首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptic potentials of smooth muscles of the gastrointestinal tract arising in response to intramural stimulation were studied by intracellular recording of potentials and the sucrose gap method. The results showed that muscarinic cholinergic neuromuscular transmission in smooth-muscle cells of the gastrointestinal tract is purely excitatory. This transmission is most marked in the fundal part of the stomach. Adrenergic control of motor activity is manifested as excitation and inhibition of smooth muscles. Relations between these phenomena differ in different parts of the gastrointestinal tract. Depression of inhibitory adrenergic effects by apamin discloses excitation of smooth muscles which is not found under ordinary conditions. Like its inhibitory action, the excitatory action of noradrenalin is exerted as a result of activation of -adrenoreceptors. Nonadrenergic synaptic inhibition, which is more effective than adrenergic, is found in smooth-muscle cells of the circular layer of all parts of the gastrointestinal tract studied. Inhibitory postsynaptic potentials consists of two components: a first fast, and a second slow. Apamin blocks mainly the first phase of the synaptic response. During inhibition of nonadrenergic inhibitory postsynaptic potentials by apamin, noncholinergic synaptic excitation resistant to the action of blockers of cholinergic, adrenergic, and serotoninergic transmission is found in smooth muscles of the cecum. It is complex in character in this part of the intestine: an initial excitatory postsynaptic potential and a slow late depolarization wave. In smooth-muscle cells of other parts noncholinergic excitation is manifested only as a slow depolarization wave. The following types of synaptic influences of the autonomic nervous system on smooth-muscle cells of the gastrointestinal tract are therefore postulated: nonadrenergic excitatory, both cholinergic and noncholinergic; nonadrenergic inhibitory, adrenergic excitatory and adrenergic inhibitory, and also presynaptic modulation of neuromuscular transmission.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 307–319, May–June, 1984.  相似文献   

2.
The action of strychnine, hydrastine, and apamine on neuromuscular transmission in the stomach and taenia coli was investigated. Hydrastine and strychnine increase nonadrenergic IPSPs of smooth muscle cells. Under the influence of apamine the IPSP and hyperpolarization evoked by exogenous ATP are reversibly blocked and noncholinergic EPSPs appear; ATP, however, does not cause depolarization of the cell membrane. Consequently, apamine is a specific blocker of nonadrenergic inhibition, acting on the postsynaptic membrane, and ATP is a mediator both of this inhibition and of noncholinergic synaptic excitation discovered in smooth muscle cells.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 3, pp. 295–299, May–June, 1978.  相似文献   

3.
Effects of thiamine, thiamine monophosphate (TMP), and thiamine diphosphate (TDP) on excitatory cholinergic and inhibitory noncholinergic nonadrenergic neuromuscular transmissions were studied in the smooth muscles of the gastric fundus and in the circular layer of the distal colon of the guinea pig, respectively. It was found that, when applied in the physiological concentration range, thiamine, TMP, and TDP evoked depolarization and an increase in strain in the smooth muscle strips, as well as an increase in the amplitude of inhibitory synaptic potentials and postinhibitory depolarization. The amplitude of the excitatory synaptic potentials increases in the presence of thiamine and TMP, and decreases in the presence of TDP. The results obtained suggest that thiamine and TMP, which are normally present in the extracellular medium, may modulate synaptic transmission, as well as the electrical and contractile activity of the smooth muscles in the gastrointestinal tract.Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 449–457, November–December, 1994.  相似文献   

4.
Background firing activity was recorded in guinea pig neocortical slices maintained using extracellular techniques. Between 30 and 40% of neurons continued to generate action potentials, although at a reduced rate, when synaptic disruption had been induced by adenosine or adenosine 5-monophosphate action. These cells were classed as endogenously active. No connection could be shown between neuronal firing pattern and capacity for autonomous generation of action potentials. The remaining neurons tested remained inactive after synaptic disruption, but regained their capacity for spontaneous firing following washout. The activity of these cells was classified as exogenous (or the result of synaptic excitation induced by other neurons in the same slice). The majority of cells with a highly regular discharge pattern initially stopped discharging during synaptic blockade and resumed their activity following washout. This would suggest that a miniature excitatory circuit with 30–140 msec cycles operates in these slices.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 816–824, November–December, 1987.  相似文献   

5.
Summary By use of the indirect immunofluorescence technique, the cellular localization of thyrotropin-releasing hormone (TRH) was studied in the gastrointestinal tract of rats and guinea pigs of different ages. TRH-like immunoreactivity (LI) was observed in many pancreatic islet cells of young rats and guinea pigs but only in single cells of 6-month-old rats. In aged guinea pigs, a reduction in the number of TRH-positive cells was evident; however, numerous strongly fluorescent cells were still present. In the guinea pig, TRH-LI was in addition observed in gastrin cells in the stomach. TRH-positive nerve fibers occurred in the myenteric plexus of the oesophagus, stomach and intestine of the rat, and in the muscle layers of the guinea pig. These results suggest a functional role of TRH both as hormone and neuroactive compound in various portions and sites of the gastro-intestinal tract of the rat and guinea pig  相似文献   

6.
We found that nonadrenergic inhibitory synaptic potentials (ISP) induced by intramural stimulation in atropine-treated smooth muscles of the guinea-pig large intestine demonstrated no changes upon the influence of an activator of adenylate cyclase, forskolin. This indicates that cAMP-dependent pathways are not involved in the generation of ISP. However, in these muscles with no atropine pretreatment ISP were suppressed by forskolin; intramural stimulation evoked in these smooth muscle cells M-cholinergic excitatory synaptic potentials (ESP) instead of ISP. An increase in the intracellular cAMP concentration due to application of its membrane-penetrating form, dibutyryl-cAMP, did not mimic the above-described effect of forskolin. Hence, it can be supposed that the effect of forskolin on inhibitory synaptic transmission in the atropine-untreated smooth muscles is not related to changes in the intracellular cAMP level; this effect is determined by other mechanisms. The above differences between the effects of forskolin on ISP in the atropine-treated and atropine-untreated smooth muscle strips indicate that the interaction of intracellular signal pathways (probably, through protein Gq/11), which is observed with activation of adenylate cyclase, occurs under conditions of simultaneous activation of M cholinoreceptors and purinoreceptors. The pattern of adenylate cyclase-mediated modulation of inhibitory effects of purinergic neurons on smooth muscles does not allow us to rule out the possibility of involvement of interstitial cells of Cajal as a relay link providing this synaptic effect. Transmission of excitation from cholinergic nerve terminals to smooth muscles is realized without the participation of the interstitial cells of Cajal.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 438–445, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

7.
In previous ultrastructural studies we have shown that at the tip of intestinal villi in guinea pigs, effete enterocytes are separated into two portions: a thin apical cytoplasm to be exfoliated into the lumen and a major basal portion to be ingested by lamina propria macrophages. During this process, intraepithelially disposed, large granular lymphocytes interdigitate with enterocytes in a complex manner. In the present study, the relation between the enterocytes and the lymphocytes in the villous epithelium of the guinea pig small intestine is described by use of transmission and scanning electron microscopy in an attempt to visualize the roles and activities of the lymphocytes more clearly. The lymphocytes project numerous pointed processes into effete enterocytes, even piercing them. Enterocytes are deeply indented or perforated, probably as a result of the encroaching lymphocyte processes. Some enterocytes are separated into apical and basal portions by numerous large excavations in the cytoplasm. These findings indicate that repeated perforating penetration of the lymphocytes induces cell cleavage. Supporting this supposition, our microcinematographic observations demonstrate the alternate protrusion and withdrawal of processes of lymphocytes. The processes advance with a pointed end, and subsequently, retract with a rounded end in a cycle of 8–18 seconds.  相似文献   

8.
During metamorphosis, the frog intestine goes through a dramatic shortening with extensive apoptosis and regeneration in the epithelial layer and connective tissue. Our aim was to study changes in the enteric nervous system represented by one inhibitory (vasoactive intestinal polypeptide; VIP) and one excitatory (substance P, neurokinin A; SP/NKA) nerve population and concomitant changes in neurotrophin receptor occurrence during this development in the gut of Xenopus laevis adults and tadpoles at different stages of metamorphosis (NF stages 57–66). Sections were incubated with antibodies against the neurotrophin Trk receptors and p75NTR, and the neurotransmitters VIP and SP/NKA. Trk-immunoreactive nerves increased dramatically but transiently in number during early metamorphic climax. Nerves immunoreactive for p75NTR were present throughout the gut, decreased in number in the middle intestine during climax, and increased in the large intestine during late metamorphosis. The percentage of VIP-immunoreactive nerves did not change during metamorphosis. SP/NKA-immunoreactive nerves were first apparent at NF stages 61–62 in the middle intestine and increased in the stomach and large intestine during metamorphosis. Endocrine cells expressing SP/NKA increased in number in stomach, proximal, and middle intestine during metamorphic climax. Thus, neurotrophin receptors are expressed transiently in neurons of the enteric nervous system during metamorphosis in Xenopus laevis and SP/NKA innervation is more abundant in the intestine of the postmetamorphic frog than in the tadpole.This study was supported by grants from the Swedish Research Council to S. Holmgren  相似文献   

9.
Earlier experiments with intestinal nematode infection which had shown changes to skeletal muscle and liver protein metabolism, did not examine the metabolism of the gastrointestinal tract nor attempt to integrate these changes with the whole body. Consequently the distribution of 14C-l-leucine in all organs and tissues of guinea pigs infected with Trichostrongylus colubriformis was compared with uninfected animals fed either ad libitum or quantitatively reduced rations.There were no differences between experimental groups in total radioactivities recovered, but in the infected animals radioactivity accumulated in the liver, stomach and small intestine, and caecum and large intestine at the expense of the eviscerated carcase and skin. Reducing the ration of uninfected guinea pigs did not affect the distribution of leucine, apart from reducing the fraction in the eviscerated carcase. Incorporation of 14C-l-leucine and its relationship to protein synthesis in the livers and eviscerated carcases of the three experimental groups is discussed. It was concluded that events in the small and large intestines, which are independent of anorexia, are important components of protein metabolism in intestinal nematode infection.  相似文献   

10.
Summary A dense AChE-positive network was visualized by light microscopy in the thoracic spinal cord of grown-up guinea pigs of both sexes (bodyweight 250–300 g). This network connects in a horizontal and vertical direction the preganglionic sympathetic nuclei (n. intermediolateralis pars principalis (ILp), n. intermediolateralis pars funicularis (ILf), n. intercalatus spinals (IC), n. intercalatus pars paraependymalis (ICpe), (Petras and Cummings, 1972) all along the thoracic spinal cord. In addition to AChE activity, the bundles of fibers of this network also show a strong formaldehyde-induced NA fluorescence.Electron microscopy demonstrated granular vesicles in the cytoplasm of ILp cells. The surface of the ILp and IC neurons is almost entirely covered with synaptic buttons which have clear and granulated synaptic vesicles. The bundles of fibers consists of parallel myelin-free axones and dendrites. On their cource the axones form varicosities. In the varicosities and in the synaptic enlargements there are also clear and granulated (40–100 nm) vesicles. The probable origin of the vegetative network fibers of guinea pig thoracic spinal cord is discussed.  相似文献   

11.
Microbial catabolic capacity in digesta from the gastrointestinal tract of pigs fed either dry feed or fermented liquid feed (FLF) was determined with the PhenePlate multisubstrate system. The in vitro technique was modified to analyze the kinetics of substrate catabolism mediated by the standing stock of enzymes (potential rates of fermentation), allowing a quantitative evaluation of the dietary effect on the catabolic capacity of the microbiota. In total, the potential rates of fermentation were significantly reduced in digesta from the large intestine (cecum, P < 0.1; colon, P < 0.01; and rectum, P < 0.0001) of pigs fed FLF compared to pigs fed dry feed. No effect of diet was observed in the stomach (P = 0.71) or the distal part of the small intestine (P = 0.97). The highest rates of fermentation and the most significant effect of diet were observed for readily fermentable carbohydrates like maltose, sucrose, and lactose. Feeding FLF to pigs also led to a reduction in the large intestine of the total counts of anaerobic bacteria in general and lactic acid bacteria specifically, as well as of microbial activity, as determined by the concentration of ATP and short-chain fatty acids. The low-molecular-weight carbohydrates were fermented mainly to lactic acid in the FLF before being fed to the animals. This may have limited microbial nutrient availability in the digesta reaching the large intestine of pigs fed FLF and may have caused the observed reduction in activity and density of the cecal and colonic microbial population. On the other hand, feeding FLF to pigs reduced the viable counts of coliform bacteria (indicator of Escherichia coli and Salmonella spp.) most profoundly in the stomach and the distal part of the small intestine, probably due to the bactericidal effect of lactic acid and low pH. The results presented clearly demonstrate that feeding FLF to pigs had a great impact on the indigenous microbiota, as reflected in bacterial numbers, short-chain fatty acid concentration, and substrate utilization. However, completely different mechanisms may be involved in the proximal and the distal parts of the gastrointestinal tract. The present study illustrates the utility of the PhenePlate system for quantifying the catabolic capacity of the indigenous gastrointestinal tract microbiota.  相似文献   

12.
The effect of therapeutic-intensity ultrasound on neuromuscular transmission and spontaneous electrical and contractile activity in smooth muscles of the gastrointestinal tract of guinea pig was studied by a modified sucrose-gap technique. The action of ultrasound was found to facilitate the acetylcholinergic neuromuscular transmission (mainly by increasing the amplitude of excitatory postsynaptic potentials). The higher efficiency of the nonadrenergic neuromuscular transmission was manifested as an increase (nearly twofold) in the total duration, but not in the amplitude, of inhibitory postsynaptic potentials. Modulations of the first and second components of the potentials caused respectively by the action of ATP and of nitric oxide as possible transmitters, were different. Concurrently with enhancing the synaptic transmission efficiency, ultrasound exerted an opposite, inhibitory, effect on generation of spontaneous action potentials and contraction of smooth muscles. All the ultrasound effects were fully reversible. The findings permit assuming a special mechanism of modification of the synaptic transmission in smooth muscles under the action of ultrasound.Neirofiziologiya/Neurophysiology, Vol. 25, No. 4, pp. 297–302, July–August, 1993.  相似文献   

13.
The role of nitric oxide (NO) as a possible transmitter for nonadrenergic inhibitory transmission was studied on isolated muscle strips of the guinea pig gastro-intestinal tract (GIT) using sucrose-gap technique. In addition, the voltage clamp and intracellular dialysis techniques were employed to study the effects of sodium nitroprusside (NP) on isolated smooth muscle (SM) cells of thetaenia coli. N-nitro-L-arginine methyl ester (L-NAME), a blocker of NO synthesis from L-arginine (0.1 mM), was shown to selectively suppress the apamin-resistant component of nonadrenergic inhibitory junctional (synaptic) potentials (IJP) in the guinea pig GIT SM cells. At the same time, L-NAME did not affect the vasoactive intestinal polypeptide (VIP)- and NP-evoked hyperpolarization in SM cells of the colon. The NP-induced hyperpolarization (0.1 mM) was accompained by a decrease in the SM cell membrane resistance. Application of NP to isolated SM cells activated a small outward current and increased the frequency of spontaneous transient calcium-dependent outward currents. NP increased the Ca-dependent potassium current evoked in SM cells by step depolarization, but did not affect the potassium currents of delayed rectification. Our results suggest that NO is involved in generation of nonadrenergic IJP in SM cells of the guinea pig GIT. The action of NP on SM cells is complex and results in hyperpolarization and relaxation (partially through the activation of Ca-dependent potassium channels in SM cell membrane).  相似文献   

14.
A two-by-two factorial experiment with pigs was conducted to study the effect of feed grinding (fine and coarse) and feed processing (pelleted and nonpelleted) on physicochemical properties, microbial populations, and survival of Salmonella enterica serovar Typhimurium DT12 in the gastrointestinal tracts of pigs. Results demonstrated a strong effect of diet on parameters measured in the stomachs of the pigs, whereas the effect was less in the other parts of the gastrointestinal tract. Pigs fed the coarse nonpelleted (C-NP) diet showed more solid gastric content with higher dry matter content than pigs fed the fine nonpelleted (F-NP), coarse pelleted (C-P), or fine pelleted (F-P) diet. Pigs fed the C-NP diet also showed significantly increased number of anaerobic bacteria (P < 0.05), increased concentrations of organic acids, and reduced pH in the stomach. In addition, pigs fed the C-NP diet showed increased in vitro death rate of S. enterica serovar Typhimurium DT12 in content from the stomach (P < 0.001). Pigs fed the C-NP diet had a significantly higher concentration of undissociated lactic acid in gastric content than pigs fed the other diets (P < 0.001). A strong correlation between the concentration of undissociated lactic acid and the death rate of S. enterica serovar Typhimurium DT12 was found. In the distal small intestine, cecum, and midcolon, significantly lower numbers of coliform bacteria were observed in pigs fed the coarse diets than in pigs fed the fine diets (P < 0.01). Pigs fed the C-NP diet showed the lowest number of coliform bacteria in these segments of the gastrointestinal tract. Pigs fed the coarse diets showed increased concentration of butyric acid in the cecum (P < 0.05) and colon (P < 0.10) compared with pigs fed the fine diets. It was concluded that feeding a coarsely ground meal feed to pigs changes the physicochemical and microbial properties of content in the stomach, which decreases the survival of Salmonella during passage through the stomach. In this way the stomach acts as a barrier preventing harmful bacteria from entering and proliferating in the lower part of the gastrointestinal tract.  相似文献   

15.
Neuronal activity was recorded in surviving hippocampal and medial preoptic thalamic slices from guinea pigs using extracellular techniques during thermal changes. Rate of generating action potentials changed in seven of the 19 hypothalamic cells tested once a threshold temperature of 36–38°C had been reached. Above this range, activity in these neurons was temperature dependent. It is suggested that these neurons form a sensory element in the system controlling brain temperature over a narrow (1–2°C) range. In the hippocampus (the control structure), pyramidal layer cells were insensitive to temperatures in the 32–40°C range.Institute of Physiology, Academy of Sciences of the Byelorussian SSR, Minsk. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 358–365, May–June, 1989.  相似文献   

16.
The actions of peptide YY (PYY) were studied in longitudinal organ-bath preparations of the guinea pig intestine. PYY induced concentration-dependent (10(-9)-5 x 10(-8) M) relaxations of tissue from the duodenum, jejunum, ileum, and colon. These responses were unaffected by adrenergic blockade and atropine treatment but could be prevented by tetrodotoxin. The pharmacology of PYY actions in segments of the small and large intestine indicated the involvement of intrinsic nonadrenergic, noncholinergic inhibitory neurones in the relaxation response to this peptide. All tissues could be made tachyphylactic to PYY without affecting their ability to respond to the direct acting muscle relaxants ATP or papaverine. Moreover, nicotinic ganglion stimulated relaxations and cholinergic nerve-mediated contractions were also unaffected. These results show applied PYY to have potent neurogenic actions in the guinea pig intestine with some similarities to PYY actions in the rat intestine.  相似文献   

17.
Ji D  Sui ZY  Ma YY  Luo F  Cui CL  Han JS 《Neurochemical research》2004,29(11):2113-2120
The purpose of the present study is to elucidate whether ketamine, a non-competitive antagonist of the NMDA receptor, can suppress the morphine withdrawal syndrome in rats at a dose without affecting motor functions and to identify its site of action in the central nervous system. Rats were made dependent on morphine by multiple injections of morphine hydrochloride for 5 days. They were then given ketamine at the following doses and routes of administration: (a) intraperitoneal (i.p.) injections (2–16 mg/kg), (b) intracerebroventricular (i.c.v.) injections (4–100 g), and (c) intra-nucleus accumbens (NAc) or intra-amygdalar microinjections (0.4–10 g). Naloxone HCl (1 mg/kg, i.p.) was administered 3 h after the last ketamine injection to precipitate withdrawal syndrome, which was scored within a period of 30 min. Results showed that some of the precipitated withdrawal signs were dose-dependently suppressed by repeated injections of ketamine at 8 and 16 mg/kg, i.p. or 100 g, i.c.v. Dose-dependent suppression was observed by repeated microinjections (0.4–10 g) of ketamine to NAc, but not to amygdala. These results indicate that the NMDA receptor antagonist ketamine has the ability to suppress morphine withdrawal syndrome in experimental settings without motor interference, and NAc could be the critical CNS site mediating such effect.Special issue dedicated to Dr. Lawrence F. Eng.  相似文献   

18.
The fractional synthesis rate (FSR) and daily synthesis of protein were measured in the small and large intestines of infected guinea pigs and uninfected animals fed ad libitum or quantitatively reduced rations. The FSR of the infected and parasite-free parts of the small intestine was unchanged but was increased by about 40% in the large intestine. Daily protein synthesis (mg/g body wt.) by infected guinea pig was greater by about 24% in the entire small intestine and by over 70% in the large intestine. These increases were not due to anorexia since the FSR and daily protein synthesis by the small and large intestines of the reduced ration animals were less than those of the infected group. Greater weight of the small intestine may explain increases in daily protein synthesis in the small, but not in the large intestine where weight was unchanged. Responses which may affect protein synthesis in the infected and parasite-free intestines are discussed.  相似文献   

19.
Individual nerves of the superior cervical sympathetic ganglion were stimulated in acute experiments on cats, and action potentials (AP) were recorded from other nerves of the ganglion in order to clarify whether or not there is transmission of excitation through the ganglion from one nerve to another and to establish whether this transmission is continuous or synaptic. The method of intracellular recording from neurons of the ganglion was also used. It is established that stimulation of the cervical sympathetic nerve evokes AP in all of the peripheral nerves of the ganglion, a circumstance that is the result of synaptic transmission of excitation. There is no transmission of excitation in the reverse direction or between any of the 12 peripheral nerves of the ganglion (including the four branches of the internal carotid nerve). Orthodromic excitation is recorded intracellularly from neurons of the ganglion during stimulation of the cervical sympathetic nerve, and antidromic excitation is recorded during stimulation of a peripheral nerve (the internal carotid nerve). It follows that the pathways through the ganglion which conduct excitation from the cervical sympathetic nerve into all of the remaining nerves of the ganglion are synaptic. Analysis of EPSP latent periods indicated that preganglionic fibers that differ sharply with respect to threshold and conduction rate (groups S2 and S4) converge on one and the same neurons of the ganglion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 216–224, March–April, 1970.  相似文献   

20.
Small numbers of short- and long-axon cholinergic interneurons were revealed on a slab of association cortex three weeks after (neuronal) isolation from the cat by means of a histochemical acetylcholinesterase reaction. Short-axon neurons are located at layers II–VI and take the form of mainly spindle-shaped medium sized cells with their axons forming synaptic terminals on pyramidal and stellate neurons of the isolated section. Typical positioning of cholinergic terminals on the perikaryon and proximal portions of cholinoceptive neuron dendrites was noted. Pyramidal cholinoceptive cells may be classed as noncholinergic cells, whereas stellate cells may be either cholinergic or noncholinergic. Long-axon cholinergic interneurons of different shapes and sizes are situated at layers I and VI. Neuronal axons located in these layers run within fibers of the first and subcortical layers, establishing intracortical connections beyond the confines of the isolated section.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 60–66, January–February, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号