首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Resporulation of outgrowing Bacillus subtilis spores.   总被引:7,自引:5,他引:2       下载免费PDF全文
Germinated spores of Bacillus subtilis were incubated in outgrowth medium and tested periodically for capacity to sporulate when suspended in sporulation medium. Concurrent measurements were made of deoxyribonucleic acid (DNA) content and numbers of cell division septa and nucleoids. Sporulation potential is shown to reach a peak at about 110 min at which time the chromosomes are probably well into the second round of replication. Experiments with nalidixic acid show that sporulation potential can be generated in the outgrowth medium even when DNA synthesis is largely prevented. Further experiments show that nalidixic acid apparently does not prevent the formation of DNA initiation complexes, which can subsequently function after resuspension in the sporulation medium. The results support those previously obtained with a temperature-sensitive DNA mutant which indicated that sporulation could only be induced at a specific stage of chromosome replication, and then only if the cells are in a state of nutritional "step-down".  相似文献   

2.
Thymine-requiring mutants of Bacillus subtilis and mutants that are temperature-sensitive for initiation of chromosome replication have been used to study the relationship between sporulation and chromosome formation. The DNA synthesis that normally occurs when cells are transferred to sporulation medium is essential for spore induction. This is shown by the fact that thymine-starved cells are unable to form spores and are unable to perform even the earlier steps of sporulation, such as septum formation or synthesis of alkaline phosphatase. The nature of the medium in which the cells are growing while the DNA is being completed is also important because it determines both the shape and the position of the daughter chromosomes. If the cells are in a rich medium, the newly synthesized chromosomes are discrete and compact bodies: the cells are primed for growth, and sporulation cannot be induced by transferring them at this stage to a spore-inducing medium. If DNA synthesis was completed with the cells in a poor medium the daughter chromosomes, by the time DNA synthesis has ceased, are spread in a single filamentous band and the cells are morphologically already in stage I of sporulation.  相似文献   

3.
Synchronized populations of Bacillus subtilis are maximally inducible for sporulation about 15 min after chromosome replication has started. However, the induction of serine protease, one of the earliest marker events in sporulation, is not related to the state of chromosome replication.  相似文献   

4.
Recent work on cell division and chromosome orientation and partitioning in Bacillus subtilis has provided insights into cell cycle regulation during growth and development. The cell cycle is an integral part of development and entrance into sporulation is modulated by signals that transmit the status of DNA integrity, chromosome replication and segregation. In addition, B. subtilis modifies cell division and DNA segregation to establish cell-type-specific gene expression during sporulation.  相似文献   

5.
6.
Chromosome strand segregation during sporulation in Bacillus subtilis   总被引:2,自引:0,他引:2  
After the initiation of spore formation in Bacillus subtilis, the products of the final round of DNA replication segregate into two cells, i.e. the prespore and the mother cell. The prespore, which is known to contain a single completed chromosome, develops into a mature endospore which can be readily separated from mother cells and non-sporulating cells on the basis of its resistance properties. We have used a procedure originally developed to label the terminus region of the B. subtilis chromosome to specifically label the newly synthesized strands of DNA during the final round of DNA replication before sporulation. We have purified prespore DNA and used strand-specific probes to measure the radioactivity incorporated. The results show that the sister chromosomes segregate at random into the prespore. This result has implications for the segregation of chromosomes during vegetative growth and for the generation of cellular asymmetry during sporulation.  相似文献   

7.
Bacillus subtilis, a Gram-positive bacterium commonly found in soil, is an excellent model organism for the study of basic cell processes, such as cell division and cell differentiation, called sporulation. In B. subtilis the essential genetic information is carried on a single circular chromosome, the correct segregation of which is crucial for both vegetative growth and sporulation. The proper completion of life cycle requires each daughter cell to obtain identical genetic information. The consequences of inaccurate chromosome segregation can lead to formation of anucleate cells, cells with two chromosomes, or cells with incomplete chromosomes. Although bacteria miss the classical eukaryotic mitotic apparatus, the chromosome segregation is undeniably an active process tightly connected to other cell processes as DNA replication and compaction. To fully understand the chromosome segregation, it is necessary to study this process in a wider context and to examine the role of different proteins at various cell life cycle stages. The life cycle of B. subtilis is characteristic by its specific cell differentiation process where, two slightly different segregation mechanisms exist, specialized in vegetative growth and in sporulation.  相似文献   

8.
9.
10.
Cells of Bacillus subtilis actively co-ordinate the initiation of sporulation with DNA replication and repair. Conditions that perturb replication initiation or replication elongation induce expression of a small protein, Sda, that specifically inhibits the histidine kinases required to initiate spore development. Previously, the role of Sda has been studied during chronic blocks to DNA replication. Here we show that induction of Sda is required to delay the initiation of sporulation when replication elongation is transiently blocked or after UV irradiation. During the recovery phase, cells efficiently sporulated, but this required the proteolysis of Sda. The rapid proteolysis of Sda required the ClpXP protease and the uncharged C-terminal sequence of Sda. Replacing the last two residues of Sda, both serines, with aspartic acids markedly stabilized Sda. Strains expressing sdaDD from the endogenous sda locus were unable to efficiently initiate sporulation after transient replication stress. We conclude that the Sda replication checkpoint is required to delay the initiation of sporulation when DNA replication is transiently perturbed, and that the intrinsic instability of Sda contributes to shutting off the pathway. The Sda checkpoint thus co-ordinates early events of spore development, including the polar cell division, with successful completion of chromosome replication.  相似文献   

11.
The Bacillus subtilis phage DNA-like sigK intervening (skin) element (48 kb) is excised from the chromosome by DNA rearrangement, and a composite gene, sigK (spoIIIC and spoIVCB), is created on the chromosome during sporulation. In this study, we first focused on the role of sknR (skin repressor), which has homology with the gene encoding the Xre repressor of defective phage PBSX. The depletion of SknR caused overexpression of the region between yqaF and yqaN (the yqaF-yqaN operon) and a growth defect in B. subtilis. Point mutation analysis and an electrophoretic mobility shift assay (EMSA) suggested that SknR functions as a negative regulator of gene expression in the yqaF-yqaN operon of the skin element through direct interaction with operators of 2-fold symmetry located in the intergenic region between sknR and yqaF. Deletion analysis revealed that the lethal effect of depletion of SknR was related to overexpression of yqaH and yqaM, whose products were previously reported to associate with DnaA and DnaC, respectively. Furthermore, overexpression of either yqaH or yqaM caused cell filamentation and abnormal chromosome segregation, which suggested that overproduction of these proteins inhibits DNA replication. Moreover, overexpression of yqaM inhibited the initiation of replication. Taken together, these data demonstrate that the B. subtilis skin element carries lethal genes, which are induced by the depletion of sknR.  相似文献   

12.
The spoIIIE gene of Sporosarcina ureae encodes a 780-residue protein, showing 58% identity to the SpoIIIE protein of Bacillus subtilis, which is thought to be a DNA translocase. Expression of the S. ureae spoIIIE gene is able to restore sporulation in a B. subtilis spoIIIE mutant. Inactivation of the S. ureae spoIIIE gene blocks sporulation of S. ureae at stage III. Within the limits of detection, the sporulation division in S. ureae shows the same symmetry, or near symmetry, as the vegetative division (in contrast to the highly asymmetric location of the sporulation division for B. subtilis), and so it is inferred that SpoIIIE facilitates chromosome partitioning during sporulation, even when the division is not grossly asymmetric. It is suggested that chromosome partitioning lags behind division during sporulation but not during vegetative growth.  相似文献   

13.
The sporulation potential of Bacillus subtilis as a function of position in the cell cycle was determined by transferring cells from growth medium to sporulation medium at various times during growth. Growth was induced by incubating heat-activated spores in rich medium or by diluting stationary phase vegetative cultures with fresh growth medium. The results supported earlier observations that sporulation potential is cell cycle dependent. The rise in sporulation potential was studied by exposing cultures to the inhibitors of cell wall and protein synthesis, vancomycin and chloramphenicol. The delay in the appearance of the peak of sporulation potential caused by these inhibitors compared with the reported lack of effect of nalidixic acid, indicates that the appearance of sporulation potential requires synthesis of a macromolecular component other than deoxyribonucleic acid. The effect of nalidixic acid in preventing the decline of the sporulation potential was compared with the effect of high temperature on a mutant temperature sensitive for the initiation of DNA replication. It was found that prevention of chromosome completion with nalidixic acid maintained a high sporulation potential, whereas prevention of chromosome re-initiation in the temperature sensitive mutant did not affect the decline in sporulation potential as the cells enter stationary phase.Abbreviations NAL Nalidixic acid - HPUra 6-(p-hydroxyphenylazo)-uracil - VAN Vancomycin - CAM Chloramphenicol - BHI Brain heart infusion broth - c.f.u. Colony forming units  相似文献   

14.
P M Hauser  D Karamata 《Biochimie》1992,74(7-8):723-733
A reliable method for measuring the spore DNA content, based on radioactive DNA labelling, spore germination in absence of DNA replication and diphenylamine assay, was developed. The accuracy of the method, within 10-15%, is adequate for determining the number of chromosomes per spore, provided that the genome size is known. B subtilis spores were shown to be invariably monogenomic, while those of larger bacilli Bacillus megaterium, Bacillus cereus and Bacillus thuringiensis, often, if not invariably, contain two genomes. Attempts to modify the spore DNA content of B subtilis by altering the richness of the sporulation medium, the sporulation conditions (liquid or solid medium), or by mutation, were apparently unsuccessful. An increase of spore size with medium richness, not accompanied by an increase in DNA content, was observed. The implication of the apparently species-specific spore ploidy and the influence of the sporulation conditions on spore size and shape are discussed.  相似文献   

15.
16.
17.
We have characterized the yyaA gene of Bacillus subtilis, located near the origin of chromosome replication (oriC). Its protein product is similar to the Spo0J protein, which belongs to the ParB family of chromosome- and plasmid-partitioning proteins. Insertional inactivation of the yyaA gene had no apparent effect on chromosome organization and partitioning during vegetative growth or sporulation. Subcellular localization of YyaA by immunofluorescence microscopy indicated that it colocalizes with the nucleoid, and gel retardation studies confirmed that YyaA binds relatively nonspecifically to DNA. Overexpression of yyaA caused a sporulation defect characterized by the formation of multiple septa within the cell. This phenotype indicates that YyaA may have a regulatory role at the onset of sporulation.  相似文献   

18.
An attempt was made to determine whether sporulation and inducible enzyme synthesis in Bacillus subtilis are controlled by the same mechanism of catabolite repression. By the use of a thymine-requiring strain, it has been shown that, whereas sporulation remained repressed unless chromosome replication proceeded to completion, the induction of the enzymes histidase, sucrase, and alpha-glucosidase proceeded quite normally in the absence of continued deoxyribonucleic acid synthesis. It is concluded that the mechanism for overcoming the repression of sporulation differs qualitatively from that involved in overcoming the repression of inducible enzyme synthesis. Attempts to isolate pleiotropic mutants that would provide additional support for this contention were unsuccessful. A pleiotropic mutant deficient in phosphoenolpyruvate-dependent phosphotransferase activity sporulated quite well, whereas a mutant presumed deficient in glutamate synthetase sporulated poorly under all conditions.  相似文献   

19.
20.
The early stages of sporulation in Bacillus subtilis incorporate a modified, highly asymmetric cell division. It is now clear that most, if not all, of the components of the vegetative division machinery are used also for asymmetric division. However, the machinery for chromosome segregation may differ significantly between vegetative growth and sporulation. Several interesting checkpoint mechanisms couple cell cycle events to gene expression early in sporulation. This review summarises important advances in the understanding of chromosome segregation and cell division at the onset of sporulation in B.subtilis in the past three years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号