首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nuclear lamina is located between the inner nuclear membrane and the peripheral chromatin. It is composed of both peripheral and integral membrane proteins, including lamins and lamina-associated proteins. Lamins can interact with one another, with lamina-associated proteins, with nuclear scaffold proteins, and with chromatin. Likewise, most of the lamina-associated proteins are likely to interact directly with chromatin. The nuclear lamina is required for proper cell cycle regulation, chromatin organization, DNA replication, cell differentiation, and apoptosis. Mutations in proteins of the nuclear lamina can disrupt these activities and cause genetic diseases. The structure and assembly of the nuclear lamina proteins and their roles in chromatin organization and cell cycle regulation were recently reviewed. In this review, we discuss the roles of the nuclear lamina in DNA replication and apoptosis and analyze how mutations in nuclear lamina proteins might cause genetic diseases.  相似文献   

3.
The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.  相似文献   

4.
5.
The CCN family of proteins consists of 6 members (CCN1-CCN6) that share conserved functional domains. These matricellular proteins interact with growth factors, extracellular matrix (ECM) proteins, cell surface integrins and other receptors to promote ECM-intracellular signaling. This signaling leads to propagation of a variety of cellular actions, including adhesion, invasion, migration and proliferation within several cell types, including epithelial, endothelial and smooth muscle cells. Though CCNs share significant homology, the function of each is unique due to distinct and cell specific expression patterns. Thus, their correct spatial and temporal expressions are critical during embryonic development, wound healing, angiogenesis and fibrosis. Disruption of these patterns leads to severe development disorders and contributes to the pathological progression of cancers, vascular diseases and chronic inflammatory diseases such as colitis, rheumatoid arthritis and atherosclerosis. While the effects of CCNs are diverse, this review will focus on the role of CCNs within the vasculature during development and in vascular diseases.  相似文献   

6.
RETINOBLASTOMA-RELATED (RBR) proteins are plant homologs of the human tumor suppressor pRB. Similar to their animal counterparts they have roles in cell cycle regulation and differentiation. We discuss recent findings of the evolution of RBR functions ranging from a molecular ruler and metabolic integrator in algae to a coordinator of differentiation in gametophytes. Genetic analysis and manipulation of protein levels during gametophytic and post-embryonic plant development are now providing new insights into the function of RBR in stem cell maintenance, cell specification and differentiation. We briefly explain interactions of RBR with chromatin-modifying complexes that appear to be a central underlying molecular mechanism during developmental transitions.  相似文献   

7.
8.
Genetic and molecular roles of Otx homeodomain proteins in head development   总被引:2,自引:0,他引:2  
Acampora D  Gulisano M  Simeone A 《Gene》2000,246(1-2):23-35
  相似文献   

9.
Biogeochemistry is the discipline that strives to understand intricate processes, often microbially mediated ones, that transform and recycle both organic and inorganic substances in soils, sediments, and waters. These processes, manifestations of diverse and highly evolved cellular mechanisms catalyzed by Bacteria and Archaea, maintain the biosphere. Progress in biogeochemistry relies upon the underlying science of environmental microbiology. Over the last 2 years, important discoveries have advanced the ecological, physiological, biochemical, and genomic bases for a variety of microbiological processes including anaerobic methane oxidation, photosynthesis, phosphorous uptake, biodegradation of organic pollutants, and numerous aspects of the nitrogen and sulfur cycles. Here recent literature is assessed and placed within a five-stage paradigm for making scientific progress in environmental microbiology, biogeochemistry, and biotechnology.  相似文献   

10.
11.
A number of ion channels contain transmembrane (TM) alpha-helices that contain proline-induced molecular hinges. These TM helices include the channel-forming peptide alamethicin (Alm), the S6 helix from voltage-gated potassium (Kv) channels, and the D5 helix from voltage-gated chloride (CLC) channels. For both Alm and KvS6, experimental data implicate hinge-bending motions of the helix in an aspect of channel gating. We have compared the hinge-bending motions of these TM helices in bilayer-like environments by multi-nanosecond MD simulations in an attempt to describe motions of these helices that may underlie possible modes of channel gating. Alm is an alpha-helical channel-forming peptide, which contains a central kink associated with a Gly-x-x-Pro motif in its sequence. Simulations of Alm in a TM orientation for 10 ns in an octane slab indicate that the Gly-x-x-Pro motif acts as a molecular hinge. The S6 helix from Shaker Kv channels contains a Pro-Val-Pro motif. Modeling studies and recent experimental data suggest that the KvS6 helix may be kinked in the vicinity of this motif. Simulations (10 ns) of an isolated KvS6 helix in an octane slab and in a POPC bilayer reveal hinge-bending motions. A pattern-matching approach was used to search for possible hinge-bending motifs in the TM helices of other ion channel proteins. This uncovered a conserved Gly-x-Pro motif in TM helix D5 of CLC channels. MD simulations of a model of hCLC1-D5 spanning an octane slab suggest that this channel also contains a TM helix that undergoes hinge-bending motion. In conclusion, our simulations suggest a model in which hinge-bending motions of TM helices may play a functional role in the gating mechanisms of several different families of ion channels.  相似文献   

12.
13.
The TOPDOM database is a collection of domains and sequence motifs located consistently on the same side of the membrane in alpha-helical transmembrane proteins. The database was created by scanning well-annotated transmembrane protein sequences in the UniProt database by specific domain or motif detecting algorithms. The identified domains or motifs were added to the database if they were uniformly annotated on the same side of the membrane of the various proteins in the UniProt database. The information about the location of the collected domains and motifs can be incorporated into constrained topology prediction algorithms, like HMMTOP, increasing the prediction accuracy. AVAILABILITY: The TOPDOM database and the constrained HMMTOP prediction server are available on the page http://topdom.enzim.hu CONTACT: tusi@enzim.hu; lkalmar@enzim.hu.  相似文献   

14.
“Moonlighting protein” is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.  相似文献   

15.
A lack of individual plastid ribosomal proteins (PRPs) can have diverse phenotypic effects in Arabidopsis thaliana, ranging from embryo lethality to compromised vitality, with the latter being associated with photosynthetic lesions and decreases in the expression of plastid proteins. In this study, reverse genetics was employed to study the function of eight PRPs, five of which (PRPS1, ‐S20, ‐L27, ‐L28 and ‐L35) have not been functionally characterised before. In the case of PRPS17, only leaky alleles or RNA interference lines had been analysed previously. PRPL1 and PRPL4 have been described as essential for embryo development, but their mutant phenotypes are analysed in detail here. We found that PRPS20, ‐L1, ‐L4, ‐L27 and ‐L35 are required for basal ribosome activity, which becomes crucial at the globular stage and during the transition from the globular to the heart stage of embryogenesis. Thus, lack of any of these PRPs leads to alterations in cell division patterns, and embryo development ceases prior to the heart stage. PRPL28 is essential at the latest stages of embryo–seedling development, during the greening process. PRPS1, ‐S17 and ‐L24 appear not to be required for basal ribosome activity and the organism can complete its entire life cycle in their absence. Interestingly, despite the prokaryotic origin of plastids, the significance of individual PRPs for plant development cannot be predicted from the relative phenotypic severity of the corresponding mutants in prokaryotic systems.  相似文献   

16.
Multiscale simulation is employed to examine changes in atomistic-level protein structure due to long wavelength membrane undulations and plane stress fields. An ensemble of atomistic-level simulations of a model of a transmembrane influenza A virus M2 proton channel in a dimyristoylphosphatidylcholine (DMPC) bilayer is coupled to a corresponding mesoscopic model of a DMPC bilayer in an explicit mesoscopic solvent. Structural variations in the key proton gating His37 residues of the M2 channel are examined. Small, but distinct variations in the structure of the His37 residues are observed in both the open and closed states of the channel as a result of the coupling to mesoscopic-level membrane motions.  相似文献   

17.
Britto DT  Kronzucker HJ 《Planta》2003,217(3):490-497
The relationships among cellular ion fluxes, ion compartmentation, and the turnover kinetics of cytosolic ion pools are crucial to the understanding of the regulatory mechanisms and thermodynamic gradients that determine plasma membrane ion fluxes. We here provide an analysis of published data to quantify these relationships for the two major nutrient elements in plants, nitrogen and potassium. We discuss the implications of these relationships for plant ion fluxes in general, and focus more specifically on problems associated with the accurate measurement of fluxes to and from rapidly exchanging pools, particularly the cytosolic calcium pool.  相似文献   

18.
19.
In recent decades, major progress has been made in the design of water-soluble proteins, yet the design of transmembrane proteins has lagged considerably. Despite their biological and pharmaceutical importance, only a limited number of transmembrane proteins have been successfully designed owing to the complexity of the membrane environment and difficulties in experimental characterization. Here, we introduce principles for transmembrane protein design in general and discuss design examples, including scaffold proteins and functional proteins. We also discuss how developments in design methods have advanced the field and what we may achieve with recent breakthroughs in structural biology.  相似文献   

20.
The PAR proteins: fundamental players in animal cell polarization   总被引:10,自引:0,他引:10  
The par genes were discovered in genetic screens for regulators of cytoplasmic partitioning in the early embryo of C. elegans, and encode six different proteins required for asymmetric cell division by the worm zygote. Some of the PAR proteins are localized asymmetrically and form physical complexes with one another. Strikingly, the PAR proteins have been found to regulate cell polarization in many different contexts in diverse animals, suggesting they form part of an ancient and fundamental mechanism for cell polarization. Although the picture of how the PAR proteins function remains incomplete, cell biology and biochemistry are beginning to explain how PAR proteins polarize cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号