首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-12 administration to nonobese diabetic (NOD) mice induces IFN-gamma-secreting type 1 T cells and high circulating IFN-gamma levels and accelerates insulin-dependent diabetes mellitus (IDDM). Here we show that IL-12-induced IFN-gamma production is dispensable for diabetes acceleration, because exogenous IL-12 could enhance IDDM development in IFN-gamma-deficient as well as in IFN-gamma-sufficient NOD mice. Both in IFN-gamma(+/-) and IFN-gamma(-/-) NOD mice, IL-12 administration generates a massive and destructive insulitis characterized by T cells, macrophages, and CD11c(+) dendritic cells, and increases the number of pancreatic CD4(+) cells secreting IL-2 and TNF-alpha. Surprisingly, IL-12-induced IFN-gamma hinders pancreatic B cell infiltration and inhibits the capacity of APCs to activate T cells. Although pancreatic CD4(+) T cells from IL-12-treated IFN-gamma(-/-) mice fail to up-regulate the P-selectin ligand, suggesting that their entry into the pancreas may be impaired, T cell expansion is favored in these mice compared with IL-12-treated IFN-gamma(+/-) mice because IL-12 administration in the absence of IFN-gamma leads to enhanced cell proliferation and reduced T cell apoptosis. NO, an effector molecule in beta cell destruction, is produced ex vivo in high quantity by pancreas-infiltrating cells through a mechanism involving IL-12-induced IFN-gamma. Conversely, in IL-12-treated IFN-gamma-deficient mice, other pathways of beta cell death appear to be increased, as indicated by the up-regulated expression of Fas ligand on Th1 cells in the absence of IFN-gamma. These data demonstrate that IFN-gamma has a dual role, pathogenic and protective, in IDDM development, and its deletion allows IL-12 to establish alternative pathways leading to diabetes acceleration.  相似文献   

2.
EBV-induced gene 3 (EBI3)-encoded protein can form heterodimers with IL-27P28 and IL-12P35 to form IL-27 and IL-35. IL-27 and IL-35 may influence autoimmunity by inhibiting Th17 differentiation and facilitating the inhibitory roles of Foxp3(+) regulatory T (Treg) cells, respectively. In this study, we have evaluated the development of experimental autoimmune encephalomyelitis (EAE) in EBI3-deficient mice that lack both IL-27 and IL-35. We found that myelin oligodendrocyte glycoprotein peptide immunization resulted in marginally enhanced EAE development in EBI3-deficient C57BL6 and 2D2 TCR-transgenic mice. EBI3 deficiency resulted in significantly increased Th17 and Th1 responses in the CNS and increased T cell production of IL-2 and IL-17 in the peripheral lymphoid organs. EBI3-deficient and -sufficient 2D2 T cells had equal ability in inducing EAE in Rag1(-/-) mice; however, more severe disease was induced in EBI3(-/-)Rag1(-/-) mice than in Rag1(-/-) mice by 2D2 T cells. EBI3-deficient mice had increased numbers of CD4(+)Foxp3(+) Treg cells in peripheral lymphoid organs. More strikingly, EBI3-deficient Treg cells had more potent suppressive functions in vitro and in vivo. Thus, our data support an inhibitory role for EBI3 in Th17, Th1, IL-2, and Treg responses. Although these observations are consistent with the known functions of IL-27, the IL-35 contribution to the suppressive functions of Treg cells is not evident in this model. Increased Treg responses in EBI3(-/-) mice may explain why the EAE development is only modestly enhanced compared with wild-type mice.  相似文献   

3.
The insulinoma-associated protein 2 (IA-2) is a phosphatase-like autoantigen inducing T and B cell responses associated with human insulin-dependent diabetes mellitus (IDDM). We now report that T cell responses to IA-2 can also be detected in the nonobese diabetic (NOD) mouse, a model of human IDDM. Cytokine secretion in response to purified mouse rIA-2, characterized by high IFN-gamma and relatively low IL-10 and IL-6 secretion, was elicited in spleen cells from unprimed NOD mice. Conversely, no response to IA-2 was induced in spleen cells from BALB/c, C57BL/6, or Biozzi AB/H mice that express, like NOD, the I-A(g7) class II molecule, but are not susceptible to spontaneous IDDM. The IA-2-induced IFN-gamma response in NOD spleen cells could already be detected at 3 wk and peaked at 8 wk of age, whereas the IL-10 secretion was maximal at 4 wk of age and then waned. IA-2-dependent IFN-gamma secretion was induced in CD4(+) cells from spleen as well as pancreatic and mesenteric lymph nodes. It required Ag presentation by I-A(g7) molecules and engagement of the CD4 coreceptor. Interestingly, cytokines were produced in the absence of cell proliferation and IL-2 secretion. The biological relevance of the response to IA-2 is indicated by the enhanced IDDM following a single injection of the recombinant protein emulsified in IFA into 18-day-old NOD mice. In addition, IFN-gamma production in response to IA-2 and IDDM acceleration could be induced by IL-12 administration to 12-day-old NOD mice. These results identify IA-2 as an early T cell-inducing autoantigen in the NOD mouse and indicate a role for the IA-2-induced Th1 cell response in IDDM pathogenesis.  相似文献   

4.
Numerous immunostimulatory protocols inhibit the development of T cell-mediated autoimmune insulin-dependent diabetes mellitus (IDDM) in the nonobese diabetic (NOD) mouse model. Many of these protocols, including treatment with the nonspecific immunostimulatory agents CFA or bacillus Calmette-Guérin (BCG) vaccine, have been reported to mediate protection by skewing the pattern of cytokines produced by pancreatic beta-cell autoreactive T cells from a Th1 (IFN-gamma) to a Th2 (IL-4 and IL-10) profile. However, most of these studies have documented associations between such cytokine shifts and disease protection rather than a cause/effect relationship. To partially address this issue we produced NOD mice genetically deficient in IFN-gamma, IL-4, or IL-10. Elimination of any of these cytokines did not significantly alter the rate of spontaneous IDDM development. Additional experiments using these mice confirmed that CFA- or BCG-elicited diabetes protection is associated with a decreased IFN-gamma to IL-4 mRNA ratio within T cell-infiltrated pancreatic islets, but this is a secondary consequence rather than the cause of disease resistance. Unexpectedly, we also found that the ability of BCG and, to a lesser extent, CFA to inhibit IDDM development in standard NOD mice is actually dependent upon the presence of the Th1 cytokine, IFN-gamma. Collectively, our studies demonstrate that while Th1 and Th2 cytokine shifts may occur among beta-cell autoreactive T cells of NOD mice protected from overt IDDM by various immunomodulatory therapies, it cannot automatically be assumed that this is the cause of their disease resistance.  相似文献   

5.
Leading hypotheses to explain helminth-mediated protection against autoimmunity postulate that type 2 or regulatory immune responses induced by helminth infections in the host limit pathogenic Th1-driven autoimmune responses. We tested these hypotheses by investigating whether infection with the filarial nematode Litomosoides sigmodontis prevents diabetes onset in IL-4-deficient NOD mice and whether depletion or absence of regulatory T cells, IL-10, or TGF-β alters helminth-mediated protection. In contrast to IL-4-competent NOD mice, IL-4-deficient NOD mice failed to develop a type 2 shift in either cytokine or Ab production during L. sigmodontis infection. Despite the absence of a type 2 immune shift, infection of IL-4-deficient NOD mice with L. sigmodontis prevented diabetes onset in all mice studied. Infections in immunocompetent and IL-4-deficient NOD mice were accompanied by increases in CD4(+)CD25(+)Foxp3(+) regulatory T cell frequencies and numbers, respectively, and helminth infection increased the proliferation of CD4(+)Foxp3(+) cells. However, depletion of CD25(+) cells in NOD mice or Foxp3(+) T cells from splenocytes transferred into NOD.scid mice did not decrease helminth-mediated protection against diabetes onset. Continuous depletion of the anti-inflammatory cytokine TGF-β, but not blockade of IL-10 signaling, prevented the beneficial effect of helminth infection on diabetes. Changes in Th17 responses did not seem to play an important role in helminth-mediated protection against autoimmunity, because helminth infection was not associated with a decreased Th17 immune response. This study demonstrates that L. sigmodontis-mediated protection against diabetes in NOD mice is not dependent on the induction of a type 2 immune shift but does require TGF-β.  相似文献   

6.
Several studies have provided indirect evidence in support of a role for beta cell-specific Th2 cells in regulating insulin-dependent diabetes (IDDM). Whether a homogeneous population of Th2 cells having a defined beta cell Ag specificity can prevent or suppress autoimmune diabetes is still unclear. In fact, recent studies have demonstrated that beta cell-specific Th2 cell clones can induce IDDM. In this study we have established Th cell clones specific for glutamic acid decarboxylase 65 (GAD65), a known beta cell autoantigen, from young unimmunized nonobese diabetic (NOD) mice. Adoptive transfer of a GAD65-specific Th2 cell clone (characterized by the secretion of IL-4, IL-5, and IL-10, but not IFN-gamma or TGF-beta) into 2- or 12-wk-old NOD female recipients prevented the progression of insulitis and subsequent development of overt IDDM. This prevention was marked by the establishment of a Th2-like cytokine profile in response to a panel of beta cell autoantigens in cultures established from the spleen and pancreatic lymph nodes of recipient mice. The immunoregulatory function of a given Th cell clone was dependent on the relative levels of IFN-gamma vs IL-4 and IL-10 secreted. These results provide direct evidence that beta cell-specific Th2 cells can indeed prevent and suppress autoimmune diabetes in NOD mice.  相似文献   

7.
Linomide prevents the development of autoimmune insulitis and insulin-deficient diabetes mellitus in female NOD mice. Linomide prevents development of autoimmune manifestations in other experimentally induced and spontaneous autoimmune diseases as well, but the mechanism of action is unknown. The present report summarizes our investigations on the effect of Linomide on different functional T cell subsets in NOD mice analyzed according to their cytokine profile. Supernatants from cultured splenocytes and peritoneal cells taken from Linomide-treated mice contained lower levels of TNFalpha, IL-1 beta, IFN gamma and IL-12 versus higher levels of IL-4, IL-6 and IL-10 in comparison with supernatants from cultures of untreated mice. Our results suggest that regulation of autoimmunity following oral Linomide administration in NOD mice induces a shift from Th(1) to Th(2) phenotype response, thereby preventing the development of diabetes by active cytokine-induced immunoregulation of T cell subsets, including downregulation of Th(1) and upregulation of Th(2).  相似文献   

8.
9.
Interleukin (IL)-10 is a potent anti-inflammatory cytokine and ablation of IL-10 exacerbates Th1-type autoimmune diseases. Even though type 1 diabetes (T1D) in NOD mice is believed to be Th1-mediated, the incidence and severity of T1D is unaltered in IL-10-deficient NOD mice raised under pathogen-free conditions. We describe for the first time, the outcome of IL-10 deficiency on islet and other organ-specific autoimmunity in NOD mice raised in a conventional facility. IL-10-deficient NOD mice under such conditions were protected from spontaneous as well as cyclophosphamide-induced diabetes, but were susceptible to diabetes induced by adoptive transfer of splenocytes from spontaneously diabetic NOD mice. Whereas the incidence of rectal prolapse was very high in this NOD.IL-10(-/-) mouse colony, IL-10-deficient C57Bl/6 mice raised under similar conditions seldom developed rectal prolapse. While injection of complete Freund's adjuvant (CFA) significantly reduced insulitis, it did not ameliorate colitis in IL-10-deficient NOD mice indicating differential regulation of organ-specific autoimmunity by CFA. Phenotypic characterization of IL-10(-/-) mice revealed a significant increase in splenic macrophage numbers in NOD but not on the B6 background. This was accompanied by a heightened systemic inflammatory cytokine response and mortality following in vivo challenge with a toll-like receptor 9 agonist, CpG-containing DNA.  相似文献   

10.
11.
Schnurri-2 (Shn-2) is a large zinc-finger containing protein, and it plays a critical role in cell growth, signal transduction and lymphocyte development. In Shn-2-deficient CD4 T cells, the activation of NF-kappaB was up-regulated and their ability to differentiate into Th2 cells was enhanced. We herein demonstrate that Th1 and Th2 memory cells are not properly generated from Shn-2-deficient effector Th1/Th2 cells. Even a week after the transfer of effector Th1/Th2 cells into syngeneic mice, a dramatic decrease in the number of Shn-2-deficient donor T cells was detected particularly in the lymphoid organs. The transferred Shn-2-deficient Th1/Th2 cells express higher levels of the activation marker CD69. No significant defect in the BrdU incorporation in the Shn-2-deficient transferred CD4 T cells was observed. The numbers of apoptotic cells were selectively higher in Shn-2-deficient donor Th1/Th2 cell population. Moreover, Shn-2-deficient effector Th1 and Th2 cells showed an increased susceptibility to cell death in in vitro cultures with increased expression of FasL. Transfer of Th2 effector cells over-expressing the p65 subunit of NF-kappaB resulted in a decreased number of p65-expressing cells in the lymphoid organs. As expected, T cell-dependent Ab responses after in vivo immunization of Shn-2-deficient mice were significantly reduced. Thus, Shn-2 appears to control the generation of memory Th1/Th2 cells through a change in their susceptibility to cell death.  相似文献   

12.
We previously demonstrated that administration of plasmid DNAs (pDNAs) encoding IL-4 and a fragment of glutamic acid decarboxylase 65 (GAD65) fused to IgGFc induces GAD65-specific Th2 cells and prevents insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice. To assess the general applicability of pDNA vaccination to mediate Ag-specific immune deviation, we examined the immunotherapeutic efficacy of recombinants encoding murine insulin A and B chains fused to IgGFc. Insulin was chosen based on studies demonstrating that administration of insulin or insulin B chain by a variety of strategies prevents IDDM in NOD mice. Surprisingly, young NOD mice receiving i.m. injections of pDNA encoding insulin B chain-IgGFc with or without IL-4 exhibited an accelerated progression of insulitis and developed early diabetes. Exacerbation of IDDM correlated with an increased frequency of IFN-gamma-secreting CD4(+) and CD8(+) T cells in response to insulin B chain-specific peptides compared with untreated mice. In contrast, treatment with pDNAs encoding insulin A chain-IgGFc and IL-4 elicited a low frequency of IL-4-secreting Th cells and had no effect on the progression of IDDM. Vaccination with pDNAs encoding GAD65-IgGFc and IL-4, however, prevented IDDM. These results demonstrate that insulin- and GAD65-specific T cell reactivity induced by pDNA vaccination has distinct effects on the progression of IDDM.  相似文献   

13.
Transmembrane signaling adaptor DAP12 has increasingly been recognized for its important role in innate responses. However, its role in the regulation of antimicrobial T cell responses has remained unknown. In our current study, we have examined host defense, T cell responses, and tissue immunopathology in models of intracellular infection established in wild-type and DAP12-deficient mice. During mycobacterial infection, lack of DAP12 leads to pronounced proinflammatory and Th1 cytokine responses, overactivation of Ag-specific CD4 and CD8 T cells of type 1 phenotype, and heightened immunopathology both in the lung and lymphoid organs. DAP12-deficient airway APC display enhanced NF-kappaB activation and cytokine responses upon TLR stimulation or mycobacterial infection in vitro. Of importance, adoptive transfer of Ag-loaded DAP12-deficient APC alone could lead to overactivation of transferred transgenic or endogenous wild-type T cells in vivo. We have further found that the immune regulatory role by DAP12 is not restricted only to intracellular bacterial infection, since lack of this molecule also leads to uncontrolled type 1 T cell activation and severe immunopathology and tissue injury during intracellular viral infection. Our study thus identifies DAP12 as an important novel immune regulatory molecule that acts, via APC, to control the level of antimicrobial type 1 T cell activation and immunopathology.  相似文献   

14.
The cyclin-dependent kinase inhibitor p27(Kip1) is a critical regulator of T cell proliferation. To further examine the relationship of T cell proliferation and differentiation, we examined the ability of T cells deficient in p27(Kip1) to differentiate into Th subsets. We observed increased Th2 differentiation in p27(Kip1)-deficient cultures. In addition to increases in CD4(+) and CD8(+) T cells, there is a similar increase in gamma delta T cells in p27(Kip1)-deficient mice compared with wild-type mice. The increase in Th2 differentiation is correlated to an increase of IL-4 secretion by CD4(+)DX5(+)TCR alpha beta(+)CD62L(low) T cells but not to increased expansion of differentiating Th2 cells. While STAT4- and STAT6-deficient T cells have diminished proliferative responses to IL-12 and IL-4, respectively, proliferative responses are increased in T cells doubly deficient in p27(Kip1) and STAT4 or STAT6. In contrast, the increased proliferation and differentiative capacity of p27(Kip1)-deficient T cells has no effect on the ability of STAT4/p27(Kip1)- or STAT6/p27(Kip1)-deficient CD4(+) cells to differentiate into Th1 or Th2 cells, respectively. Thus, while p27(Kip1) regulates the expansion and homeostasis of several T cell subsets, it does not affect the differentiation of Th subsets.  相似文献   

15.
Mice lacking CTLA-4 die at an age of 2-3 wk due to massive lymphoproliferation, leading to lymphocytic infiltration and destruction of major organs. The onset of the lymphoproliferative disease can be delayed by treatment with murine CTLA4Ig (mCTLA4Ig), starting day 12 after birth. In this study, we have characterized the T cells present in CTLA-4-deficient mice before and after mCTLA4Ig treatment. The T cells present in CTLA-4-deficient mice express the activation markers, CD69 and IL-2R; down-regulate the lymphoid homing receptor, CD62L; proliferate spontaneously in vitro and cannot be costimulated with anti-CD28 mAb consistent with a hyperactivated state. The T cells from CTLA-4-deficient mice survive longer in culture correlating with higher expression of the survival factor, Bcl-xL, in these cells. Most significantly, the CD4+ T cell subset present in CTLA-4-deficient mice secretes high levels of IL-4 and IL-5 upon TCR activation. Treatment of CTLA-4-deficient mice treated with mCTLA4Ig reverses the activation and hyperproliferative phenotype of the CTLA-4-deficient T cells and restores the costimulatory activity of anti-CD28 mAb. Furthermore, T cells from mCTLA4Ig-treated mice are not skewed toward a Th2 cytokine phenotype. Thus, CTLA-4 regulates CD28-dependent peripheral activation of CD4+ T cells. This process results in apoptosis-resistant, CD4+ T cells with a predominantly Th2 phenotype that may be involved in the lethal phenotype in these animals.  相似文献   

16.
We investigated the biological role of CC chemokines in the Th1-mediated pathogenesis of spontaneous type I diabetes in nonobese diabetic (NOD) mice. Whereas an elevated ratio of macrophage inflammatory protein-1alpha (MIP-1alpha):MIP-1beta in the pancreas correlated with destructive insulitis and progression to diabetes in NOD mice, a decreased intrapancreatic MIP-1alpha:MIP-1beta ratio was observed in nonobese diabetes-resistant (NOR) mice. IL-4 treatment, which prevents diabetes in NOD mice by polarizing intraislet Th2 responses, decreased CCR5 expression in islets and potentiated a high ratio of MIP-1beta and monocyte chemotactic protein-1 (MCP-1): MIP-1alpha in the pancreas. Furthermore, NOD.MIP-1alpha-/- mice exhibited reduced destructive insulitis and were protected from diabetes. Neutralization of MIP-1alpha with specific Abs following transfer of diabetogenic T cells delayed the onset of diabetes in NOD.Scid recipients. These studies illustrate that the temporal expression of certain CC chemokines, particularly MIP-1alpha, and the CCR5 chemokine receptor in the pancreas is associated with the development of insulitis and spontaneous type I diabetes.  相似文献   

17.
Peptide-based immunotherapy is one strategy by which to selectively suppress the T cell-mediated destruction of beta cells and treat insulin-dependent diabetes mellitus (IDDM). Here, we investigated whether a panel of T cell epitopes derived from the beta cell autoantigen glutamic acid decarboxylase 65 (GAD65) differ in their capacity to induce Th2 cell function in nonobese diabetic (NOD) mice and in turn prevent overt IDDM at different preclinical stages of disease development. The panel consists of GAD65-specific peptides spanning aa 217-236 (p217), 247-265 (p247), 290-309 (p290), and 524-543 (p524). Our studies revealed that all of the peptides effectively prevented insulitis and diabetes when administered to NOD mice before the onset of insulitis. In contrast, only a mixture of p217 and p290 prevented progression of insulitis and overt IDDM in NOD mice exhibiting extensive beta cell autoimmunity. Immunization with the GAD65-specific peptides did not block IDDM development in NOD mice deficient in IL-4 expression. These findings demonstrate that GAD65-specific peptide immunotherapy effectively suppresses progression to overt IDDM, requires the production of IL-4, and is dependent on the epitope targeted and the extent of preexisting beta cell autoimmunity in the recipient.  相似文献   

18.
In this study, we have investigated the use of plasmid DNA (pDNA) vaccination to elicit Th2 effector cell function in an Ag-specific manner and in turn prevent insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice. pDNA recombinants were engineered encoding a secreted fusion protein consisting of a fragment of glutamic acid decarboxylase 65 (GAD65) linked to IgGFc, and IL-4. Intramuscular injection of pDNA encoding GAD65-IgGFc and IL-4 effectively prevented diabetes in NOD mice treated at early or late preclinical stages of IDDM. This protection was GAD65-specific since NOD mice immunized with pDNA encoding hen egg lysozyme-IgGFc and IL-4 continued to develop diabetes. Furthermore, disease prevention correlated with suppression of insulitis and induction of GAD65-specific regulatory Th2 cells. Importantly, GAD65-specific immune deviation was dependent on pDNA-encoded IL-4. In fact, GAD65-specific Th1 cell reactivity was significantly enhanced in animals immunized with pDNA encoding only GAD65-IgGFc. Finally, NOD.IL4(null) mice treated with pDNA encoding GAD65-IgGFc and IL-4 continued to develop diabetes, indicating that endogenous IL-4 was also required for disease prevention. These results demonstrate that pDNA vaccination is an effective strategy to elicit beta cell-specific Th2 regulatory cell function for the purpose of preventing IDDM even at a late stage of disease development.  相似文献   

19.
20.
Although the protective functions by T helper 17 (Th17) cytokines against extracellular bacterial and fungal infection have been well documented, their importance against intracellular bacterial infection remains unclear. Here, we investigated the contribution of Th17 responses to host defense against intracellular bacteria Listeria monocytogenes and found that Th17 cell generation was suppressed in this model. Unexpectedly, mice lacking both p35 and EBI3 cleared L. monocytogenes as efficiently as wild-type mice, whereas p35-deficient mice failed to do so. Furthermore, both innate cells and pathogen-specific T cells from double-deficient mice produced significantly higher IL-17 and IL-22 compared to wild-type mice. The bacterial burden in the liver of double-deficient mice treated with anti-IL-17 was significantly increased compared to those receiving a control Ab. Transfer of Th17 cells specific for listeriolysin O as well as administration of IL-17 and IL-22 significantly suppressed bacterial growth in p35-deficient mice, indicating the critical contribution of Th17 responses to host defense against the intracellular pathogen in the absence of IL-12 and proper Th1 responses. Our findings unveil a novel immune evasion mechanism whereby the intracellular bacteria exploit IL-27EBI3 to suppress Th17-mediated protective immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号