首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moult in birds is highly variable both within and among bird genera. The aim of the present study was to make an extended phylogenetic analysis of the diversity of moult strategies within Sylviidae in light of the recent phylogenies based on molecular data, and with the methodology of matched-pairs analysis. In the present study we analysed 141 sylviid taxa and, to improve character reconstruction, 22 outgroup taxa. The study could corroborate the earlier results that post-breeding moult is the ancestral state in Sylviidae. Migratory habits were found to be ancestral within Sylviidae but resident habits have evolved several times with a few reverse transitions back to migratory habits. Transitions in main moult strategy were significantly related to both migratory vs. resident habits and to migratory distance, giving support to the hypothesis that moult in the non-breeding season is related to migration as such and long-distance migration, respectively. Both resident and migratory taxa used minor alternative moult strategies besides the main moult strategy and such within-taxon flexibility might be a basal trait in Sylviidae. We investigated three variables that included minor strategies and found no relationship between these and migratory habits. However, two of these variables (the potential to interrupt moult and the occurrence of moult in both the post- and non-breeding seasons) were significantly related to migration distance. We conclude that migration patterns has some influence on the choice of moult strategy, and that flexibility in timing of moult is widespread within Sylviidae and might be a basal trait. We argue that such flexibility might be a prerequisite for changes in migratory strategies.  相似文献   

2.
3.
1. This study examined the nitrogen balance of free-living flightless moulting Greylag Geese, Anser anser , in relation to food quality, nitrogen absorption, food retention time and nitrogen excretion rates.
2. Food intake rates during moult were the same as those before and after the flightless period, but total daily time spent foraging fell by 58% from 9·45 h to 3·96 h. Dropping production during moult was 43%, and mean dropping mass 42% of that before and after moult, suggesting a considerable increase in food passage time through the gut during moult. Nitrogen absorption increased from 25% prior to moult to 47% during moult.
3. At the same time, excreted dry mass uric acid in faecal material fell by 68%, such that the proportion of nitrogen absorbed and retained in the body as a proportion of the nitrogen ingested in food rose from 16% prior to moult to 42% during moult.
4. Based on these significant increases in nitrogen absorption and decreases in nitrogen excretion, geese were able to compensate for reduced food intake and derive sufficient nitrogen from their diet to re-grow flight feathers.  相似文献   

4.
The limb proportions of the extinct flying pterosaurs were clearly distinct from their living counterparts, birds and bats. Within pterosaurs, however, we show that further differences in limb proportions exist between the two main groups: the clade of short-tailed Pterodactyloidea and the paraphyletic clades of long-tailed rhamphorhynchoids. The hindlimb to forelimb ratios of rhamphorhynchoid pterosaurs are similar to that seen in bats, whereas those of pterodactyloids are much higher. Such a clear difference in limb ratios indicates that the extent of the wing membrane in rhamphorhynchoids and pterodactyloids may also have differed; this is borne out by simple ternary analyses. Further, analyses also indicate that the limbs of Sordes pilosus, a well-preserved small taxon used as key evidence for inferring the extent and shape of the wing membrane in all pterosaurs, are not typical even of its closest relatives, other rhamphorhynchoids. Thus, a bat-like extensive hindlimb flight membrane, integrated with the feet and tail may be applicable only to a small subset of pterosaur diversity. The range of flight morphologies seen in these extinct reptiles may prove much broader than previously thought.  相似文献   

5.
Migrating passerines moulting in the breeding quarters before autumn migration sometimes end up with less time than needed for a normal moult. To deal with this the birds could for example suspend moult or moult faster. In this paper we investigate the effect of an induced time-constraint on the moult of Lesser Whitethroats Sylvia curruca . The time-constraint was induced through a shift in light regime large enough to transfer the birds to a date when, under normal conditions, they already should have started moulting. Time-constrained birds moulted faster and also grew shorter wing feathers, resulting in a shorter wing, compared to control birds. Only one individual responded by interrupting moult and retained a number of inner primaries unmoulted. The observed adjustments of moult, and the higher fuel loads towards the end of moult, are consistent with the ideas that time is an important factor in bird migration, affecting not only migration but also the events preceding it.  相似文献   

6.
Postnatal changes in flight development, wing shape and wing bone lengths of 56 marked neonate Hipposideros pomona were investigated under natural conditions in southwest China. Flight experiments showed that pups began to flutter with a short horizontal displacement at 10 days and first took flight at 19 days, with most achieving sustained flight at 1 month old. Analysis of covariance on wingspan, wing area, and the other seven wing characteristics between ‘pre-flight’ and ‘post-volancy’ periods supports the hypothesis that growth had one ‘pre-flight’ trajectory and a different ‘post-volancy’ trajectory in bats. Wingspan, handwing length and area, armwing length and area, and total wing area increased linearly until the age of first flight, after which the growth rates decreased (all P < 0.001). Wing loading declined linearly until day 19 before ultimately decreasing to adult levels (P < 0.001). Additionally, the relationship of different pairwise combinations of bony components composing span-wise length and chord-wise length was evaluated to test the hypothesis that compensatory growth of wing bones in H. pomona occurred in both ‘pre-flight’ and ‘post-volancy’ periods. The frequency of short-long and long-short pairs was significantly greater than that of short-short, long-long pairs in most pairs of bone elements in adults. The results indicate that a bone ‘shorter than expected’ would be compensated by a bone or bones ‘longer than expected’, suggesting compensatory growth in H. pomona. The pairwise comparisons conducted in adults were also performed in young bats during ‘pre-flight’ and ‘post-volancy’ periods, demonstrating that compensatory growth occurred throughout postnatal ontogeny.  相似文献   

7.
8.
Genetic variation of a suite of 12 morphometric wing characters was examined in 16 natural populations ofDrosophila melanogaster from Eastern Europe and Central Asia using principal component analysis. The posterior wing compartment was found to differ in shape between the Eastern European and Central Asian populations. This result is in agreement with data on wing shape variation from exposure to high and low temperatures under laboratory conditions.  相似文献   

9.
Clinal variation has been described in many invertebrates including drosophilids but usually over broad geographical gradients. Here we describe clinal variation in the rainforest species Drosophila birchii from Queensland, Australia, and potential confounding effects of laboratory adaptation. Clinal variation was detected for starvation and development time, but not for size or resistance to temperature extremes. Starvation resistance was higher at southern locations. Wing shape components were not associated with latitude although they did differ among populations. Time in laboratory culture did not influence wing size or heat knockdown resistance, but increased starvation resistance and decreased recovery time following a cold shock. Laboratory culture also increased development time and altered wing shape. The results indicate that clinal patterns can be detected in Drosophila over a relatively narrow geographical area. Laboratory adaptation is unlikely to have confounded the detection of geographical patterns.  相似文献   

10.
The development of wingbud epidermis during the last larval stage of cabbage aphids (Brevicoryne brassicae) is described at the ultrastructural level, and compared with its development in juvenile hormone (JH) treated specimens. Cells in JH-treated aphids fail to undergo normal changes in shape and contain conspicuous bundles of microtubules. Cell division is also suppressed by JH treatment, but this alone cannot account for the juvenilised appearance of the adult wings. The possible mode of action of JH is discussed in terms of its observed effects on the abundance of microtubules within the cells.  相似文献   

11.
The effects of wing shape, wing size, and fluctuating asymmetry in these measures on the field fitness of T. nr. brassicae and T. pretiosum were investigated. Trichogramma wasps mass-reared on eggs of the factitious host Sitotroga cerealella were released in tomato paddocks and those females ovipositing on Helicoverpa spp. eggs were recaptured. Comparisons of the recaptured group with a sample from the release population were used to assess fitness. Wing data were obtained by positioning landmarks on mounted forewings. Size was then measured as the centroid size computed from landmark distances, while Procrustes analysis followed by principal component analysis was used to assess wing shape. Similar findings were obtained for both Trichogramma species: fitness of wasps was strongly related to wing size and some shape dimensions, but not to the asymmetries of these measures. Wasps which performed well in the field had larger wings and a different wing shape compared to wasps from the mass reared population. Both size and the shape dimensions were linearly associated with fitness although there was also some evidence for non-linear selection on shape. The results suggest that wing shape and wing size are reliable predictors of field fitness for these Trichogramma wasps.  相似文献   

12.
The "cost-benefit" hypothesis states that specific body organs show mass changes consistent with a trade-off between the importance of their function and cost of their maintenance. We tested four predictions from this hypothesis using data on non-breeding greylag geese Anser anser during the course of remigial moult: namely that (i) pectoral muscles and heart would atrophy followed by hypertrophy, (ii) leg muscles would hypertrophy followed by atrophy, (iii) that digestive organs and liver would atrophy followed by hypertrophy and (iv) fat depots be depleted. Dissection of geese captured on three different dates during wing moult on the Danish island of Saltholm provided data on locomotory muscles and digestive organ size that confirmed these predictions. Locomotory organs associated with flight showed initial atrophy (a maximum loss of 23% of the initial pectoral muscle mass and 37% heart tissue) followed by hypertrophy as birds regained the powers of flight. Locomotory organs associated with running (leg muscles, since geese habitually run to the safety of water from predator-type stimuli) showed initial hypertrophy (a maximum gain of 37% over initial mass) followed by atrophy. The intestines and liver showed initial atrophy (41% and 37% respectively), consistent with observed reductions in daily time spent feeding during moult, followed by hypertrophy. The majority of the 22% loss in overall body mass (mean 760 g) during the flightless period involved fat utilisation, apparently consumed to meet shortfalls between daily energetic needs and observed rates of exogenous intake. The results support the hypothesis that such phenotypic plasticity in size of fat stores, locomotor and digestive organs can be interpreted as an evolutionary adaptation to meet the conflicting needs of the wing moult.  相似文献   

13.
Intralocus sexual conflict occurs when opposing selection pressures operate on loci expressed in both sexes, constraining the evolution of sexual dimorphism and displacing one or both sexes from their optimum. We eliminated intralocus conflict in Drosophila melanogaster by limiting transmission of all major chromosomes to males, thereby allowing them to win the intersexual tug‐of‐war. Here, we show that this male‐limited (ML) evolution treatment led to the evolution (in both sexes) of masculinized wing morphology, body size, growth rate, wing loading, and allometry. In addition to more male‐like size and shape, ML evolution resulted in an increase in developmental stability for males. However, females expressing ML chromosomes were less developmentally stable, suggesting that being ontogenetically more male‐like was disruptive to development. We suggest that sexual selection over size and shape of the imago may therefore explain the persistence of substantial genetic variation in these characters and the ontogenetic processes underlying them.  相似文献   

14.
We explored evolutionary changes in wing venation and wing size and shape in Aphidiinae, one of the well-known groups of parasitic wasps from the family Braconidae. Forewings of 53 species from 12 genera were examined, for which a molecular phylogeny was constructed on the basis of the mitochondrial barcoding gene COI. By covering all types of wing venation within the subfamily Aphidiinae and by using landmark-based geometric morphometrics and phylogenetic comparative methods, we tested whether evolutionary changes in wing shape correlate to the changes in wing venation and if both changes relate to wing size. The relationship between wing morphology and host specificity has been also investigated. We found that six types of wing venation, with different degree of vein reduction, could be recognized. Wing venation type is largely genus specific, except in the case of maximal reduction of wing venation which could be found across examined Aphidiinae taxa. The reconstruction of evolutionary changes in wing venation indicates that evolutionary changes in wing shape are related to the changes in wing size, indicating that miniaturization play a role in evolution of wing morphology while host specialization does not affect the wing shape within the subfamily Aphidiinae.  相似文献   

15.
16.
Palsson A  Gibson G 《Genetics》2004,167(3):1187-1198
As part of an effort to dissect quantitative trait locus effects to the nucleotide level, association was assessed between 238 single-nucleotide and 20 indel polymorphisms spread over 11 kb of the Drosophila melanogaster Egfr locus and nine relative warp measures of wing shape. One SNP in a conserved potential regulatory site for a GAGA factor in the promoter of alternate first exon 2 approaches conservative experiment-wise significance (P < 0.00003) in the sample of 207 lines for association with the location of the crossveins in the central region of the wing. Several other sites indicate marginal association with one or more other aspects of shape. No strong effects of sex or population of origin were detected with measures of shape, but two different sites were strongly associated with overall wing size in interaction with these fixed factors. Whole-gene sequencing in very large samples, rather than selective genotyping, would appear to be the only strategy likely to be successful for detecting subtle associations in species with high polymorphism and little haplotype structure. However, these features severely limit the ability of linkage disequilibrium mapping in Drosophila to resolve quantitative effects to single nucleotides.  相似文献   

17.

Background  

Sexual dimorphism of body size has been the subject of numerous studies, but few have examined sexual shape dimorphism (SShD) and its evolution. Allometry, the shape change associated with size variation, has been suggested to be a main component of SShD. Yet little is known about the relative importance of the allometric and non-allometric components for the evolution of SShD.  相似文献   

18.
Molecular weight and shape of the phycocyanin hexamer   总被引:1,自引:0,他引:1  
M Kato  W I Lee  B E Eichinger  J M Schurr 《Biopolymers》1974,13(11):2293-2304
The hexamer of phycocyanin from Phormidium luridum has been isolated and purified by ammonium sulfate fractionation and gel chromatography. The protein is characterized by the sedimentation constant S°20, w = 10.2S, the diffusion coefficient D20, w = 4.73 × 10?7 cm2/sec, and intrinsic viscosity [η] = 3.89 ml/g. The molecular weight of the aggregate is 209,000. The shape and dimensions of the hexamer are discussed in terms of a model consisting of subunits arranged with C6 symmetry. The monomers, assumed to be spherical, are found to have a radius of 22 Å, and the diameter across the hexamer is 132 Å. The latter figure agrees closely with dimensions observed in electron micrographs.  相似文献   

19.
Drosophila Wingless (Wg) is the founding member of the Wnt family of secreted proteins. During the wing development, Wg acts as a morphogen whose concentration gradient provides positional cues for wing patterning. The molecular mechanism(s) of Wg gradient formation is not fully understood. Here, we systematically analyzed the roles of glypicans Dally and Dally-like protein (Dlp), the Wg receptors Frizzled (Fz) and Fz2, and the Wg co-receptor Arrow (Arr) in Wg gradient formation in the wing disc. We demonstrate that both Dally and Dlp are essential and have different roles in Wg gradient formation. The specificities of Dally and Dlp in Wg gradient formation are at least partially achieved by their distinct expression patterns. To our surprise, although Fz2 was suggested to play an essential role in Wg gradient formation by ectopic expression studies, removal of Fz2 activity does not alter the extracellular Wg gradient. Interestingly, removal of both Fz and Fz2, or Arr causes enhanced extracellular Wg levels, which is mainly resulted from upregulated Dlp levels. We further show that Notum, a negative regulator of Wg signaling, downregulates Wg signaling mainly by modifying Dally. Last, we demonstrate that Wg movement is impeded by cells mutant for both dally and dlp. Together, these new findings suggest that the Wg morphogen gradient in the wing disc is mainly controlled by combined actions of Dally and Dlp. We propose that Wg establishes its concentration gradient by a restricted diffusion mechanism involving Dally and Dlp in the wing disc.  相似文献   

20.
In many passerines, juveniles have shorter and more rounded wings than adults. Given that (1) long and pointed wings improve endurance in migratory flights, (2) shorter and rounded wings improve manoeuvrability, and (3) juvenile birds are more vulnerable to predators than adults, it has been hypothesised that ontogenetic variation in wing shape results from a greater importance of predation avoidance relative to migration performance during the first year of life. If so, wing shape should not change with age in the absence of migration-related selection for longer and more pointed wings. We test this by studying the variation with respect to age in wing length and wing pointedness of migratory and sedentary Blackcaps wintering in southern Spain. Migratory Blackcaps had longer and more pointed wings than sedentary Blackcaps. Juveniles had shorter wings than adults in migratory populations, but not in sedentary populations. The variation with age in wing pointedness was less pronounced, and was found in migratory females only. These differences between the two traits could be related to a stronger selection for pointed wings than for longer wings with increasing distance of migration, and to an increased migratoriness of females in partially migratory Blackcap populations. We hypothesise that, in migratory Blackcaps, a shorter and more rounded wing in juveniles could be selected for if the decrease in predation rate compensated for the somewhat greater costs of the first migration attempt. On the other hand, there are no costs of migration in sedentary Blackcaps, which hence maintain a similar wing shape, giving high manoeuvrability, both as juveniles and as adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号