首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new hepatapeptide cholecystokinin (CCK) analog, JMV-180 (Boc-Tyr(SO3-)-Nle-Gly-Trp-Nle-Asp-2-phenylethylester), acts as an agonist at high affinity CCK receptors on rat pancreatic acini to stimulate amylase release but unlike cholecystokinin octapeptide (CCK8) does not act on low affinity CCK receptors to inhibit amylase release (Galas, M. D., Lignon, M. F., Rodriguez, M., Mendre, C., Fulcrand, P., Laur, J., and Martinez, J. (1988) Am. J. Physiol. 254, G176-G188). To investigate the biochemical mechanisms initiated by CCK acting on each class of CCK receptor, the effects of JMV-180 and CCK8 on amylase release, Ca2+ mobilization, and phospholipid hydrolysis were studied in isolated rat pancreatic acini. When acini were loaded with the intracellular Ca2+ chelator BAPTA, amylase release stimulated by both JMV-180 and CCK8 was reduced. Measurement of 45Ca2+ efflux and cytosolic free calcium concentration ([Ca2+]i) by the fluorescence of fura-2-loaded acini in a stirred cuvette showed that JMV-180 induced a concentration-dependent increase but with a maximal response only two-thirds that induced by CCK8. When [Ca2+]i of individual fura-2-loaded acinar cells was measured by microspectrofluorometry, all concentrations of JMV-180 (1 nM-10 microM) induced repetitive transient [Ca2+]i spikes (Ca2+ oscillations). By contrast, stimulation with a high concentration of CCK8 (1 nM) caused a large increase in [CA2+]i followed by a small sustained elevation of [Ca2+]i. The measurement of inositol trisphosphate (IP3) production by both [3H]inositol labeling and 1,4,5-IP3 radioreceptor assay showed that JMV-180 had only minimal effects at 10 microM in contrast to the large increase induced by high concentrations of CCK8 (more than 1 nM). JMV-180 blocked the effect of a high concentration of CCK8 on both [Ca2+]i and 1,4,5-IP3 productions but did not affect the response to carbamylcholine. JMV-180 caused a delayed monophasic stimulation of 1,2-diacylglycerol (DAG) sustained to 60 min without the early increase in DAG observed in response to CCK8. Furthermore, JMV-180 stimulated the release of [3H]choline metabolites, primarily phosphorylated choline, from [3H]choline-labeled acini at low concentrations and to the same extent as CCK8. Since JMV-180 interacts not only with high affinity CCK receptors as an agonist but also with low affinity CCK receptors as a functional antagonist, the present results indicate that the occupancy of high affinity state receptors by CCK induces Ca2+ oscillations, DAG formation from phosphatidylcholine hydrolysis, and amylase release with minimal phosphatidylinositol 4,5-bisphosphate hydrolysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
In this work in vitro pharmacological profiles of two analogues of the C-terminal heptapeptide of cholecystokinin (CCK) were evaluated. The analogue Boc-[Nle28, Nle31]-CCK-7, a stable analogue of CCK-8, has the same activity profile as CCK-8, and was found to be very potent in stimulating amylase secretion, phospholipid breakdown and [Ca2+]i mobilization from rat pancreatic acini. It can be used as a probe for studying CCK-actions. The CCK-analogue Boc-Tyr(SO3H)-Nle-Gly-Trp-Nle-Asp-2-phenylethylester, (JMV180), which stimulates amylase secretion without inhibition at supramaximal concentrations, has different effects on phospholipid hydrolysis and [Ca2+]i mobilization, compared to CCK-8 and Boc-[Nle28, Nle31]-CCK-7. Compound JMV180 was unable to significantly promote phospholipid breakdown, and was only 50%-60% as efficacious as Boc-[Nle28, Nle31]-CCK-7 in promoting [Ca2+]i mobilization. These findings suggest that low affinity CCK-receptors might be responsible for the supra-maximal inhibition of amylase secretion, and are correlated with phospholipid breakdown and maximal [Ca2+]i mobilization.  相似文献   

3.
In individual fura-2 loaded cells of rat pancreatic acini endothelin-1 (ET-1) (10-50 nM) induced sustained oscillations in [Ca2+]i. At higher concentrations a larger, but transient increase in [Ca2+]i was observed, which was largely unaffected by removal of extracellular Ca2+. ET-1 induced the release of Ca2+i from the same store as cholecystokinin (CCK), but with less potency. At concentrations of endothelin which transiently increased Ca2+, ET-1 increased the accumulation of inositol phosphates. Specific binding sites for 125I-endothelin were demonstrated on rat pancreatic acini. A single class of binding sites was identified with an apparent Kd 108 +/- 12 pM and Bmax of 171 +/- 17 fmol/mg for ET-1. The relative potency order for displacing [125I]ET was ET-1 greater than ET-2 greater than ET-3. In contrast to CCK and the non-phorbol ester tumour promoter Thapsigargin (TG) which induce both transient and sustained components of [Ca2+]i elevation, ET-1 failed to increase amylase release over the range 100 pM-1 microM.  相似文献   

4.
CCK(A) receptors are present on vagal afferent fibers. The objectives of this study were to identify the presence of high- and low-affinity CCK(A) receptors on nodose ganglia and to characterize the intracellular calcium signal transduction activated by CCK. Stimulation of acutely isolated nodose ganglion cells from rats with 1 nM CCK-8 primarily evoked a Ca(2+) transient followed by a sustained Ca(2+) plateau (45% of cells responded), whereas 10 pM CCK-8 evoked Ca(2+) oscillations (37% of cells responded). CCK-OPE, a high-affinity agonist and low-affinity antagonist of CCK(A) receptors, primarily elicited Ca(2+) oscillations (29% of cells responded). CCK-OPE inhibited the Ca(2+) transient induced by 1 nM CCK-8 but not by carbachol and high K(+). This result suggests the presence of high- and low-affinity states of CCK(A) receptors on nodose ganglia. We further demonstrated that nicardipine (10 microM) but not omega-conotoxins GVIA and MVIIC (10-100 nM) abolished Ca(2+) signaling induced by CCK-8, indicating that an L-type voltage-dependent Ca(2+) channel and not an N- or Q-type Ca(2+) channel is coupled to CCK(A) receptors. In a separate study, we showed that the G protein activator NaF (10 mM) elicited a Ca(2+) transient and inhibited CCK-8-evoked Ca(2+) signaling, indicative of G protein(s) involvement in CCK(A) receptor activity. The G(q) protein antagonist Gp antagonist-2A (10 microM) also abolished the action of CCK-8. This study indicates that CCK(A) receptors exist in both high- and low-affinity states in the nodose ganglia. Activation of high-affinity CCK(A) receptors elicits Ca(2+) oscillations, whereas stimulation of low-affinity CCK(A) receptors evokes a sustained Ca(2+) plateau. These Ca(2+)-signaling modes are mediated through the L-type Ca(2+) channel and involve the participation of G(q) protein.  相似文献   

5.
Ca(2+)/calmodulin-dependent protein (CaM) kinases play an important role in Ca(2+)-mediated secretory mechanisms. Previously, we demonstrated that a CaM kinase II inhibitor KN-62 had a small inhibitory effect on amylase secretion stimulated by CCK. In the present study, we investigated the effects of a myosin light chain kinase (MLCK) inhibitor on amylase secretion and Ca(2+) signaling in rat pancreatic acini. A specific inhibitor of MLCK, wortmannin, inhibited amylase secretion stimulated by CCK-8 (30 pM) in a concentration-dependent manner. Wortmannin (10 microM) had no effects on basal secretion but reduced amylase secretion stimulated by CCK-8 (30 pM) by 67 +/- 3%. Wortmannin inhibited amylase secretion stimulated by calcium ionophore (A23187) and phorbol ester (TPA). Wortmannin also inhibited amylase response to thapsigargin by 76 +/- 8% and to both thapsigargin and TPA by 52 +/- 10%. Ca(2+) oscillations evoked by CCK-8 (10 pM) were inhibited by wortmannin (10 microM). Wortmannin had a little inhibitory effect on an initial rise in [Ca(2+)](i), and abolished a subsequent sustained elevation of [Ca(2+)](i) evoked by 1 nM CCK-8. In conclusion, MLCK plays a crucial role in amylase secretion from pancreatic acini and regulates Ca(2+) entry from the extracellular space.  相似文献   

6.
Unlike in rodents, CCK has not been established as a physiological regulator in avian exocrine pancreatic secretion. In the isolated duck pancreatic acini, 1 nM CCK was required for stimulation of amylase secretion, maximal effect being achieved at 10 nM; picomolar CCK was without effect. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating peptide (PACAP) receptor (VPAC) agonists PACAP-38 and PACAP-27 (10(-12)-10(-7) M) alone had no effect, but made picomolar CCK effective. VPAC agonist VIP 10(-10)-10(-7) M stimulated amylase secretion marginally, but made CCK 10(-12)-10(-10) M effective also. PACAP-27 and VIP both shifted the maximal CCK concentration from 10(-8) to 10(-9) M. This sensitizing effect was mimicked by forskolin. CCK dose dependently induced intracellular Ca2+ concentration ([Ca2+]i) oscillations. PACAP-38 (1 nM), PACAP-27 (1 nM), VIP (10 nM), or forskolin (10 microM) alone did not stimulate [Ca2+]i increase, neither did they modulate CCK (1 nM)-induced oscillations; but when they were added to cells simultaneously exposed to subthreshold CCK (10 pM), calcium spikes emerged. Amylase secretion induced by the simultaneous presence of 10 pM CCK and VPAC agonists was completely blocked by removing extracellular calcium, but the protein kinase C inhibitor staurosporine (1 microM) was without effect. CCK (10 nM)-induced secretion was inhibited by CCK1 receptor antagonist FK480 (1 microM). Gastrin from 10(-12) to 10(-6) M did not stimulate amylase secretion nor did it (100 nM) induce [Ca2+]i increase. The above data suggest that duck pancreatic acini possess both CCK1 and VPAC receptors; simultaneous activation of both is required for each to play a physiological role.  相似文献   

7.
First incubating dispersed acini from rat pancreas with monensin, a cation ionophore that can inhibit recycling of receptors, inhibited binding of 125I-cholecystokinin 8 (125I-CCK-8) measured during a second incubation by as much as 50%. A maximal effect of monensin required 90 min of first incubation. Detectable inhibition of binding of 125I-CCK-8 occurred with 300 nM monensin, and inhibition increased progressively with concentrations of monensin up to 25 microM. Pancreatic acini possess two classes of receptors that bind 125I-CCK-8. One class has a high affinity (Kd = 461 pM) and a low capacity for CCK (512 fmol/mg DNA); the other class has a low affinity (Kd = 47 nM) and a high capacity for CCK (18 pmol/mg DNA). First incubating acini with monensin caused an 84% decrease in the number of high affinity CCK receptors with no change in the number of low affinity CCK receptors or the values of Kd for either class of receptors indicating that there is recycling of high affinity CCK receptors but not low affinity CCK receptors. First incubating acini with monensin did not alter CCK-stimulated amylase secretion indicating that in contrast to previous conclusions, occupation of low affinity CCK receptors mediates CCK-stimulated enzyme secretion. Moreover, the biphasic dose-response curve for CCK-stimulated enzyme secretion from monensin-treated acini suggests that pancreatic acini also possess a third, previously unrecognized class of very low affinity CCK receptors.  相似文献   

8.
The incubation of isolated rat pancreatic acini with low doses (1 x 10(-11)-1 x 10(-10) M) of cholecystokinin-octapeptide (CCK8) induced amylase release. This CCK8-induced amylase release has been shown to be mediated through the protein kinase C activation and the Ca2+ mobilization which are linked to the phospholipase C-mediated hydrolysis of phosphoinositides. However, the incubation of the acini with high doses (1 x 10(-9)-1 x 10(-7) M) of CCK8 reduced amylase release to the level less than that induced by the maximally effective dose (1 x 10(-10) M) of this secretagogue. Under the same conditions, the high doses of this secretagogue did not inhibit the phospholipase C-mediated hydrolysis of phosphoinositides. The stimulatory action of the maximally effective dose of CCK8 in amylase release was mimicked by the simultaneous addition of protein kinase C-activating 12-O-tetradecanoylphorbol-13-acetate (TPA) and Ca2+ ionophore A23187. A high dose (1 x 10(-7) M) of CCK8 reduced the amylase release induced by the combination of TPA and A23187. These results suggest that the high doses of CCK8 inhibit the secretory process post to the protein kinase C-Ca2+ systems and thereby reduce the amylase release induced by the maximally effective dose of CCK8 in rat pancreatic acini.  相似文献   

9.
We employed confocal laser-scanning microscopy to monitor cholecystokinin (CCK)-evoked Ca(2+) signals in fluo-3-loaded mouse pancreatic acinar cells. CCK-8-induced Ca(2+) signals start at the luminal cell pole and subsequently spread toward the basolateral membrane. Ca(2+) waves elicited by stimulation of high-affinity CCK receptors (h.a.CCK-R) with 20 pM CCK-8 spread with a slower rate than those induced by activation of low-affinity CCK receptors (l.a. CCK-R) with 10 nM CCK-8. However, the magnitude of the initial Ca(2+) release was the same at both CCK-8 concentrations, suggesting that the secondary Ca(2+) release from intracellular stores is modulated by activation of different intracellular pathways in response to low and high CCK-8 concentrations. Our experiments suggest that the propagation of Ca(2+) waves is modulated by protein kinase C (PKC) and arachidonic acid (AA). The data indicate that h.a. CCK-R are linked to phospholipase C (PLC) and phospholipase A(2) (PLA(2)) cascades, whereas l.a.CCK-R are coupled to PLC and phospholipase D (PLD) cascades. The products of PLA(2) and PLD activation, AA and diacylglycerol (DAG), cause inhibition of Ca(2+) wave propagation by yet unknown mechanisms.  相似文献   

10.
In isolated dispersed pancreatic acini, we have characterized the interactions between cholecystokinin (CCK) and CCK receptors by simultaneously measuring CCK-33 immunoreactivity and CCK bioactivity. Incubation of acinar cells with CCK-33 at cell density of 0.2-0.3 mg acinar protein per ml resulted in stimulation of amylase release concomitant with significant and time-dependent decrease of the immunoreactive CCK. With L-364,718 (0.1 microM), a specific CCK receptor antagonist, immunoreactive CCK levels in the media were not significantly altered during incubation; however, CCK-stimulated amylase release was almost completely abolished (94% inhibition). Vasoactive intestinal peptide (1 nM) significantly potentiated CCK stimulated amylase release without affecting immunoreactive CCK in the media. Insulin (167 nM) did not affect the CCK stimulated amylase release or immunoreactive CCK in the media. Incubation of acinar cells with CCK-33 at 4 degrees C did not affect the levels of immunoreactive CCK; however, a significant change in levels of immunoreactive CCK were found at 37 degrees C at 90 min. Incubation of cell free medium with CCK-33 in the presence or absence of secreted enzymes revealed no changes in CCK immunoreactivity in the medium at 90 min. Addition of bacitracin in the incubation media did not affect the CCK immunoreactivity or bioactivity. These findings indicate that in isolated rat pancreatic acini, CCK-33 stimulates amylase release through a receptor that is specifically blocked by L-364,718. Specificity of the interactions of CCK-33 with acinar cells in the media appears to be receptor-mediated and time- and temperature-dependent.  相似文献   

11.
The effects of the thiol reagent, phenylarsine oxide (PAO, 10(-5)-10(-3) M ), a membrane-permeable trivalent arsenical compound that specifically complexes vicinal sulfhydryl groups of proteins to form stable ring structures, were studied by monitoring intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. PAO increased [Ca2+]i by mobilizing calcium from intracellular stores, since this increase was observed in the absence of extracellular calcium. PAO also prevented the CCK-8-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF-4). In addition to the effects of PAO on calcium mobilization, it caused a significant increase in amylase secretion and reduced the secretory response to either CCK-8 or AlF-4. The effects of PAO on both [Ca2+]i and amylase release were reversed by the sulfhydryl reducing agent, dithiothreitol (2 mM). Pretreatment of acinar cells with high concentration of ryanodine (50 microM) reduced the PAO-evoked calcium release. However, PAO was still able to release a small fraction of Ca2+ from acinar cells in which agonist-releasable Ca2+ pools had been previously depleted by thapsigargin (0.5 microM) and ryanodine receptors were blocked by 50 microM ryanodine. We conclude that, in pancreatic acinar cells, PAO mainly releases Ca2+ from the ryanodine-sensitive calcium pool and consequently induces amylase secretion. These effects are likely to be due to the oxidizing effects of this compound.  相似文献   

12.
EXPERIMENTAL OBJECTIVES: Stimulation of low-affinity CCK-1 receptors on pancreatic acini leads to inhibition of enzyme secretion. We studied signal transduction mechanisms to identify potential causes for the reduced secretion. RESULTS: Co-stimulation experiments with CCK, CCK-JMV-180, and bombesin revealed an inhibition of bombesin-stimulated enzyme secretion by low-affinity CCK-1 receptors. Binding of 125I-gastrin-releasing peptide (the mammalian analogue of bombesin) to acini after CCK preincubation was not altered. After a short preincubation of acini with high concentrations of CCK, intracellular calcium remained responsive to bombesin. In contrast to bombesin or CCK at concentrations of 10(-10) M or lower, high concentrations of CCK caused a strong activation of p125 focal adhesion kinase (p125(FAK)) and a marked reorganisation of the actin cytoskeleton. CONCLUSIONS: Inhibitory mechanisms triggered by low-affinity CCK-1 receptors interrupt enzyme secretion from pancreatic acini at late stages in the signal transduction cascades since bombesin receptor binding and early signalling events remained intact after CCK preincubation. A reorganisation of the actin cytoskeleton is suggested to be the mechanism by which low-affinity CCK-1 receptors actively interrupt enzyme secretion stimulated by other receptors.  相似文献   

13.
The binding of cholecystokinin (CCK) to its receptors on isolated rat pancreatic acini was investigated employing high specific activity, radioiodinated CCK (125I-BH-CCK), prepared by the conjugation of 125I-Bolton-Hunter reagent (125I-BH) to CCK. Binding was specific, time-dependent, reversible, and linearly related to the acinar protein concentration. After incubation for 30 min at 37 degrees C, the 125I-BH-CCK both in the incubation medium and bound to acini remained intact, as judged by gel filtration and trichloroacetic acid precipitation studies. Scatchard analysis was compatible with two classes of binding sites on acini: a very high affinity site (Kd, 64 pM) and a lower affinity site (Kd, 21 nM). 125I-BH-CCK binding to acini was competitively inhibited by CCK and four of its analogues in proportion to their biological potencies but not by unrelated hormones. Stimulation of amylase secretion by CCK and inhibition of 125I-BH-CCK binding by the same analogues carried out under identical conditions revealed a correlation (r = 0.99) between binding potency and amylase secretion. Stimulation of amylase secretion by CCK closely paralleled the occupancy of the high affinity CCK binding sites. It is concluded that the high affinity CCK binding sites most likely are the receptors mediating the stimulation of amylase secretion by CCK.  相似文献   

14.
Effects of synthetic peptides belonging to the CCK/gastrin family (CCK-39, CCK-8, G/CCK-4, G-17ns) on amylase release in dog pancreatic acini have been measured and correlated with binding of three radio-labelled CCK/gastrin peptides: 125I-BH-(Thr,Nle)-CCK-9, 125I-BH-(2–17)G-17ns and 125I-BH-G/CCK-4 prepared by conjugation of the peptides to iodinated Bolton-Hunter reagent and purified by reverse-phase-HPLC. All the CCK/gastrin peptides produced the same maximal amylase release response. Half-maximal responses (D50) were obtained with 2 · 10?10 M CCK-8; 6 · 10?10 M CCK-39; 10?7 M G.17 ns and 2 · 10?6 M G/CCK-4. Dose-response curves for G-17 ns and G/CCK-4 were similar in configuration but not parallel with those for CCK-8 and CCK-39.Binding studies with 125I-BH(Thr,Nle)-CCK-9 demonstrated the presence of specific CCK receptors on dog pancreatic acini. There was a good correlation between receptor occupancy by CCK-8 and CCK-39 and amylase stimulation since maximal amylase stimulation was achieved when 40–50% of high affinity receptors were occupied. In contrast, a saturation of these receptors was required for maximal stimulation by G-17 ns and G/CCK-4 suggesting the existence of a fraction of receptors that can be occupied by G-17 ns and G/CCK-4 without stimulation of amylase release. Binding studies with labelled (2–17)-G-17 ns and G/CCK-4 confirmed the presence of high affinity sites for G-17 ns and G/CCK-4. These sites were not related to amylase release.This study points out a possible species specificity of biological action of gastrin/CCK peptides on pancreatic exocrine secretion in higher mammals.  相似文献   

15.
It has recently been shown that--after chronic cholecystokinin (CCK) treatment--an adaptation of pancreatic secretory but not gastric motor function does occur. Recent studies indicate that the CCK(1)-receptor exists in two (i.e. high and low) affinity states, which could be distinguished by the CCK-analogue JMV-180. CCK occupancy of high and low affinity sites is thought to be related to the initiation of different intracellular events and consequent biological responses. Affinity states of CCK(1)-receptors on pancreas and gastrointestinal (GI) smooth muscle could be different and this can offer an explanation for the different effects of CCK on pancreatic and gastric growth. We therefore studied the affinity states of CCK(1)-receptors on isolated rat pancreatic acini and gastric smooth muscle preparations. When acini were incubated with increasing concentrations of CCK-8, a biphasic (i.e. stimulation followed by inhibition) effect on amylase release was observed. JMV-180 caused only stimulation of enzyme release and combined JMV-180 and CCK stimulation (at submaximal doses) resulted in an additive secretory response. CCK-8 induced contractions of pyloric, antral and fundic muscle in a concentration-dependent manner. The response was monophasic, reaching a plateau. JMV-180 had only a very weak effect on these preparations. On the contrary, it inhibited CCK-induced contractions in a competitive manner, the concentration-response curve to CCK being shifted to the right by the CCK analogue. Our data suggest that the affinity states of CCK(1)-receptors on rat pancreatic and gastric tissue are different. On pancreatic acini CCK(1)-receptors exist in both high- and low-affinity states whose occupation is followed by the sequence of intracellular events leading to growth. In contrast, occupation of low affinity receptors (the only ones present in the GI smooth muscle) does not lead to cell proliferation. This difference therefore explains the different adaptive response of the pancreas and the stomach to chronic CCK administration. Furthermore, different affinity states of CCK(1)-receptors may mediate different functions of the digestive tract.  相似文献   

16.
Carbachol (CCh), a muscarinic-cholinergic agonist, increased both cytosolic free calcium concentration ([Ca2+]i) and amylase release in rat parotid acinar cells or acini in a dose-dependent manner. Treatment of acinar cells with the intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), or the intracellular Ca2+ chelator, 1,2-bis(O-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid (BAPTA), strongly attenuated the increases in [Ca2+]i evoked by CCh, but amylase release from acini was not significantly suppressed by the treatment with TMB-8 or BAPTA. Low concentrations (0.02-0.5 microM) of ionomycin, a Ca2+ ionophore, caused increases in [Ca2+]i comparable to those induced by CCh, but the same concentrations had only a little effect on amylase release. The protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated amylase release in quantities similar to those induced by CCh, although TPA alone did not cause any change in [Ca2+]i. Combined addition of TPA and ionomycin potentiated only modestly amylase release stimulated by TPA alone. Staurosporine, a protein kinase C-inhibitor, similarly inhibited both the CCh- and TPA-induced amylase release. These results suggest that an increase in [Ca2+]i elicited by CCh does not play an essential role for inducing amylase release in rat parotid acini. Amylase release by muscarinic stimulation may be mediated mainly by activation of protein kinase C.  相似文献   

17.
So far, there are no known peptidic effective receptor antagonists of both peripheral and central effects of cholecystokinin (CCK). Here, we describe a synthetic peptide derivative of CCK, t-butyloxycarbonyl-Tyr(SO3-)-Met-Gly-D-Trp-Nle-Asp 2-phenylethyl ester 1 (where Nle is norleucine), which is a potent CCK receptor antagonist. In rat and guinea pig dispersed pancreatic acini, this peptide derivative did not alter amylase secretion, but was able to antagonize the stimulation caused by cholecystokinin-related agonists. It caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion with half-maximal inhibition of CCK-8-stimulated amylase release at a concentration of about 0.1 microM. Compound 1 was able to inhibit the binding of labeled CCK-9 (the C-terminal nonapeptide of CCK) to rat and guinea pig pancreatic acini (IC50 = 5 X 10(-8) M) as well as to guinea pig cerebral cortical membranes (IC50 = 5 X 10(-7) M). These results indicate that Compound 1 is a potent competitive CCK receptor antagonist.  相似文献   

18.
It has recently been shown that—after chronic cholecystokinin (CCK) treatment—an adaptation of pancreatic secretory but not gastric motor function does occur. Recent studies indicate that the CCK1-receptor exists in two (i.e. high and low) affinity states, which could be distinguished by the CCK-analogue JMV-180. CCK occupancy of high and low affinity sites is thought to be related to the initiation of different intracellular events and consequent biological responses. Affinity states of CCK1-receptors on pancreas and gastrointestinal (GI) smooth muscle could be different and this can offer an explanation for the different effects of CCK on pancreatic and gastric growth. We therefore studied the affinity states of CCK1-receptors on isolated rat pancreatic acini and gastric smooth muscle preparations. When acini were incubated with increasing concentrations of CCK-8, a biphasic (i.e. stimulation followed by inhibition) effect on amylase release was observed. JMV-180 caused only stimulation of enzyme release and combined JMV-180 and CCK stimulation (at submaximal doses) resulted in an additive secretory response. CCK-8 induced contractions of pyloric, antral and fundic muscle in a concentration-dependent manner. The response was monophasic, reaching a plateau. JMV-180 had only a very weak effect on these preparations. On the contrary, it inhibited CCK-induced contractions in a competitive manner, the concentration–response curve to CCK being shifted to the right by the CCK analogue. Our data suggest that the affinity states of CCK1-receptors on rat pancreatic and gastric tissue are different. On pancreatic acini CCK1-receptors exist in both high- and low-affinity states whose occupation is followed by the sequence of intracellular events leading to growth. In contrast, occupation of low affinity receptors (the only ones present in the GI smooth muscle) does not lead to cell proliferation. This difference therefore explains the different adaptive response of the pancreas and the stomach to chronic CCK administration. Furthermore, different affinity states of CCK1-receptors may mediate different functions of the digestive tract.  相似文献   

19.
Dose-dependency in spatial dynamics of [Ca2+]c in pancreatic acinar cells   总被引:4,自引:0,他引:4  
Y Habara  T Kanno 《Cell calcium》1991,12(8):533-542
Spatial dynamics of cytosolic concentration of Ca2+, [Ca2+]c, in stimulus-secretion coupling of rat pancreatic acinar cell was monitored by a digital image analysing technique using Fura-2. When freshly isolated acini were stimulated with lower concentrations of CCK-8 (5-30 pM), [Ca2+]c increase began at the region beneath the basolateral membrane and the [Ca2+]c increase depended on the presence of extracellular Ca2+ ([Ca2+]o). CCK-8 at higher concentrations (100 pM and 1 nM), however, caused [Ca2+]c increase even in the absence of [Ca2+]o. Low concentrations of G-protein activator, NaF (10 mM or lower), caused [Ca2+]o-dependent increase in [Ca2+]c, whereas higher concentrations of NaF (15 mM or higher) increased [Ca2+]c in the absence of [Ca2+]o. These results are compatible with the view that G-protein activated by a physiological concentration of secretagogue accelerates Ca2+ entry. This process is in contrast to the process of Ca2+ release from intracellular stores, which can be predominant when pharmacological or toxic concentration of the secretagogue was applied.  相似文献   

20.
CCK-8-induced desensitization of carbachol-stimulated amylase secretion occurred over a range of concentrations of CCK-8 that occupy low affinity CCK receptors. CCK-JMV-180 [BOC-Tyr(SO3)-Nle-Gly-Trp-Nle-Asp-2-phenylethylester] at concentrations up to 1 microM did not cause desensitization of enzyme secretion; however, the peptide was able to inhibit CCK-8-induced desensitization. Analysis of the relationship between receptor occupation and CCK-8-induced desensitization caused by CCK-8 and CCK-JMV-180 in combination also indicated that CCK-8-induced desensitization of carbachol-stimulated amylase secretion is caused by occupation of low affinity CCK receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号