatedthe prey 14 when near the center of the flow field and up to160 when located more distal in the feeding current Since theprey's escape abilities cannot compensate for the rotation dueto the flow, this mechanism will maintain the escaping preywithin the feeding current of their predator. Therefore, thefeeding current facilitates predatory copepods in capturingprey by (i) increasing the amount of water which passes overtheir sensors and through their feeding appendages and (ii)controlling the spatial orientation of their prey prior to escape.  相似文献   

17.
Buskey  Edward J. 《Hydrobiologia》1994,(1):447-453
Visual predation by fish on copepods involves prey encounter, attack and capture; during any of these processes prey selection can occur. Developmental changes in copepods, including increases in swimming speed, size and image contrast increase the encounter rate and distance at which they can be detected by predators. Copepods compensate for this increase vulnerability with age through diel vertical migration and improved escape capabilities. This study quantifies the changes in swimming speed and movement pattern with developmental stage of the copepod Acartia tonsa, using a video-computer system for motion analysis. Changes in visible size and image contrast with developmental stage were quantified under simulated natural illumination conditions using a video based image analysis system. The escape responses of the naupliar stages of the copepod Acartia tonsa were quantified in response to a stationary pipette sucking in water at a constant speed. Accurate quantification of the parameters that affect feeding selectivity of planktivorous fish will provide the basis for evaluation of their relative importance in future studies.  相似文献   

18.
The cyclopoid copepod Oithona was found to exhibit multiple escape reactions when entrained within quantified flow fields. The distance of the escape from the flow‐producing predator mimic (a siphon) decreased with a concurrent decrease in escape distance and speed. Although individuals became behaviorally more sensitive to fluid motion with each successive escape reaction, the lower thresholds were not manifested as more distant escape reactions. Overall, the escape distance and speed decreased significantly with decreased signal strength. The decrease may result from the high cost of the escape reaction, which was calculated to account for 36% of the normal metabolic rate and 500 times the cost of normal swimming.  相似文献   

19.
Most herbivorous coral-reef fishes feed slower in the morning than in the afternoon. Given the typical scarcity of algae in coral reefs, this behavior seems maladaptive. Here we suggest that the fishes'' slow feeding during the morning is an outcome of highly selective feeding on scarcely found green algae. The rarity of the food requires longer search time and extended swimming tracks, resulting in lower bite rates. According to our findings by noon the fish seem to stop their search and switch to indiscriminative consumption of benthic algae, resulting in apparent higher feeding rates. The abundance of the rare preferable algae gradually declines from morning to noon and seems to reach its lowest levels around the switch time. Using in situ experiments we found that the feeding pattern is flexible, with the fish exhibiting fast feeding rates when presented with ample supply of preferable algae, regardless of the time of day. Analyses of the fish''s esophagus content corroborated our conclusion that their feeding was highly selective in the morning and non-selective in the afternoon. Modeling of the fishes'' behavior predicted that the fish should perform a diel diet shift when the preferred food is relatively rare, a situation common in most coral reefs found in a warm, oligotrophic ocean.  相似文献   

20.
Chemical communications play an important role in plants, fungi, and algae. Volatile organic compounds in marine algae are released into the seawater. These compounds play a role as either pheromones or allelochemicals. We observed that the turbinid gastropod Lunella coronata coreensis inhabits the intertidal zone and often grazes the green alga Ulva pertusa. Feeding tests and feeding preference studies were performed with green, brown and red algae or by using the powdered freeze-dried seaweed in agar. The snails fed on U. pertusa preferentially compared to the other marine algae, and recognized chemoreception compounds from the alga but not their structural or morphological differences. From feeding tests using artificial foods, it is suggested that the feeding attractants are in the essential oil of the alga U. pertusa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号