首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The transbilayer redistribution of spin-labeled phospholipid analogues (SL-PL) with choline, serine, and ethanolamine head groups (PC, PS, and PE, respectively) was studied on intact disc vesicles of bovine rod outer segment membranes in the dark and after illumination. Redistribution was measured by the extraction of spin-labeled lipid analogues from the outer leaflet of membrane using the bovine serum albumin back-exchange assay. In the dark, PS was distributed asymmetrically, favoring the outer leaflet, whereas PC and PE showed small if any asymmetry. Green illumination for 1 min caused lipid head group-specific reorganization of SL-PL. Extraction of SL-PS by bovine serum albumin showed a fast transient (<10 min) enhancement, which was further augmented by a peptide stabilizing the active metarhodopsin II conformation. The data suggest a direct release of 1 molecule of bound PS per rhodopsin into the outer leaflet and subsequent redistribution between the two leaflets. SL-PE and SL-PC showed more complex kinetics, in both cases consistent with a prolonged period of reduced extraction (2 phospholipids per rhodopsin in each case). The different phases of SL-PL reorganization after illumination may be related to the formation and decay of the active rhodopsin species and to their subsequent regeneration process.  相似文献   

2.
In eukaryotes, phosphatidylserine (PtdSer) can serve as a precursor of phosphatidylethanolamine (PtdEtn) and phosphatidylcholine (PtdCho), which are the major cellular phospholipids. PtdSer synthesis originates in the endoplasmic reticulum (ER) and its subdomain named the mitochondria-associated membrane (MAM). PtdSer is transported to the mitochondria in mammalian cells and yeast, and decarboxylated by PtdSer decarboxylase 1 (Psd1p) to form PtdEtn. A second decarboxylase, Psd2p, is also found in yeast in the Golgi-vacuole. PtdEtn produced by Psd1p and Psd2p can be transported to the ER, where it is methylated to form PtdCho. Organelle-specific metabolism of the aminoglycerophospholipids is a powerful tool for experimentally following lipid traffic that is now enabling identification of new proteins involved in the regulation of this process. Genetic and biochemical experiments demonstrate that transport of PtdSer between the MAM and mitochondria is regulated by protein ubiquitination, which affects events at both membranes. Similar analyses of PtdSer transport to the locus of Psd2p now indicate that a membrane-bound phosphatidylinositol transfer protein and the C2 domain of Psd2p are both required on the acceptor membrane for efficient transport of PtdSer. Collectively, these recent findings indicate that novel multiprotein assemblies on both donor and acceptor membranes participate in interorganelle phospholipid transport.  相似文献   

3.
In the yeast, three biosynthetic pathways lead to the formation of phosphatidylethanolamine (PtdEtn): (i) decarboxylation of phosphatidylserine (PtdSer) by phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria; (ii) decarboxylation of PtdSer by Psd2p in a Golgi/vacuolar compartment; and (iii) the CDP-ethanolamine (CDP-Etn) branch of the Kennedy pathway. The major phospholipid of the yeast, phosphatidylcholine (PtdCho), is formed either by methylation of PtdEtn or via the CDP-choline branch of the Kennedy pathway. To study the contribution of these pathways to the supply of PtdEtn and PtdCho to mitochondrial membranes, labeling experiments in vivo with [(3)H]serine and [(14)C]ethanolamine, or with [(3)H]serine and [(14)C]choline, respectively, and subsequent cell fractionation were performed with psd1Delta and psd2Delta mutants. As shown by comparison of the labeling patterns of the different strains, the major source of cellular and mitochondrial PtdEtn is Psd1p. PtdEtn formed by Psd2p or the CDP-Etn pathway, however, can be imported into mitochondria, although with moderate efficiency. In contrast to mitochondria, microsomal PtdEtn is mainly derived from the CDP-Etn pathway. PtdEtn formed by Psd2p is the preferred substrate for PtdCho synthesis. PtdCho derived from the different pathways appears to be supplied to subcellular membranes from a single PtdCho pool. Thus, the different pathways of PtdEtn biosynthesis play different roles in the assembly of PtdEtn into cellular membranes.  相似文献   

4.
The molecular diversity of phospholipids is essential for their structural and signaling functions in cell membranes. In the current work, we present, the results of mass spectrometric characterization of individual molecular species in major classes of phospholipids – phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), phosphatidylserine (PtdSer), phosphatidylinositol (PtdIns), sphingomyelin (CerPCho), and cardiolipin (Ptd2Gro) – and their oxidation products during apoptosis induced in neurons by staurosporine (STS). The diversity of molecular species of phospholipids in rat cortical neurons followed the order Ptd2Gro > PtdEtn >> PtdCho >> PtdSer > PtdIns > CerPCho. The number of polyunsaturated oxidizable species decreased in the order Ptd2Gro >> PtdEtn > PtdCho > PtdSer > PtdIns > CerPCho. Thus a relatively minor class of phospholipids, Ptd2Gro, was represented in cortical neurons by the greatest variety of both total and peroxidizable molecular species. Quantitative fluorescence HPLC analysis employed to assess the oxidation of different classes of phospholipids in neuronal cells during intrinsic apoptosis induced by STS revealed that three anionic phospholipids – Ptd2Gro >> PtdSer > PtdIns – underwent robust oxidation. No significant oxidation in the most dominant phospholipid classes – PtdCho and PtdEtn – was detected. MS‐studies revealed the presence of hydroxy‐, hydroperoxy‐ as well as hydroxy‐/hydroperoxy‐species of Ptd2Gro, PtdSer, and PtdIns. Experiments in model systems where total cortex Ptd2Gro and PtdSer fractions were incubated in the presence of cytochrome c (cyt c) and H2O2, confirmed that molecular identities of the products formed were similar to the ones generated during STS‐induced neuronal apoptosis. The temporal sequence of biomarkers of STS‐induced apoptosis and phospholipid peroxidation combined with recently demonstrated redox catalytic properties of cyt c realized through its interactions with Ptd2Gro and PtdSer suggest that cyt c acts as a catalyst of selective peroxidation of anionic phospholipids yielding Ptd2Gro and PtdSer peroxidation products. These oxidation products participate in mitochondrial membrane permeability transition and in PtdSer externalization leading to recognition and uptake of apoptotic cells by professional phagocytes.  相似文献   

5.
Protein/phospholipid interactions in the solubilized mitochondrial ubihydroquinone:cytochrome-c oxidoreductase (bc1 complex) were studied by spin-label electron-spin resonance and by 31P-NMR spectroscopy. Spin-labelled phospholipids were employed to probe the relative binding affinities of a number of phospholipids with regard to the significance of phospholipids for the activity and stability of this multisubunit complex. The protein was titrated with spin-labelled cardiolipin (1,3-bisphosphatidyl-sn-glycerol) and with the spin-labelled analogues of PtdCho and PtdEtn, both of which have been shown recently to elicit a substantial increase in electron-transport activity [Sch?gger, H., Hagen, T., Roth, B., Brandt, U., Link, T. A. & von Jagow, G. (1990) Eur. J. Biochem. 190, 123-130]. A simplified distribution model showed that neutral phospholipids have much lower protein affinity than cardiolipin. In contrast to the transient weak lipid binding detected by spin-label electron-spin resonance, 31P NMR revealed a tightly bound cardiolipin portion, even after careful delipidation of the complex. Considerable line narrowing was observed after phospholipase A2 digestion of the bound cardiolipin, whereas addition of SDS resulted in complete release. Relative proportions and line widths of mobile and immobilized lipids were obtained by deconvoluting the partially overlapping signals. The current results are discussed with reference to similar findings with other mitochondrial membrane proteins. It is assumed that activation by neutral phospholipids reflects a generalized effect on the protein conformation. Cardiolipin binding is believed to be important for the structural integrity of the mitochondrial protein complexes.  相似文献   

6.
The translocation of: (i) phosphatidylserine (PtdSer) from its site of synthesis on microsomal membranes to its site decarboxylation in mitochondrial membranes and (ii) phosphatidylethanolamine (PtdEtn) from the mitochondria to its site of methylation to phosphatidylcholine on microsomal membranes has been reconstituted in cell-free systems consisting of rat liver mitochondria and microsomes. Two types of systems have been reconstituted. In one, the translocation of newly made PtdSer or PtdEtn was examined by incubation of microsomes and mitochondria with [3-3H]serine. In the other, membranes were prelabeled with radioactive PtdSer or PtdEtn, and the transfer of these two lipids between mitochondria and microsomes was monitored. For the transfer of both PtdSer from microsomes to mitochondria and PtdEtn from mitochondria to microsomes, newly made phospholipids were translocated much more readily than pre-existing phospholipids. The data suggest that with respect to their translocation between these two organelles, the pools of newly synthesized PtdSer and PtdEtn were distinct from the pools of "older" phospholipids pre-existing in the membranes. Transfer of neither phospholipid in vitro depended on the presence of cytosolic proteins (i.e. soluble phospholipid transfer proteins) or on the hydrolysis of ATP, although there was some stimulation of PtdSer transfer by ATP and several other nucleoside mono-, di-, and triphosphates. The data are consistent with a collision-based mechanism in which the endoplasmic reticulum and mitochondria come into contact with one another, thereby effecting the transfer of phospholipids. The proposal that there is contact between the endoplasmic reticulum and mitochondria is supported by the recent isolation of a membrane fraction having many, but not all, of the properties of the endoplasmic reticulum, but which was isolated in association with mitochondria (Vance, J. E. (1990) J. Biol. Chem. 265, 7248-7256).  相似文献   

7.
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.  相似文献   

8.
The aminoglycerophospholipids of eukaryotic cells, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), can be synthesized by multiple pathways. The PtdSer pathway encompasses the synthesis of PtdSer, its decarboxylation to PtdEtn and subsequent methylation reactions to form PtdCho. The Kennedy pathways consist of the synthesis of PtdEtn and PtdCho from Etn and Cho precursors via CDP-Etn and CDP-Cho intermediates. The reactions along the PtdSer pathway are spatially segregated with PtdSer synthesis occurring in the endoplasmic reticulum or mitochondria-associated membrane (MAM), PtdEtn formation occurring in the mitochondria and Golgi/vacuole compartments and PtdCho formation occurring in the endoplasmic reticulum or MAM. The organelle-specific metabolism of the different lipids in the PtdSer pathway has provided a convenient biochemical means for defining events in the interorganelle transport of the aminoglycerophospholipids in intact cells, isolated organelles and permeabilized cells. Studies with both mammalian cells and yeast demonstrate many significant similarities in lipid transport processes between the two systems. Genetic experiments in yeast now provide the tools to create new strains with mutations along the PtdSer pathway that can be conditionally rescued by the Kennedy pathway reactions. The genetic studies in yeast indicate that it is now possible to begin to define genes that participate in the interorganelle transport of the aminoglycerophospholipids.  相似文献   

9.
Externalization of phosphatidylserine (PtdSer) is a common feature of programmed cell death and plays an important role in the recognition and removal of apoptotic cells. In this study with U937 cells, PtdSer synthesis from [(3)H]serine was stimulated and newly synthesized PtdSer was transferred preferentially to cell-free medium vesicles (CFMV) from cells when apoptosis was induced with a topoisomerase I inhibitor, camptothecin (CAM). When CAM-induced apoptosis was blocked by a caspase inhibitor, z-VAD-fmk, stimulation of PtdSer synthesis and movement to CFMV were abolished. In contrast, changes in synthesis and transport of sphingomyelin (SM) or phosphatidylethanolamine (PtdEtn) were minor; total phosphatidylcholine (PtdCho) synthesis was below control levels. All phospholipids appeared in CFMV but PtdSer displayed a 6-fold increase relative to controls compared to 3-fold for SM, 2-fold for PtdCho and 1.8-fold for PtdEtn. Even greater effects on specificity of PtdSer synthesis, movement to CFMV and inhibition by z-VAD-fmk were observed in apoptotic cells induced by UV irradiation or tumor necrosis factor-alpha/cycloheximide treatment. Thus, PtdSer biosynthesis stimulated during apoptosis in U937 cells was specific for this phospholipid and was correlated with caspase-mediated exposure of PtdSer at the cell surface and preferential movement to vesicles during apoptosis.  相似文献   

10.
The incorporation and redistribution of [1-14C]arachidonic acid in SK-N-BE human neuroblastoma cell phospholipids were investigated. By continuous labelling in serum-enriched medium, a rapid radioactivity incorporation into phosphatidylcholine (PtdCho), phosphatidylinositol, and phosphatidylserine was observed; initially, phosphatidylethanolamine (PtdEtn) was poorly labelled, but at later stages it displayed the highest level of arachidonic acid incorporation, in comparison with other phospholipid classes. Labelling of triacylglycerols was also observed. When cells were pulse-labelled with [1-14C]arachidonic acid and then reincubated in label-free medium, a decrease of the radioactivity in triacylglycerols was observed initially, paralleled by an increase of phospholipid labelling; thereafter, arachidonic acid redistribution was consistent with a net decrease of the radioactivity associated with PtdCho acid-stable forms (i.e., diacyl plus alkylacyl forms), concomitantly with a net labelling increase of both acid-stable PtdEtn and alkenylacyl-PtdEtn. Data indicate the following: (a) neuroblastoma cells incorporate arachidonic acid into phospholipids through complex kinetics involving transfer of the fatty acid from acid-stable PtdCho to both alkenylacyl-PtdEtn and acid-stable PtdEtn; and (b) triacylglycerols act as storage molecules for arachidonic acid which is subsequently incorporated into phospholipids. The possibility that arachidonic acid transfer to PtdEtn subclasses is driven by distinct mechanisms is discussed.  相似文献   

11.
We have previously demonstrated that cytidine 5'-diphosphocholine (CDP-choline or citicoline) attenuated arachidonic acid (ArAc) release and provided significant protection for the vulnerable hippocampal CA(1) neurons of the cornu ammonis after transient forebrain ischemia of gerbil. ArAc is released by the activation of phospholipases and the alteration of phosphatidylcholine (PtdCho) synthesis. Released ArAc is metabolized by cyclooxygenases/lipoxygenases to form eicosanoids and reactive oxygen species (ROS). ROS contribute to neurotoxicity through generation of lipid peroxides and the cytotoxic byproducts 4-hydroxynonenal and acrolein. ArAc can also stimulate sphingomyelinase to produce ceramide, a potent pro-apoptotic agent. In the present study, we examined the changes and effect of CDP-choline on ceramide and phospholipids including PtdCho, phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer), sphingomyelin, and cardiolipin (an exclusive inner mitochondrial membrane lipid essential for electron transport) following ischemia/1-day reperfusion. Our studies indicated significant decreases in total PtdCho, PtdIns, PtdSer, sphingomyelin, and cardiolipin and loss of ArAc from PtdEtn in gerbil hippocampus after 10-min forebrain ischemia/1-day reperfusion. CDP-choline (500 mg/kg i.p. immediately after ischemia and at 3-h reperfusion) significantly restored the PtdCho, sphingomyelin, and cardiolipin levels as well as the ArAc content of PtdCho and PtdEtn but did not affect PtdIns and PtdSer. These data suggest multiple beneficial effects of CDP-choline: (1) stabilizing the cell membrane by restoring PtdCho and sphingomyelin (prominent components of outer cell membrane), (2) attenuating the release of ArAc and limiting its oxidative metabolism, and (3) restoring cardiolipin levels.  相似文献   

12.
Phosphatidylcholine (PtdCho) is the most abundant phospholipid in numerous eukaryotes and is generally thought to be essential for membrane structure and cellular function. We designed a specific test of this idea by using genetic and biochemical manipulation of yeast. Yeast mutants (pem1 pem2Delta) lacking the phosphatidylethanolamine (PtdEtn) methyltransferase enzymes require choline for growth and cannot make N-methylated phospholipids. When these strains are grown on a glucose carbon source supplemented with 20 mm propanolamine (Prn), the PtdCho level declines precipitously to the limits of detection (<0.6%), and the hexagonal phase-forming, primary amine-containing lipids, PtdEtn and PtdPrn, constitute approximately 60% of the total phospholipid content of the cell. When the lipids were analyzed by mass spectrometry, there was no compensatory shift in unsaturation of the PtdEtn and PtdPrn toward more bilayer-forming species. Thus the majority of the cellular amino phospholipids remained hexagonal phase-forming. The pem1 pem2Delta cells will also grow without choline, in the presence of Prn, on nonfermentable carbon sources (requiring functional mitochondria) and accumulate nearly 70% of their phospholipid as hexagonal phase-forming types. These data provide compelling evidence that the functions of PtdCho and N-methylated lipids in membranes are nonessential in Saccharomyces cerevisiae.  相似文献   

13.
The phosphatidylserine (PtdSer) content of human cholinergic neuroblastoma (LA-N-2) cells was manipulated by exposing the cells to exogenous PtdSer, and the effects on phospholipid content, membrane composition, and incorporation of choline into phosphatidylcholine (PtdCho) were investigated. The presence of liposomes containing PtdSer (10-130 microM) in the medium caused time- and concentration-dependent increases in the PtdSer content of the cells, and smaller and slower increases in the contents of other membrane phospholipids. The PtdSer levels in plasma membrane and mitochondrial fractions prepared by discontinuous sucrose density gradient centrifugation increased by 50 and 100%, respectively, above those in control cells after 24 h of exposure to PtdSer (130 microM). PtdSer caused a concomitant, concentration-dependent increase of up to twofold in the incorporation of [methyl-14C]choline chloride into PtdCho at a choline concentration (8.5 microM) compatible with activation of the CDP-choline pathway, suggesting that the levels of PtdSer in membranes may serve as a stimulus to regulate overall membrane composition. PtdSer caused a mean increase of 41% in PtdCho labeling, but the phorbol ester, phorbol 12-myristate 13-acetate (PMA), which stimulates PtdCho synthesis in a number of cell lines, increased [14C]PtdCho levels by only 14% in LA-N-2 cells, at a concentration (100 nM) which caused complete translocation of the calcium- and phospholipid-dependent enzyme protein kinase C to the membrane. The translocation was inhibited by prior exposure of the cells to PtdSer. Treatment with PMA for 24 h diminished protein kinase C activity by 80%, but increased the labeling of PtdCho in both untreated and PtdSer-treated cells. These data suggest that uptake of PtdSer by LA-N-2 cells alters both the phospholipid composition of the membrane and synthesis of the major membrane phospholipid PtdCho; the latter effect does not involve activation of protein kinase C.  相似文献   

14.
In order to acquire an understanding of phospholipase C-delta3 (PLC-delta3) action on substrate localized in lipid membrane we have studied the binding of human recombinant PLC-delta3 to large, unilamellar phospholipid vesicles (LUVs). PLC-delta3 bound weakly to vesicles composed of phosphatidylcholine (PtdCho) or PtdCho plus phosphatidylethanolamine (PtdEtn) or phosphatidylinositol (PtdIns). The enzyme bound strongly to LUVs composed of PtdEtn + PtdCho and phosphatidylinositol 4,5-bisphosphate (PtdInsP2). The binding affinity (molar partition coefficient) of PLC-delta3 to PtdEtn + PtdCho + PtdInsP2 vesicles was 7.7 x 105 m-1. High binding of PLC-delta3 was also observed for LUVs composed of phosphatidic acid (PA). Binding of PLC-delta3 to phosphatidylserine (PtdSer) vesicles was less efficient. Calculated molar partition coefficient for binding of PLC-delta3 to PA and PtdSer vesicles was 1.6 x 104 m-1 and 9.4 x 102 m-1, respectively. Presence of PA in the LUVs containing PtdInsP2 considerably enhanced the binding of PLC-delta3 to the phospholipid membrane. Binding of PLC-delta3 to phospholipid vesicles was not dependent on Ca2+ presence. In the liposome assay PA caused a concentration-dependent increase in activity of PLC-delta3. The stimulatory effect of PA on PLC-delta3 was calcium-dependent. At Ca2+ concentrations lower than 1 microm, no effect of PA on the activity of PLC-delta3 was observed. PA enhanced PLC-delta3 activity by increasing the Vmax and lowering Km for PtdInsP2. As the mol fraction of PA increased from 0-40 mol% the enzyme Vmax increased 2.3-fold and Km decreased threefold. Based on the results presented, we assume that PA supports binding of PLC-delta3 to lipid membranes by interaction with the PH domain of the enzyme. The stimulatory effect of PA depends on calcium-dependent interaction with the C2 domain of PLC-delta3. We propose that binding of PLC-delta3 to PA may serve as a mechanism for dynamic membrane association and modulation of PLC-delta3 activity.  相似文献   

15.
Phospholipid synthesis in a membrane fraction associated with mitochondria   总被引:23,自引:0,他引:23  
A crude rat liver mitochondrial fraction that was capable of the rapid, linked synthesis of phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) labeled from [3-3H] serine has been fractionated. PtdSer synthase, PtdEtn methyltransferase, and CDP-choline:diacylglycerol cholinephosphotransferase activities were present in the crude mitochondrial preparation but were absent from highly purified mitochondria and could be attributed to the presence of a membrane fraction, X. Thus, previous claims of the mitochondrial location of some of these enzymes might be explained by the presence of fraction X in the mitochondrial preparation. Fraction X had many similarities to microsomes except that it sedimented with mitochondria (at 10,000 x g). However, the specific activities of PtdSer synthase and glucose-6-phosphate phosphatase in fraction X were almost twice that of microsomes, and the specific activities of CTP:phosphocholine cytidylyltransferase and NADPH:cytochrome c reductase in fraction X were much lower than in microsomes. The marker enzymes for mitochondria, Golgi apparatus, plasma membrane, lysosomes, and peroxisomes all had low activities in fraction X. Polyacrylamide gel electrophoresis revealed distinct differences, as well as similarities, among the proteins of fraction X, microsomes, and rough and smooth endoplasmic reticulum. The combined mitochondria-fraction X membranes can synthesize PtdSer, PtdEtn, and PtdCho from serine. Thus, fraction X in combination with mitochondria might be responsible for the observed compartmentalization of a serine-labeled pool of phospholipids previously identified (Vance, J. E., and Vance, D. E. (1986) J. Biol. Chem. 261, 4486-4491) and might be involved in the transfer of lipids between the endoplasmic reticulum and mitochondria.  相似文献   

16.
To identify the specific component(s) in the target membrane involved in fusion of vesicular stomatitis virus (VSV), we examined the interaction of the virus with human erythrocyte membranes with asymmetric and symmetric bilayer distributions of phospholipids. Fusion was monitored spectrofluorometrically by the octadecylrhodamine dequenching assay. Fusion of VSV with lipid-symmetric erythrocyte ghosts was rapid at 37 degrees C and low pH, whereas little or no fusion was observed with lipid-asymmetric ghosts. Conversion of phosphatidylserine in the lipid-symmetric ghost membrane to phosphatidylethanolamine by means of the enzyme phosphatidylserine decarboxylase did not alter the target membrane's susceptibility to VSV fusion. Spin-labeled phospholipid analogues with phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine headgroups incorporated into the outer leaflet of lipid-asymmetric erythrocytes did not render those membranes fusogenic. Electron spin resonance spectra showed an increased mobility of a phosphatidylcholine spin-label incorporated into the outer leaflet of lipid-symmetric erythrocyte ghosts as compared to that of lipid-asymmetric ghosts. These results indicate that the susceptibility to VSV fusion is not dependent on any particular phospholipid but rather is related to packing characteristics of the target membrane.  相似文献   

17.
Toxoplasma gondii is an intracellular protozoan parasite capable of causing devastating infections in immunocompromised and immunologically immature individuals. In this report, we demonstrate the relative independence of T. gondii from its host cell for aminoglycerophospholipid synthesis. The parasite can acquire the lipid precursors serine, ethanolamine, and choline from its environment and use them for the synthesis of its major lipids, phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho), respectively. Dimethylethanolamine (Etn(Me)(2)), a choline analog, dramatically interfered with the PtdCho metabolism of T. gondii and caused a marked inhibition of its growth within human foreskin fibroblasts. In tissue culture medium supplemented with 2 mm Etn(Me)(2), the parasite-induced lysis of the host cells was dramatically attenuated, and the production of parasites was inhibited by more than 99%. The disruption of parasite growth was paralleled by structural abnormalities in its membranes. In contrast, no negative effect on host cell growth and morphology was observed. The data also reveal that the Etn(Me)(2)-supplemented parasite had a time-dependent decrease in its PtdCho content and an equivalent increase in phosphatidyldimethylethanolamine, whereas other major lipids, PtdSer, PtdEtn, and PtdIns, remained largely unchanged. Relative to host cells, the parasites incorporated more than 7 times as much Etn(Me)(2) into their phospholipid. These findings reveal that Etn(Me)(2) selectively alters parasite lipid metabolism and demonstrate how selective inhibition of PtdCho synthesis is a powerful approach to arresting parasite growth.  相似文献   

18.
Activation of dolichyl-phospho-mannose synthase by phospholipids   总被引:4,自引:0,他引:4  
Dolichyl-phospho-mannose synthase, or GDPmannose:dolichyl-phosphate mannosyltransferase (EC 2.4.1.83), was solubilized from rat liver microsomes with 1.0% Nonidet P-40 and the enzyme was further purified by column chromatography on DEAE-cellulose in the presence of 0.1% Nonidet P-40. The purified enzyme preparation (880-fold over microsomes) was unstable in the presence of detergent and had no activity in the presence of Nonidet P-40, Triton X-100, octyl beta-glucoside, or deoxycholate. Detergent-free enzyme was active in the presence of phosphatidylethanolamine (PtdEtn) and in the presence of phospholipid mixtures of PtdEtn and phosphatidylcholine (PtdCho) when the molar proportion of PtdCho was 70% or less. The enzyme was inactive in the presence of PtdCho alone. Unsaturated species of PtdEtn have a tendency to destabilize membrane bilayers [Cullis, P. R. & de Kruijff, B. (1978) Biochim. Biophys. Acta 507, 207-218] and we have shown that dolichol promotes the destabilizing effect of PtdEtn on membranes composed of PtdCho and PtdEtn [Jensen, J. W. & Schutzbach, J. S. (1984) Biochemistry 23, 115-1119]. These results suggest that dolichyl-P-mannose synthase is optimally active in a phospholipid matrix that contains some component phospholipids that prefer non-bilayer structural organization in isolation. Heat-inactivation and sedimentation experiments demonstrated that the synthase associated with PtdEtn in the presence of dolichyl-P. The PtdEtn-reconstituted enzyme catalyzed the reversible transfer of mannose from GDP-mannose to dolichyl-P. The Km for GDP-mannose was found to be 0.69 microM and the apparent Km for dolichyl-P was 0.3 microM. GMP, GDP, and GTP inhibited mannosyl transfer 50% at concentrations of 16 microM, 1.3 microM and 3 microM respectively.  相似文献   

19.
The major route of phosphatidylcholine (PtdCho) biosynthesis in mammalian cells is the sequence: choline (Cho)----phosphocholine (PCho)----cytidinediphosphate choline (CDP-Cho)----PtdCho. Recently, we have found that intermediates of this pathway are not freely diffusible in cultured rat glioma (C6) cells but are channeled towards PtdCho biosynthesis (George et al. (1989). Biochim. Biophys. Acta. 1004, 283-291). Channeling of intermediates in other mammalian systems is thought to be mediated through adsorption of enzymes to membranes and cytoskeletal elements to form multienzyme complexes. In this study, agents which perturb the structure and function of cytoskeletal elements were tested for effects on phospholipid metabolism in glioma cells. The filament-disrupting agent cytochalasin B (CB), but not other cytochalasins or the microtubule depolymerizer colchicine inhibited PtdCho and phosphatidylethanolamine (PtdEtn) biosynthesis as judged by dose-dependent reduction of labeling from [3H]Cho and [14C]ethanolamine (Etn). 32Pi pulse-labeling indicated that CB selectively decreased PtdCho and PtdEtn biosynthesis without affecting synthesis of other phospholipids. Synthesis of water-soluble intermediates of PtdCho metabolism was unaffected but the conversion of phosphoethanolamine to CDP-ethanolamine was reduced by CB. Effects of CB on phospholipid biosynthesis were not due to inhibition of glucose uptake as shown by experiments with 2-deoxyglucose, glucose-starved cells and other cytochalasins. Experiments with Ca(2+)-EGTA buffers and digitonin-permeabilized cells, and the Ca(2+)-channel blocker verapamil suggest that effects of CB on PtdCho and PtdEtn biosynthesis are due to alteration of intracellular Ca2+. Taken together, these results suggest that CB acts at sites distinct from glucose transport and cellular microfilaments to specifically inhibit PtdCho and PtdEtn biosynthesis by mechanisms dependent on intracellular Ca2+.  相似文献   

20.
Sciadonic acid (20:3 Delta-5,11,14) is an n-6 series trienoic acid that lacks the Delta8 double bond of arachidonic acid. This fatty acid is not converted to arachidonic acid in higher animals. In this study, we characterized the metabolic behavior of sciadonic acid in the process of acylation to phospholipid of HepG2 cells. One of the characteristics of fatty acid compositions of phospholipids in sciadonic acid-supplemented cells is a higher proportion of sciadonic acid in phosphatidylinositol (PtdIns) (27.4%) than in phosphatidylethanolamine (PtdEtn) (23.2%), phosphatidylcholine (PtdCho) (17.3%) and phosphatidylserine (PtdSer) (20.1%). Similarly, the proportion of arachidonic acid was higher in PtdIns (35.8%) than in PtdEtn (29.1%), PtdSer (18.2%) and PtdCho (20.2%) in arachidonic-acid-supplemented cells. The extensive accumulation of sciadonic acid in PtdIns resulted in the enrichment of newly formed 1-stearoyl-2-sciadonoyl molecular species (38%) in PtdIns and caused the reduction in the level of pre-existing arachidonic-acid-containing molecular species. The kinetics of incorporation of sciadonic acid to PtdEtn, PtdSer and PtdIns of cells were similar to those of arachidonic acid. In contrast to sciadonic acid, neither eicosapentaenoic acid (20:5 Delta-5,8,11,14,17) nor juniperonic acid (20:4 Delta-5,11,14,17) accumulated in the PtdIns fraction. Rather, these n-3 series polyunsaturated fatty acids, once incorporated into PtdIns, tended to be excluded from PtdIns. In addition, the level of arachidonic-acid-containing PtdIns molecular species remained unchanged by eicosapentaenoic-acid-supplementation. These results suggest that sciadonic acid or sciadonic-acid-containing glycerides are metabolized in a similar manner to arachidonic acid or arachidonic-acid-containing glyceride in the biosynthesis of PtdIns and that sciadonic acid can effectively modify the molecular species composition of PtdIns in HepG2 cells. In this regard, sciadonic acid will be an interesting experimental tool to clarify the significance of arachidonic acid-residue of PtdIns-origin bioactive lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号