首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ravi Danielsson 《BBA》2004,1608(1):53-61
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700+ and YD, respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIβ) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIα) 300, PSI (PSIβ) in stroma lamellae 214, PSII in grana core (PSIIα) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

2.
Ravi Danielsson 《BBA》2009,1787(1):25-442
Membrane vesicles, originating from grana, grana core (appressed grana regions), grana margins and stroma lamellae/end membranes, were analysed by counter current distribution (CCD) using aqueous dextran-polyethylene glycol two-phase systems. Each vesicle population gave rise to distinct peaks in the CCD diagram representing different vesicle subpopulations. The grana vesicles and grana core vesicles each separated into 3 different subpopulations having different chlorophyll a/b ratios and PSI/PSII ratios. Two of the grana core subpopulations had a chlorophyll a/b ratio of 2.0 and PSI/PSII ratio of 0.10 and are among the most PSII enriched thylakoid vesicle preparation obtained so far by a non detergent method. The margin vesicles separated into 3 different populations, with about the same chlorophyll a/b ratios, but different fluorescence emission spectra. The stroma lamellae/end membrane vesicles separated into 4 subpopulations. Plastoglobules, connected to membrane vesicles, were highly enriched in 2 of these subpopulations and it is proposed that these 2 subpopulations originate from stroma lamellae while the 2 others originate from end membranes. Fragmentation and separation analysis shows that the margins of grana constitute a distinct domain of the thylakoid and also allows the estimation of the chlorophyll antenna sizes of PSI and PSII in different thylakoid domains.  相似文献   

3.
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700(+) and Y(D)( .-), respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIbeta) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIalpha) 300, PSI (PSIbeta) in stroma lamellae 214, PSII in grana core (PSIIalpha) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

4.
A non-detergent photosystem II preparation, named BS, has been characterized by countercurrent distribution, light saturation curves, absorption spectra and fluorescence at room and at low temperature (–196°C). The BS fraction is prepared by a sonication-phase partitioning procedure (Svensson P and Albertsson P-Å, Photosynth Res 20: 249–259, 1989) which removes the stroma lamellae and the margins from the grana and leaves the appressed partition region intact in the form of vesicles. These are closed structures of inside-out conformation. They have a chlorophyll a/b ratio of 1.8–2.0, have a high oxygen evolving capacity (295 mol O2 per mg chl h), are depleted in P700 and enriched in the cytochrome b/f complex. They have about 2 Photosystem II reaction centers per 1 cytochrome b/f complex.The plastoquinone pool available for PS II in the BS vesicles is 6–7 quinones per reaction center, about the same as for the whole thylakoid. It is concluded, therefore, that the plastoquinone of the stroma lamellae is not available to the PS II in the grana and that plastoquinone does not act as a long range electron transport shuttler between the grana and stroma lamellae.Compared with Photosystem II particles prepared by detergent (Triton X-100) treatment, the BS vesicles retain more cytochrome b/f complex and are more homogenous in their surface properties, as revealed by countercurrent distribution, and they have a more efficient energy transfer from the antenna pigments to the reaction center.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Fv variable fluorescence - LHC light-harvesting complex - PpBQ phenyl-p-benzoquinone - PQ plastoquinone pool - P700 reaction center of PS I - PS I, PS II Photosystem I, II - QA first bound plastoquinone accepter - RC reaction centre  相似文献   

5.
Methyl jasmonate (JAMe) vapors (8 ppm) for 4 h at 25°C dramatically increased Golden Delicious apple peel -carotene synthesis by nearly threefold to 35 ng/mm2, while control fruits remained nearly constant at 11 ng/mm2 during the 10 day measurement period. Chlorophyll a and to a lesser extent chlorophyll b and lutein degradation were accelerated by JAMe treatment, but all showed some recovery after 6 days. Peel chlorophyll ab ratio held almost constant at 4.2–4.5 in control fruits during 10 days, while JAMe-treated apple chl ab ratio decreased linearly to 2.9 during 10 days.  相似文献   

6.
The pigment composition of leaves from a number of different plant species collected from field sites in the region of Sheffield, UK, have been compared using high-performance liquid chromatography. Expression of pigment content per unit leaf area was dominated by variation in the total leaf chlorophyll. Neither chlorophyll per unit area nor the chlorophyll a/b ratio were found to be correlated with the habitat from which the plants originated. When the amounts of different carotenoids were expressed relative to the total carotenoid pool, it was found that whilst neither total carotene (α- +β-carotene) nor neoxanthin correlated with ability to grow in shade, the leaf content of both lutein and the total xanthophyll cycle carotenoids (zeaxanthin, anther-axanthin and violaxanthin) did, with lutein content being high in shade species and xanthophyll cycle intermediates low. There was a strong negative correlation between the relative amounts of each of these groups of carotenoids. The ratio of lutein to xanthophyll cycle carotenoids was strongly correlated to an index of shade tolerance.  相似文献   

7.
The plastids of young dark-grown bean leaves, exposed to periodiclight are agranal, devoid of chlorophyll b and contain primarythylakoids and chlorophyll a. Transfer of these plants to continuousillumination results in synthesis of new chlorophyll a, chlorophyllb and grana. This study was done in order to study whether andhow the grana are formed from preexisting primary thylakoids.14C--aminolevulinic acid was used to label the chlorophyll aof the primary thylakoids, and its fate was studied after transferof the plants to continuous light. It was found that chlorophyll b and grana become 14C-labelled.The total radioactivity of chlorophyll b per bean increasedwith the parallel decrease of that of chlorophyll a. All subchloroplastfractions, obtained after digitonin disruption of chloroplasts,contained chlorophyll a of equal specific radioactivity. Thespecific radioactivity of chlorophyll b was lower than thatof chlorophyll a, and, in addition, it was lower in the granathan in the stroma lamellae fraction. The data suggest that chlorophyll b is formed from chlorophylla; the grana are formed by stacking of preexisting primary thylakoids;chlorophyll b is synthesized faster in the grana than the stromalamellae; the newly formed chlorophyll a molecules are distributedat random throughout the developing photosynthetic membraneand not on specific growing sites. (Received April 24, 1976; )  相似文献   

8.
Photoinhibition and pigment composition of green stem tissues of field-grown adult Eucalyptus nitens were measured on clear spring days with low morning temperatures—conditions that cause photoinhibition in leaves of many plant species. The sun-exposed (north-facing) bark contained less chlorophyll a+b (531 vs 748 mol m–2), neoxanthin (29 vs 41), and -carotene (54 vs 73), more xanthophyll cycle pigments per unit surface area and per unit chlorophyll (71 vs 53 mol m–2 and 141 vs 66 mmol mol–1 chlorophyll), and less lutein per unit chlorophyll (239 vs 190) than the shaded (southern) side. Maximum electron flow rates were 60 mol m–2 s–1 on the sun-exposed side, and about 10 mol m–2 s–1 on the shaded side. Fv/Fm was always lower than 0.8 on the sun-exposed side and the de-epoxidation state (DEPS) of the xanthophyll cycle was dominated by zeaxanthin in midday samples. Fv/Fm increased quickly after darkening, but DEPS recovered more slowly to 40% overnight. This suggested that rapidly reversible pH-dependent quenching was responsible for the bulk of changes in PS II efficiency. Fv/Fm remained below 0.8 overnight, which may well be indicative of photo-damage to PSII. In contrast, DEPS of the shaded side was lower, and Fv/Fm was higher, than for the sun-exposed side. We conclude that E. nitens chlorenchyma on the sun-exposed stem side has a photosynthetic pigment composition similar to sun leaves and it experiences significant photoinhibition in the field.  相似文献   

9.
The effect of adding UV-A radiation (320–400 nm) to photosynthetically active radiation (PAR, 400–700 nm) during growth of the photosynthetic marine microalga Dunaliella bardawil was investigated in this work in terms of cell growth and carotenoid production. Although signs of slow cell growth (slight reduction of chlorophyll and protein content) were observed after 24 h of cell exposure to UV-A (40 mol photons m–2 s–1 and 70 mol photons m–2 s–1) plus 140 mol photons m–2 s–1 PAR , 84 h exposure to these UV-A conditions slightly stimulated cell growth and increased the photosynthetic efficiency of the exposed cultures. The enhanced cell growth was coupled with an increase in total carotenoid content. Besides -carotene as the major pigment, increases in the well-known antioxidants lutein and zeaxanthin of about 3-fold and 5-fold, respectively, were determined in cultures exposed to UV-A radiation of 70 mol photons m–2 s–1for 84 h. As a consequence, far from being negative to cell growth, low and medium UV-A radiation are stress factors that could be successfully applied to long-term processes for large scale carotenoid production using D. bardawil cultures with retention of cell viability. UV-A exposure has the advantage of being a factor either easily applied or removed as required, in contrast to other nutrient stresses, which require medium replacement for their application.  相似文献   

10.
Jacqueline Bahl 《Planta》1977,136(1):21-24
The pigment and lipid content, expressed on a protein basis, is compared in wheat etioplast and chloroplast membrane fractions. Chloroplast envelopes contain less carotenoid and 1/3 more lipid than etioplast envelopes. The minute amount of chlorophyll and carotenoid found in chloroplast envelopes could be due to thylakoid contamination. Prolamellar bodies and grana have nearly the same amount of total lipid and total carotenoid per mg of protein although their respective compositions differ. On a protein basis, the lipid, chlorophyll, and carotenoid contents are lower (2.3, 10, and 20 times, respectively) in stroma lamellae than in grana membranes, but the latter contains a higher proportion of -carotene, chlorophyll a, and sulfolipid.This research represents partial fulfillment of the thesis Doctorat d'Etat ès Sciences requirements of the author  相似文献   

11.
Summary High Performance Liquid Chromatography analysis of algal pigments from inter- and subtidal (deep and shallow) sediments from the Kerguelen Islands showed clear differences in the pigment composition at the different stations. High concentrations of chlorophyll c and fucoxanthin were present at all locations, indicating significant diatom densities, chlorophyll b was detected at all sites. At one station the other green algal pigments were also present; here green algae contributed more to chlorophyll a concentrations than diatoms, as estimated by using pigment ratios and microscopic observations. At another location chlorophyll b was associated with a high concentration of diadinoxanthin, indicating an abundance of euglenoids. This indicates that chemotaxonomy can be powerful tool in microphytobenthos studies since enumeration of living cells are difficult as many algae are attached to sediment particles (epipsammic algae). Ways of diagenesis, carotenoid degradation and the role of grazing are briefly mentioned. Phaeophorbide a-like pigments were the most significant chlorophyll a degradation products, with concentrations up to 110 g · g–1 dry weight sediment, i.e. 10 times the chlorophyll a concentration. Some taxonomic estimations, based on pigments ratios, and their limits, are discussed.  相似文献   

12.
The cytochrome bf complex was isolated from spinach thylakoids,and also from separated grana and stroma lamellae vesicles,by a procedure involving NaBr washing, detergent treatment andcentrifugation in sucrose gradients. The resulting complex fromall three types of membranes, were almost completely devoidof chlorophyll and carotenoids. The complexes have kinase activitytowards histone III-S and contain a 64 kDa protein claimed tobe a kinase. Electrophoretic analyses indicate that the complexesare in dimeric form and composed of six polypeptides with molecularmasses of 34/33, 23, 20, 17, 12 and 4 kDa. The complexes containtwo moles cytochrome b6 per mole cytochrome f and one mole RieskeFeS. The 17 kDa and 4 kDa polypeptides are the so called subunit4 and 5 respectively. The 12 kDa protein was identified as plastocyaninby immunoblotting. Plastocyanin and the 4 kDa protein were presentin the cytochrome bf complex even after a second repeated sucrosedensity gradient centrifugation. The sucrose gradient sedimentation pattern was different forthe grana and stroma lamellae complexes. The complex from thestroma lamellae arrives at a higher density than the grana complex.Furthermore, the gradient centrifugation diagram of the stromalamellae consists of one main peak while the diagram of thegrana complex shows two peaks. There is significantly more plastocyaninand 4 kDa protein in the bf complex isolated from stroma lamellaethan from grana. In addition there is a 15 kDa protein in thecomplex isolated from the grana vesicles. Immunoblot analysisafter crosslinking indicated that the 4 kDa protein and theplastocyanin are associated in the cytochrome bf complex. Theoxidoreductase activity is higher (about 50%) in the cytochromebf complex from the grana than from the stroma lamellae fraction.We suggest that a difference in composition of the cytochromebf complex between the two membranes might be important in theregulation of cyclic and non cyclic electron flow. 1Present address: Department of Plant Physiology II, Universityof Warsaw, 00 927 Warsaw, Poland  相似文献   

13.
The Porphyridium cruentum light harvesting complex (LHC) binds Chl a, zeaxanthin and -carotene and comprises at least 6 polypeptides of a multigene family. We describe the first in vitro reconstitution of a red algal light-harvesting protein (LHCaR1) with Chl a/carotenoid extracts from P. cruentum. The reconstituted pigment complex (rLHCaR1) is spectrally similar to the native LHC I, with an absorption maximum at 670 nm, a 77 K fluorescence emission peak at 677 nm (ex. 440 nm), and similar circular dichroism spectra. Molar ratios of 4.0 zeaxanthin, 0.3 -carotene and 8.2 Chl a per polypeptide for rLHCaR1 are similar to those of the native LHC I complex (3.1 zeaxanthin, 0.5 -carotene, 8.5 Chl a). The binding of 8 Chl a molecules per apoprotein is consistent with 8 putative Chl-binding sites in the predicted transmembrane helices of LHCaR1. Two of the putative Chl a binding sites (helix 2) in LHCaR1 were assigned to Chl b in Chl a/b-binding (CAB) LHC II [Kühlbrandt et al. (1994) Nature 367: 614–21]. This suggests either that discrimination for binding of Chl a or Chl b is not very specific at these sites or that specificity of binding sites evolved separately in CAB proteins. LHCaR1 can be reconstituted with varying ratios of carotenoids, consistent with our previous observation that the carotenoid to Chl ratio is substantially higher in P. cruentum grown under high irradiance. Also notable is that zeaxanthin does not act as an accessory light-harvesting pigment, even though it is highly likely that it occupies the position assigned to lutein in the CAB LHCs.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
The pigment composition of the light-harvesting complexes of Photosystem II (LHC II) has been determined for lettuce (Lactuca sativa). In common with other members of the composite, the photosynthetic tissues of this species may contain large amounts of the carotenoid lactucaxanthin (, -carotene-3,3'-diol) in addition to their normal compliment of carotenoids. The occurrence and distribution of lactucaxanthin in LHC II has been examined using isoelectric focusing of BBY particles followed by reversed-phase HPLC analysis of the pigments. The major carotenoids detected in LHC IIb, LHC IIa (CP29) and LHC IIc (CP26) purified from dark-adapted lettuce were lutein, violaxanthin, neoxanthin and lactucaxanthin. Lactucaxanthin has been shown to be a major component of PS II, accounting for 26% of total xanthophyll in both LHC IIb (23% total xanthophyll) and in the minor complexes (12–16%). In this study, LHC IIb was clearly resolved into four bands and their carotenoid composition determined. These four bands proved to be very similar in their pigment content and composition, although the relative amounts of neoxanthin and lutein in particular were found to increase from bands 1 to 4 (i.e. with increasing electrophoretic mobility). The operation of the xanthophyll cycle has also been examined in the LHC of L. sativa following light treatment. The conversion efficiency for violaxanthinzeaxanthin was nearly identical for each light-harvesting complex examined at 58–61%. Nearly half of the zeaxanthin formed in PS II was associated with LHC IIb, although the molar ratio of zeaxanthin:chlorophyll a was highest in the minor LHC.Abbreviations HPLC high performance liquid chromatography - IEF isoelectric focusing - LHCII light-harvesting complex associated with Photosystem II - PS II Photosystem II - qE pH-dependent nonphotochemical quenching of chlorophyll fluorescence  相似文献   

15.
Two cultures, a yeast (Rhodorula rubra GED8) and a yogurt starter (Lactobacillus bulgaricus 2–11+Streptococcus thermophilus 15HA), were selected for associated growth in whey ultrafiltrate (WU) and active synthesis of carotenoids. In associated cultivation with the yogurt culture L bulgaricus 2–11+S. thermophilus 15HA under intensive aeration (1.3 l–1min–1 air-flow rate) in WU (45 g lactose l–1), initial pH 5.5, 30 °C, the lactose-negative strain R. rubra GED8 synthesized large amounts of carotenoids (13.09 mg l–1 culture fluid). The carotenoid yield was approximately two-fold higher in association with a mixed yogurt culture than in association with pure yogurt bacteria. The major carotenoid pigments comprising the total carotenoids were -carotene (50%), torulene (12.3%) and torularhodin (35.2%). Carotenoids with a high -carotene content were produced by the microbial association 36 h earlier than by Rhodotorula yeast species. No significant differences were notd in the ratio between the pigments synthesized by R. rubra GED8+L. bulgaricus 2–11, R. rubra GED8+S. thermophilus 15HA, and R.rubra GED8+yogurt culture, despite the fact that the total carotenoid concentrations were lower in the mixed cultures with pure yogurt bacteria.  相似文献   

16.
An improved, non-detergent, method for preparative isolation of PS II membrane vesicles from spinach chloroplasts is presented. Thylakoids (chlorophyll (Chl) a/b ratio 2.8, Chl/P700 435) were fractionated by Yeda press treatment and aqueous two-phase partition to yield inside-out vesicles (1) (chl a/b 2.2, chl/P700 700). These vesicles were subjected a sonication — phase partitioning procedure; steps of sonication of inside-out vesicles, while still present in a dextran-polyethylene glycol two-phase system were alternated by phase partition. These steps selectively removed P700-containing membrane fragments from the inside-out vesicles and yielded a membrane fraction with improved PS II purity (Chl a/b ratio 1.9, Chl/P700 1500) and retained oxygen evolving capacity (295 mol O2 mg Chl-1 h-1).  相似文献   

17.
Plastocyanin levels in barley (Hordeum vulgare cv Boone) were found to be dependent on growth irradiance. An immunochemical assay was developed and used to measure the plastocyanin content of isolated thylakoid membranes. Barley grown under 600 mole photons m–2s–1 contained two- to four-fold greater quantities of plastocyanin per unit chlorophyll compared with plants grown under 60 mole photons m–2s–1. The plastocyanin/Photosystem I ratio was found to be 2 to 3 under high irradiance compared with 0.5 to 1.5 under low irradiance. The reduced plastocyanin pool size in low light plants contributed to a two-fold reduction in photosynthetic electron transport activity. Plastocyanin levels increased upon transfer of low light plants to high irradiance conditions. In contrast, plastocyanin levels were not affected in plants transferred from high to low irradiance, suggesting that plastocyanin is not involved in the acclimation of photosynthesis to shade.Abbreviations: BSA bovine serum albumin - chl chlorophyll - cyt cytochrome - DCIP 2,6-dichlorophenolindophenol - PS I Photosystem I - PS II Photosystem II - P700 reaction center of Photosystem I - TBS 20 mM Tris-HCl pH 7.5, 500 mM NaCl - TTBS 20 mM Tris-HCl pH 7.5, 500 mM NaCl, 0.5% (w/v) polyoxyethylenesorbitan monolaurate (Tween-20)  相似文献   

18.
Photosynthetic chromatophores of Rhodobacter capsulatus were differently enriched in phospholipid content by freezing, thawing and sonicating in the presence of phospholipid vesicles. Closed vesicles, characterized by different phospholipid to protein molar ratios and increasing average radius at increasing phospholipid enrichment, were collected after sucrose density gradient sedimentation. The electrical capacitance of these systems was evaluated from the ratio of reaction center content, photooxidized by single turnover flash in the presence of antimycin, to the corresponding membrane potential difference, measured from the electrochromic red shift of the endogenous carotenoid band. The values obtained, normalized per protein content, increased at increasing phospholipid enrichment, and correlated linearly with the increasing phospholipid to protein molar ratios. The charging capacitance of chromatophores was evaluated to be 3–6×10-17 F and was found to increase at increasing average radius of the phospholipid enriched vesicles, as predicted by the equation of the spherical shell dielectric. The carotenoid signal, elicited in the dark by imposing diffusion potentials of known extent with K+-valinomycin pulses, significantly decreased at high phospholipid enrichment, indicating that in the presence of large phospholipid excess, a partial displacement of the carotenoid molecules sensing the induced electric field is produced. Concomitantly, the energy transfer efficiency from carotenoids to core light harvesting complexes (B-875) was also partially affected, particularly at high phospholipid to protein molar ratio. All together, these results suggest that the reaction center complexes are dispersed within the lipid bilayer upon fusion and that carotenoids sense a delocalized light-induced transmembrane field.Abbreviations BChl bacteriochlorophyll - [BChl]2 reaction center - PL phospholipid - cyt cytochrome - transmembrane electrical potential difference - TES 2-2-Hydroxy-1,1-bis-(hydroxymethyl)ethyl-amino-ethanosulfonic acid - mgp mg protein  相似文献   

19.
Summary Inside-out thylakoid vesicles were isolated from spinach chloroplasts, and fragmented by sonication. Different fragments were separated by counter-current distribution and analyzed for chlorophyll and P700. The inside-out vesicles had a chlorophyll a/b ratio of 2.2–2.4 (original chloroplasts 2.8–3.0). After further fragmentation of the inside-out vesicles by sonication and separation by countercurrent distribution three populations of vesicles were obtained having chlorophyll a/b ratios of 1.7, 1.9 and 2.5 respectively. The P-700 was depleted in fractions with lower chlorophyll a/b ratio and was nearly absent in the fraction having a chlorophyll a/b ratio of 1.7 (chlorophyll/P700 > 4500 mol/mol). That PSII membrane vesicles, with such a low chlorophyll a/b ratio and lacking PSI, can be prepared by a non-detergent method provides strong support for the notion that PSI and PSII are segregated along the thylakoid membrane.A plot of P700 per chlorophyll against chlorophyll b/(a+b) fits a straight line connecting the pure PSI membrane (chlorophyll a/b = 6; P700/chlorophyll = 5.6 mmol/mol) with the pure PSII membrane (chlorophyll a/b = 1.7; P700 = 0). These two membranes can be considered as separate phases of a two-dimensional phase system. Models for the thylakoid membrane are discussed.Abbreviations PSI Photosystem I - PSII Photosystem II - PEG Polyethylene Glycol - P700 Reaction Center of PSI  相似文献   

20.
Chlorophyll-deficient barley (Hordeum vulgare) mutants were studied that had chlorophyll a/b ratios either higher or lower than the wild type. Mutants with high ratios (>5.2) had a reduced proportion of their photosynthetic lamellae appressed into grana (“grana-deficient” mutants) compared with wild type (chlorophyll a/b = 3.2), while the majority of lamellae in the chloroplasts with low chlorophyll a/b ratios (2.0-2.4) were organized into grana (“grana-rich” mutants).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号