首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过比较棉花(Gossypium hirsutum)幼叶和完全展开叶气体交换参数及叶绿素荧光特性的差异, 探讨高光强下幼叶的光抑制程度及明确光保护机制间的协调机理。在田间自然条件下, 以棉花刚展平的幼嫩叶片(幼叶)和面积已达到最大的完全展开叶片为研究对象, 通过测定不同发育阶段叶片气体交换参数及叶绿素a荧光参数的变化, 并运用Dual-PAM100对不同发育阶段的叶片进行快速光响应曲线的拟合。结果表明: 幼叶和完全展开叶片在光合、荧光特性方面表现出明显的差异。与完全展开叶相比, 较低的叶绿素(Chl)含量和气孔导度(Gs)是幼叶较低净光合速率(Pn)的限制因素, 从而直接导致其光系统II (PSII)实际光化学效率(ΦPSII)和光化学猝灭系数(qP)的降低。在1800 μmol·m-2·s-1光强以下, 完全展开叶具有较强的围绕PSI循环的电子流(CEF), 有利于合成ATP, 是其具有较高光合能力的原因之一。相同光强下, 幼叶较低的光饱和点(LSP)更易受光抑制, 但其PSII原初光化学效率(Fv/Fm)的日变化幅度显著小于完全展开叶, 说明强光下幼叶通过类胡萝卜素(Car)猝灭单线态氧、光呼吸(Pr)、热耗散(NPQ)以及PSI-CEF等光保护机制能有效地耗散过剩的光能, 从而避免其光合机构发生光抑制。  相似文献   

2.
The effect of exposing intact leaves and isolated chloroplast membranes of Nerium oleander L. to excessive light levels under otherwise favorable conditions was followed by measuring photosynthetic CO2 uptake, electron transport and low-temperature (77K=-196°C) fluorescence kinetics. Photoinhibition, as manifested by a reduced rate and photon (quantum) yield of photosynthesis and a reduced electron transport rate, was accompanied by marked changes in fluorescence characteristics of the exposed upper leaf surface while there was little effect on the shaded lower surface. The most prominent effect of photoinhibitory treatment of leaves and chloroplasts was a strong quenching of the variable fluorescence emission at 692 nm (Fv,692) while the instantaneous fluorescence (Fo,692) was slightly increased. The maximum and the variable fluorescence at 734 nm were also reduced but not as much as FM,692 and Fv,692. The results support the view that photoinhibition involves an inactivation of the primary photochemistry of photosystem II by damaging the reaction-center complex. In intact leaves photoinhibition increased with increased light level, increased exposure time, and with decreased temperature. Increased CO2 pressure or decreased O2 pressure provided no protection against photoinhibition. With isolated chloroplasts, inhibition of photosystem II occurred even under essentially anaerobic conditions. Measurements of fluorescence characteristics at 77K provides a simple, rapid, sensitive and reproducible method for assessing photoinhibitory injury to leaves. The method should prove especially useful in studies of the occurrence of photoinhibition in nature and of interactive effects between high light levels and major environmental stress factors.Abbreviations and symbols PFD photon flux area density - PSI, PSII photosystem I, II - FM, FO, FV maximum, instantaneous, variable fluorescence emission C.I.W.-D.P.B. Publication No. 773  相似文献   

3.
We tested the two empirical models of the relationship between chlorophyll fluorescence and photosynthesis, previously published by Weis E and Berry JA 1987 (Biochim Biophys Acta 894: 198–208) and Genty B et al. 1989 (Biochim Biophys Acta 990: 87–92). These were applied to data from different species representing different states of light acclimation, to species with C3 or C4 photosynthesis, and to wild-type and a chlorophyll b-less chlorina mutant of barley. Photosynthesis measured as CO2-saturated O2 evolution and modulated fluorescence were simultaneously monitored over a range of photon flux densities. The quantum yields of O2 evolution (ØO2) were based on absorbed photons, and the fluorescence parameters for photochemical (qp) and non-photochemical (qN) quenching, as well as the ratio of variable fluorescence to maximum fluorescence during steady-state illumination (F'v/F'm), were determined. In accordance with the Weis and Berry model, most plants studied exhibited an approximately linear relationship between ØO2/qp (i.e., the yield of O2 evolution by open Photosystem II reaction centres) and qN, except for wild-type barley that showed a non-linear relationship. In contrast to the linear relationship reported by Genty et al. for qp×F'v/F'm (i.e., the quantum yield of Photosystem II electron transport) and ØCO2, we found a non-linear relationship between qp×F'v/F'm and ØO2 for all plants, except for the chlorina mutant of barley, which showed a largely linear relationship. The curvilinearity of wild-type barley deviated somewhat from that of other species tested. The non-linear part of the relationship was confined to low, limiting photon flux densities, whereas at higher light levels the relationship was linear. Photoinhibition did not change the overall shape of the relationship between qp×F'v/F'm and ØO2 except that the maximum values of the quantum yields of Photosystem II electron transport and photosynthetic O2 evolution decreased in proportion to the degree of photoinhibition. This implies that the quantum yield of Photosystem II electron transport under high light conditions may be similar for photoinhibited and non-inhibited plants. Based on our experimental results and theoretical analyses of photochemical and non-photochemical fluoresce quenching processes, we conclude that both models, although not universal for all plants, provide useful means for the prediction of photosynthesis from fluorescence parameters. However, we also discuss that conditions which alter one or more of the rate constants that determine the various fluorescence parameters, as well as differential light penetration in assays for oxygen evolution and fluorescence emission, may have direct effect on the relationships of the two models.Abbreviations F0 and F'0 fluorescence when all Photosystem II reaction centres are open in dark- and light-acclimated leaves, respectively - Fm and F'm fluorescence when all Photosystem II reaction centres are closed in dark and light, respectively - Fv variable fluorescence equal to Fm-F0 - Fs steady state level of fluorescence in light - F'v and F'm variable (F'm-F'0) and maximum fluorescence under steady state light conditions - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulphonic acid - QA the primary, stabile quinone acceptor of Photosystem II - qN non-photochemical quenching of fluorescence - qp photochemical quenching of fluorescence - ØO2 quantum yield of CO2-saturated O2 evolution based on absorbed photons  相似文献   

4.
Analyses of chlorophyll fluorescence and photosynthetic oxygen evolution were conducted to understand why cold-hardened winter rye (Secale cereale L.) is more resistant to photoinhibition of photosynthesis than is non-hardened winter rye. Under similar light and temperature conditions, leaves of cold-hardened rye were able to keep a larger fraction of the PS II reaction centres in an open configuration, i.e. a higher ratio of oxidized to reduced QA (the primary, stable quinone acceptor of PSII), than leaves of non-hardened rye. Three fold-higher photon fluence rates were required for cold-hardened leaves than for non-hardened leaves in order to establish the same proportion of oxidized to reduced QA. This ability of cold-hardened rye fully accounted for its higher resistance to photoinhibition; under similar redox states of qa cold-hardened and non-hardened leaves of winter rye exhibited similar sensitivities to photoinhibition. Under given light and temperature conditions, it was the higher capacity for light-saturated photosynthesis in cold-hardened than in non-hardened leaves, which was responsible for maintaining a higher proportion of oxidized to reduced QA. This higher capacity for photosynthesis of cold-hardened leaves also explained the increased resistance of photosynthesis to photoinhibition upon cold-hardening.Abbreviations Fm and F'm fluorescence when all PSII reaction centres are closed in dark- and light-acclimated leaves, respectively - Fo and F'o fluorescence when all PSII reaction centres are open in darkness and steady-state light, respectively - Fv variable fluorescence (F'm-F'o) under steady-state light conditions - Fv/Fm the ratio of variable to maximum fluorescence as an expression of the maximum photochemical yield of PSII in dark-acclimated leaves - QA the primary, stable, quinone electron acceptor of PSII - qN non-photochemical quenching of fluorescence due to high energy state (pH) - qp photochemical quenching of fluorescence - RH cold-hardened rye - RNH non-hardened rye This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERCC) Operating Grant to N.P.A.H. G.Ö. was supported by an NSERCC International Exchange Award and by the Swedish Natural Science Research Council.  相似文献   

5.
The aim of this study was to investigate acclimation of micropropagated plants of Rhododendron ponticum subsp. baeticum to different irradiances and recovery after exposure to high irradiance. Plants grown under high (HL) or intermediate (IL) irradiances displayed higher values of maximum electron transport rate (ETRmax) and light saturation coefficient (Ek) than plants grown under low irradiance (LL). The capacity of tolerance to photoinhibition (as assessed by the response of photochemical quenching, qp) varied as follows: HL > IL > LL. Thermal energy dissipation (qN) was also affected by growth irradiance, with higher saturating values being observed in HL plants. Light-response curves suggested a gradual replacement of qp by qN with increasing irradiance. Following exposure to irradiance higher than 1500 μmol m−2 s−1, a prolonged reduction of the maximal photochemical efficiency of PS 2 (Fv/Fm) was observed in LL plants, indicating the occurrence of chronic photoinhibition. In contrary, the decrease in Fv/Fm was quickly reverted in HL plants, pointing to a reversible photoinhibition.  相似文献   

6.
A new type of modulation fluorometer was used in the study of energy-dependent chlorophyll fluorescence quenching (qE) in intact leaves. Under conditions of strong energization of the thylakoid membrane (high light intensity, absence of CO2) not only variable fluorescence, FV, but also dark-level fluorescence, FO, was quenched, leading to definition of a quenching coefficient, qO. Information on qO was shown to be essential for correct determination of photochemical (qQ) and energy dependent quenching (qE) by the saturation pulse method. The relationship between qE and qO was analysed over a range of light intensities at steady state conditions. qE was found to consist of two components, the second of which is linearly correlated with qO. qO and the second component of qE are interpreted to reflect the state 1 — state 2 shift caused by LHC II phosphorylation.  相似文献   

7.
The effect of ambient and enhanced solar radiation on the photosynthetic apparatus in four marine green macroalgae on the Southern coast of Spain (Strait of Gibraltar) was investigated using pulse amplitude modulation (PAM) fluorescence. The dependence of the fluorescence parameters on the irradiance of the actinic light was determined for all four species. It showed that maximal fluorescence after light adaptation (Fm′), photochemical quenching (qP) and the photosynthetic quantum yield decreased in Enteromorpha muscoides with irradiance while non-photochemical quenching (qN) rose continuously. In Ulva rigida the photosynthetic quantum yield dropped at irradiances above 4 W m−2 but qP did not decrease with increasing light. qN quenching rose sharply above 37 W m−2, and maximal fluorescence dropped above 1 W m−2. In Ulva gigantea the yield dropped to zero at irradiances of 37 W m−2, as did qP at 53 W m−2. qN started from an intermediate level and increased to a maximum at the highest irradiances. In Codium adherens, the yield and qP behaved similarly as in U. rigida, while qN rose at much lower irradiances. All investigated algae suffered from photoinhibition even at their natural sites of growth when the sun is at high angles. The hypothesis that algae with flat thalli suffer more than those with massive ones was confirmed. Photoinhibition was less pronounced in U. rigida and C. adherens than in the other two species. After 1 h of exposure to solar radiation at the surface, the photosynthetic quantum yield decreased substantially in the surface algae E. muscoides and U. rigida. In both macroalgae, recovery of the photosynthetic quantum yield was almost complete after 2–3 h in the shade. Two other green algae from shaded habitats (U. gigantea and C. adherens) did not show complete recovery of the yield from photoinhibition. This confirms the second hypothesis that sun-adapted algae recover faster from photoinhibition than those adapted to shaded sites.  相似文献   

8.
Photoinhibition of photosynthesis was monitored by means of chlorophyll a fluorescence in leaves of plants growing in 60–80 m2 light gaps in a moist tropical lowland forest located on Barro Colorado Island in central Panama. In these forest gaps, photon flux density was low (less than 100 μmol photons m?2 s?1) during most of the day, but increased on clear days to 1.7-1.8 mmol photons m?2 s?1 for 1–2 h during midday. Nine species representing different taxa and life-forms were examined. Leaves of all species exhibited substantial photoinhibition in situ during high light exposure, as manifested by a decrease in the ratio of variable to maximum fluorescence emission, FV/FM. Recovery (reversion of fluorescence quenching) took place in the shade following high light exposure. The major part of recovery occurred in a fast phase within about 1 h after the high light period. A slow phase of recovery proceeded for another 4–5 h until sunset. After 30–60 min of recovery in the shade, calculated rates of PSII electron transport remained significantly (5–15%) reduced in comparison to rates obtained prior to high light exposure; after about 2 h of recovery, inhibition was negligible. All species responded to the high light periods and following shade periods in a very similar manner. It is concluded that photoinhibition and recovery exhibited by these gap leaves reflect a dynamic regulatory mechanism of thermal energy dissipation that allows plants of different life-forms to cope with periods of high light in tropical forest gaps.  相似文献   

9.
K. J. van Wijk  G. H. Krause 《Planta》1991,186(1):135-142
Photoinhibition of photosynthesis in vivo is shown to be considerably promoted by O2 under circumstances where energy turnover by photorespiration and photosynthetic carbon metabolism are low. Intact protoplasts of Valerianella locusta L. were photoinhibited by 30 min irradiation with 3000 mol photons · m–2 · s–1 at 4° C in saturating [CO2] at different oxygen concentrations, corresponding to 2–40% O2 in air. The photoinhibition of light-limited CO2-dependent photosynthetic O2 evolution increased with increasing oxygen concentration. The uncoupled photochemical activity of photosystem II, measured in the presence of the electron acceptor 1,4-benzoquinone, and maximum variable fluorescence, Fv, were strongly affected and this inhibition was closely correlated to the O2 concentration. The effect of O2 did not saturate at the highest concentrations applied. An increase in photoinhibitory fluorescence quenching with [O2], although less pronounced than in protoplasts, was also observed with intact leaves irradiated at 4° C in air. Initial fluorescence, Fo, was slightly (about 10%) increased by the inhibitory treatments but not influenced by [O2]. A long-term cold acclimation of the plants did not substantially alter the O2-sensitivity of the protoplasts under the high-light treatment. From these experiments we conclude that oxygen is involved in the photoinactivation of photosystem II by excess light in vivo.Abbreviations and Symbols Chl chlorophyll - Fo initial fluorescence - FM maximum fluorescence - Fv maximum variable fluorescence - PCO photorespiratory carbon oxidation - PCR photosynthetic carbon reduction - PFD photon flux density - qN non-photochemical quenching - qP photochemical quenching - S quantum efficiency of electron transport of photosystem II This study was financially supported by the Deutsche Forschungs-gemeinschaft (SFB 189) and the Foundation for Fundamental Biological Research (BION), which is subsidised by the Netherlands Organization for the Advancement of Pure Research (NWO).  相似文献   

10.
Gas exchange and fluorescence measurements of attached leaves of water stressed bean, sunflower and maize plants were carried out at two light intensities (250 mol quanta m-2s-1 and 850 mol quanta m-2s-1). Besides the restriction of transpiration and CO2 uptake, the dissipation of excess light energy was clearly reflected in the light and dark reactions of photosynthesis under stress conditions. Bean and maize plants preferentially use non-photochemical quenching for light energy dissipation. In sunflower plants, excess light energy gave rise to photochemical quenching. Autoradiography of leaves after photosynthesis in 14CO2 demonstrated the occurrence of leaf patchiness in sunflower and maize but not in bean. The contribution of CO2 recycling within the leaves to energy dissipation was investigated by studies in 2.5% oxygen to suppress photorespiration. The participation of different energy dissipating mechanisms to quanta comsumption on agriculturally relevant species is discussed.Abbreviations Fo minimal fluorescence - Fm maximal fluorescence - Fp peak fluorescence - g leaf conductance - PN net CO2 uptake - qN coefficient of non-photochemical quenching - qP coefficient of photochemical quenching  相似文献   

11.
The photoinhibition of photosynthesis at chilling temperatures was investigated in cold-acclimated and unhardened (acclimated to +18° C) spinach (Spinacia oleracea L.) leaves. In unhardened leaves, reversible photoinhibition caused by exposure to moderate light at +4° C was based on reduced activity of photosystem (PS) II. This is shown by determination of quantum yield and capacity of electron transport in thylakoids isolated subsequent to photoinhibition and recovery treatments. The activity of PSII declined to approximately the same extent as the quantum yield of photosynthesis of photoinhibited leaves whereas PSI activity was only marginally affected. Leaves from plants acclimated to cold either in the field or in a growth chamber (+1° C), were considerably less susceptible to the light treatment. Only relatively high light levels led to photoinhibition, characterized by quenching of variable chlorophyll a fluorescence (FV) and slight inhibition of PSII-driven electron transport. Fluorescence data obtained at 77 K indicated that the photoinhibition of cold-acclimated leaves (like that of the unhardened ones) was related to increased thermal energy dissipation. But in contrast to the unhardened leaves, 77 K fluorescence of cold-acclimated leaves did not reveal a relative increase of PSI excitation. High-light-treated, cold-acclimated leaves showed increased rates of dark respiration and a higher light compensation point. The photoinhibitory fluorescence quenching was fully reversible in low light levels both at +18° C and +4° C; the recovery was much faster than in unhardened leaves. Reversible photoinhibition is discussed as a protective mechanism against excess light based on transformation of PSII reaction centers to fluorescence quenchers.Abbreviations FO initial fluorescence - FM maximal fluorescence - FV devariable fluorescence (fm-fo) - PFD photon flux density - PS photosystem - SD standard deviation The authors thank the Deutsche Forschungsgemeinschaft and the Academy of Finland for financial support.  相似文献   

12.
Photoinhibition of photosynthesis was studied in intact barley leaves at 5 and 20°C, to reveal if Photosystem II becomes predisposed to photoinhibition at low temperature by 1) creation of excessive excitation of Photosystem II or, 2) inhibition of the repair process of Photosystem II. The light and temperature dependence of the reduction state of QA was measured by modulated fluorescence. Photon flux densities giving 60% of QA in a reduced state at steady-state photosynthesis (300 mol m–2s–1 at 5°C and 1200 mol m–2s–1 at 20°C) resulted in a depression of the photochemical efficiency of Photosystem II (Fv/Fm) at both 5 and 20°C. Inhibition of Fv/Fm occurred with initially similar kinetics at the two temperatures. After 6h, Fv/Fm was inhibited by 30% and had reached steady-state at 20°C. However, at 5°C, Fv/Fm continued to decrease and after 10h, Fv/Fm was depressed to 55% of control. The light response of the reduction state of QA did not change during photoinhibition at 20°C, whereas after photoinhibition at 5°C, the proportion of closed reaction centres at a given photon flux density was 10–20% lower than before photoinhibition.Changes in the D1-content were measured by immunoblotting and by the atrazine binding capacity during photoinhibition at high and low temperatures, with and without the addition of chloramphenicol to block chloroplast encoded protein synthesis. At 20°C, there was a close correlation between the amount of D1-protein and the photochemical efficiency of photosystem II, both in the presence or in the absence of an active repair cycle. At 5°C, an accumulation of inactive reaction centres occurred, since the photochemical efficiency of Photosystem II was much more depressed than the loss of D1-protein. Furthermore, at 5°C the repair cycle was largely inhibited as concluded from the finding that blockage of chloroplast encoded protein synthesis did not enhance the susceptibility to photoinhibition at 5°C.It is concluded that, the kinetics of the initial decrease of Fv/Fm was determined by the reduction state of the primary electron acceptor QA, at both temperatures. However, the further suppression of Fv/Fm at 5°C after several hours of photoinhibition implies that the inhibited repair cycle started to have an effect in determining the photochemical efficiency of Photosystem II.Abbreviations CAP D-threochloramphenicol - F0 and F 0 fluorescence when all Photosystem II reaction centres are open in dark- and light-acclimated leaves, respectively - Fm and F m fluorescence when all Photosystem II reaction centres are closed in dark- and light-acclimated leaves, respectively - Fs fluorescence at steady state - QA the primary, stable quinone acceptor of Photosystem II - qN non-photochemical quenching of fluorescence - qP photochemical quenching of fluorescence  相似文献   

13.
The mechanism of energy-dependent quenching (qE) of chlorophyll fluorescence was studied employing photoacoustic measurements of oxygen evolution and heat release. It is shown that concomitant to the formation of qE the yield of open reaction centers p decreases indicating that qE quenching originates from a process being competitive to fluorescence as well as to photochemistry. The analysis of heat release (rate of thermal deactivation) shows: 1. The competitive process is not given by a still unknown energy storing process. 2. If the competitive process would be a futile cycle the life-times of the involved intermediates had to be faster than 50 s.The results of the photoacoustic measurements are in line with the idea that qE quenching originates from an increased probability of thermal deactivation of excited chlorophylls.Abbreviations F actual fluorescence - Fm fluorescence yield with all PS II reaction centers closed in a light adapted state - F0 fluorescence yield with all PS II reaction centers open in a light adapted state - PS Photosystem - p intrinsic photochemical yield - qE energy-dependent quenching - qI photoinhibition quenching - qN non-photochemical quenching - qP photochemical quenching - qT state transition quenching  相似文献   

14.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

15.
The mechanism of photoinhibition of photosystem II (PSII) was studied in intact leaf discs of Spinacia oleracea L. and detached leaves of Vigna unguiculata L. The leaf material was exposed to different photon flux densities (PFDs) for 100 min, while non-photochemical (qN) and photochemical quenching (qp) of chlorophyll fluorescence were monitored. The ‘energy’ and redox state of PSII were manipulated quite independently of the PFD by application of different temperatures (5–20° C), [CO2] and [O2] at different PFDs. A linear or curvilinear relationship between qp and photoinhibition of PSII was observed. When [CO2] and [O2] were both low (30 μl · l?1 and 2%, respectively), PSII was less susceptible at a given qp than at ambient or higher [CO2] and photoinhibition became only substantial when qp decreased below 0.3. When high levels of energy-dependent quenching (qE) (between 0.6 and 0.8) were reached, a further increase of the PFD or a further decrease of the metabolic demand for ATP and NADPH led to a shift from qE to photoinhibitory quenching (qI). This shift indicated that photoinhibition was preceded by down-regulation through light-induced acidification of the lumen. We propose that photoinhibition took place in the centers down-regulated by qE. The shift from qE to qI occurred concomitant with qP decreasing to zero. The results clearly show that photoinhibition does not primarily depend on the photon density in the antenna, but that photoinhibition depends on the energy state of the membrane in combination with the redox balance of PSII. The results are discussed with regard to the mechanism of photoinhibition of PSII, considering, in particular, effects of light-induced acidification on the donor side of PSII. Interestingly, cold-acclimation of spinach leaves did not significantly affect the relationship between qP, qE and photoinhibition of PSII at low temperature.  相似文献   

16.
The obligate shade plant, Tradescantia albiflora Kunth grown at 50 mol photons · m–2 s–1 and Pisum sativum L. acclimated to two photon fluence rates, 50 and 300 mol · m–2 · s–1, were exposed to photoinhibitory light conditions of 1700 mol · m–2 · s–1 for 4 h at 22° C. Photosynthesis was assayed by measurement of CO2-saturated O2 evolution, and photosystem II (PSII) was assayed using modulated chlorophyll fluorescence and flash-yield determinations of functional reaction centres. Tradescantia was most sensitive to photoinhibition, while pea grown at 300 mol · m–2 · s–1 was most resistant, with pea grown at 50 mol · m–2 · s–1 showing an intermediate sensitivity. A very good correlation was found between the decrease of functional PSII reaction centres and both the inhibition of photosynthesis and PSII photochemistry. Photoinhibition caused a decline in the maximum quantum yield for PSII electron transport as determined by the product of photochemical quenching (qp) and the yield of open PSII reaction centres as given by the steady-state fluorescence ratio, FvFm, according to Genty et al. (1989, Biochim. Biophys. Acta 990, 81–92). The decrease in the quantum yield for PSII electron transport was fully accounted for by a decrease in FvFm, since qp at a given photon fluence rate was similar for photoinhibited and noninhibited plants. Under lightsaturating conditions, the quantum yield of PSII electron transport was similar in photoinhibited and noninhibited plants. The data give support for the view that photoinhibition of the reaction centres of PSII represents a stable, long-term, down-regulation of photochemistry, which occurs in plants under sustained high-light conditions, and replaces part of the regulation usually exerted by the transthylakoid pH gradient. Furthermore, by investigating the susceptibility of differently lightacclimated sun and shade species to photoinhibition in relation to qp, i.e. the fraction of open-to-closed PSII reaction centres, we also show that irrespective of light acclimation, plants become susceptible to photoinhibition when the majority of their PSII reaction centres are still open (i.e. primary quinone acceptor oxidized). Photoinhibition appears to be an unavoidable consequence of PSII function when light causes sustained closure of more than 40% of PSII reaction centres.Abbreviations Fo and Fo minimal fluorescence when all PSII reaction centres are open in darkness and steady-state light, respectively - Fm and Fm maximal fluorescence when all PSII reaction centres are closed in darkand light-acclimated leaves, respectively - Fv variable fluorescence - (Fm-Fo) under steady-state light con-ditions - Fs steady-state fluorescence in light - QA the primary,stable quinone acceptor of PSII - qNe non-photochemical quench-ing of fluorescence due to high energy state - (pH); qNi non-photochemical quenching of fluorescence due to photoinhibition - qp photochemical quenching of fluorescence To whom correspondence should be addressedThis work was supported by the Swedish Natural Science Research Council (G.Ö.) and the award of a National Research Fellowship to J.M.A and W.S.C. We thank Dr. Paul Kriedemann, Division of Forestry and Forest Products, CSIRO, Canberra, Australia, for helpful discussions.  相似文献   

17.
The initial (F0), maximal (FM) and steady-state (FS) levels of chlorophyll fluorescence emitted by intact pea leaves exposed to various light intensities and environmental conditions, were measured with a modulated fluorescence technique and were analysed in the context of a theory for the energy fluxes within the photochemical apparatus of photosynthesis. The theoretically derived expressions of the fluorescence signals contain only three terms, X=J2p2F/(1–G), Y=T/(1–G) and V, where V is the relative variable fluorescence, J2 is the light absorption flux in PS II, p2F is the probability of fluorescence from PS II, G and T are, respectively, the probabilities for energy transfer between PS II units and for energy cycling between the reaction center and the chlorophyll pool: F0=X, FM=X/(1–Y) and FS=X(1+(YV/(1–Y))). It is demonstrated that the amplitudes of the previously defined coefficients of chlorophyll fluorescence quenching, qP and qN, reflect, not just photochemical (qP) or nonphotochemical (qN) events as implied in the definitions, but both photochemical and nonphotochemical processes of PS II deactivation. The coefficient qP is a measure of the ratio between the actual macroscopic quantum yield of photochemistry in PS II (41-1) in a given light state and its maximal value measured when all PS II traps are open (41-2) in that state, with 41-3 and 41-4. When the partial connection between PS II units is taken into consideration, 1-qP is nonlinearily related to the fraction of closed reaction centers and is dependent on the rate constants of all (photochemical as well as nonphotochemical) exciton-consuming processes in PS II. On the other hand, 1-qN equals the (normalized) ratio of the rate constant of photochemistry (k2b) to the combined rate constant (kN) of all the nonphotochemical deactivation processes excluding the rate constant k22 of energy transfer between PS II units. It is demonstrated that additional (qualitative) information on the individual rate constants, kN-k22 and k2b, is provided by the fluorescence ratios 1/FM and (1/F0)–(1/FM), respectively. Although, in theory, 41-5 is determined by the value of both k2b and kN-k22, experimental results presented in this paper show that, under various environmental conditions, 41-6 is modulated largely through changes in k N, confirming the idea that PS II quantum efficiency is dynamically regulated in vivo by nonphotochemical energy dissipation.Abbreviations Chl chlorophyll - F0, FM and FS initial, maximal and steady-state levels of modulated Chl fluorescence emitted by light-adapted leaves - PS I and II photosystem I and II - qP and qN (previously defined) photochemical and nonphotochemical components of Chl fluorescence quenching  相似文献   

18.
High-light treatments (1750–2000 mol photons m–2 · s–1) of leaves from a number of higher-plant species invariably resulted in quenching of the maximum 77K chlorophyll fluorescence at both 692 and 734 nm (F M, 692 and F M, 734). The response of instantaneous fluorescence at 692 nm (F O, 692) was complex. In leaves of some species F O, 692 increased dramatically in others it was quenched, and in others yet it showed no marked, consistent change. Regardless of the response of F O, 692 an apparently linear relationship was obtained between the ratio of variable to maximum fluorescence (F V/F M, 692) and the photon yield of O2 evolution, indicating that photoinhibition affects these two variables to approximately the same extent. Treatment of leaves in a CO2–free gas stream containing 2% O2 and 98% N2 under weak light (100 mol · m–2 · s–1) resulted in a general and fully reversible quenching of 77K fluorescence at 692 and 734 nm. In this case both F O, 692 and F M, 692 were invariably quenched, indicating that the quenching was caused by an increased non-radiative energy dissipation in the pigment bed. We propose that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves. One results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in F O, 692; the other results from an increased non-radiative energy dissipation and leads to quenching of both F O, 692 and F M, 692 This general quenching had a much longer relaxation time than reported for pH-dependent quenching in algae and chloroplasts. Sun leaves, whose F V/F M, 692 ratios were little affected by high-light exposure in normal air, suffered pronounced photoinhibition when the exposure was made under conditions that prevent photosynthetic gas exchange (2% O2, 0% CO2). However, they were still less susceptible than shade leaves, indicating that the higher capacity for energy dissipation via photosynthesis is not the only cause of their lower susceptibility. The rate constant for recovery from photoinhibition was much higher in mature sun leaves than in mature shade leaves, indicating that differences in the capacity for continuous repair may in part account for the difference in their susceptibility to photoinhibition.Abbreviations and symbols kDa kilodalton - LHC-II light-harvesting chlorophyll-protein complex - PFD photon flux density (photon fluence rate) - PSI, PSII photosystem I, II - F O, F M, F V instantaneous, maximum, variable fluorescence emission - absorptance - a photon yield of O2 evolution (absorbed light) C.I.W.-D.P.B. Publication No. 925  相似文献   

19.
D. H. Greer  W. A. Laing  T. Kipnis 《Planta》1988,174(2):152-158
Photoinhibition of photosynthesis was induced in attached leaves of kiwifruit grown in natural light not exceeding a photon flux density (PFD) of 300 mol·m-2·s-1, by exposing them to a PFD of 1500 mol·m-2·s-1. The temperature was held constant, between 5 and 35° C, during the exposure to high light. The kinetics of photoinhibition were measured by chlorophyll fluorescence at 77K and the photon yield of photosynthetic O2 evolution. Photoinhibition occurred at all temperatures but was greatest at low temperatures. Photoinhibition followed pseudo first-order kinetics, as determined by the variable fluorescence (F v) and photon yield, with the long-term steady-state of photoinhibition strongly dependent on temperature wheareas the observed rate constant was only weakly temperature-dependent. Temperature had little effect on the decrease in the maximum fluorescence (F m) but the increase in the instantaneous fluorescence (F o) was significantly affected by low temperatures in particular. These changes in fluorescence indicate that kiwifruit leaves have some capacity to dissipate excessive excitation energy by increasing the rate constant for non-radiative (thermal) energy dissipation although temperature apparently had little effect on this. Direct photoinhibitory damage to the photosystem II reaction centres was evident by the increases in F o and extreme, irreversible damage occurred at the lower temperatures. This indicates that kiwifruit leaves were most susceptible to photoinhibition at low temperatures because direct damage to the reaction centres was greatest at these temperatures. The results also imply that mechanisms to dissipate excess energy were inadequate to afford any protection from photoinhibition over a wide temperature range in these shade-grown leaves.Abbreviations and symbols fluorescence yield correction coefficient - F o, F m, F v instantaneous, maximum, variable fluorescence - K D, K F, K P, K T rate constants for non-radiative energy dissipation, fluorescence, photochemistry, energy transfer to photosystem I - PFD photon flux density - PSI, II photosystem I, II - i photon yield of photosynthesis (incident light)  相似文献   

20.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm′, Fv′, NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm′, as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (P N) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4–5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号