首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature of the complexes of histones H1 and H5 and their globular domains (GH1 and GH5) with DNA suggested two DNA-binding sites which are likely to be the basis of the preference of H1 and H5 for the nucleosome, compared with free DNA. More recently the X-ray and NMR structures of GH5 and GH1, respectively, have identified two basic clusters on opposite sides of the domains as candidates for these sites. Removal of the positive charge at either location by mutagenesis impairs or abolishes the ability of GH5 to assemble cooperatively in ''tramline'' complexes containing two DNA duplexes, suggesting impairment or loss of its ability to bind two DNA duplexes. The mutant forms of GH5 also fail to protect the additional 20 bp of nucleosomal DNA that are characteristically protected by H1, H5 and wild-type recombinant GH5. They still bind to H1/H5-depleted chromatin, but evidently inappropriately. These results confirm the existence of, and identify the major components of, two DNA-binding sites on the globular domain of histone H5, and they strongly suggest that both binding sites are required to position the globular domain correctly on the nucleosome.  相似文献   

2.
The globular domain of histone H5 (GH5) was prepared by trypsin digestion of H5 that was extracted from chicken erythrocyte nuclei with NaCl. Electron microscopy, sucrose gradient centrifugation, native agarose gel electrophoresis and equilibrium density gradient ultracentrifugation show that GH5 binds co-operatively to double-stranded DNA. The electron microscopic images suggest that the GH5-DNA complexes are very similar in structure to co-operative complexes of intact histone H1 (or its variants) with double-stranded DNA, studied previously, which have been proposed to consist of two parallel DNA double helices sandwiching a polymer of the protein. For complexes with GH5 or with intact H1, naked DNA co-sediments with the protein-DNA complexes through sucrose gradients, and DNA also appears to protrude from the ends and sides of the complexes; measurements of the protein-DNA stoichiometry in fractionated samples may not reflect the stoichiometry in the complexes. An estimate of the stoichiometry obtained from the buoyant density of fixed GH5-DNA complexes in CsCl suggests that sufficient GH5 is present in the complexes for the GH5s to be in direct contact, as required by a simple molecular mechanism for the co-operative binding. Chemical crosslinking demonstrates that GH5s are in close proximity in the complexes. In the absence of DNA, GH5-GH5 interactions are weak or non-existent.  相似文献   

3.
Crystallization of the globular domain of histone H5   总被引:1,自引:0,他引:1  
The globular domain of histone H1/H5 binds to the nucleosome and is crucial for the formation of chromatin higher order structure. We have expressed in Escherichia coli a gene that codes for the globular domain of H5. The protein produced in E. coli is functional in nucleosome binding assays. We have obtained crystals of the protein that diffract to beyond 2.5 A (1 A = 0.1 nm) resolution. The crystals are orthorhombic with unit cell dimensions of a = 80.1 A, b = 67.5 A and c = 38.0 A.  相似文献   

4.
The globular domain of the linker histone H5 has been expressed in Escherichia coli. The purified peptide is functional as it permits chromatosome protection during micrococcal nuclease digestion of chromatin reconstituted with the peptide, indicating that it binds correctly at the dyad axis of the nucleosomal core particle. The globular domain residue lysine 64 is highly conserved within the linker histone family, and site-directed mutagenesis has been used to assess the importance of this residue in the binding of the globular domain of linker histone H5 to the nucleosome. Recombinant peptides mutated at lysine 64 are unable to elicit chromatosome protection to the same degree as the wild-type peptide, and since they appear to be fully folded, these observations confirm a major role for this residue in determining the effective interaction between the globular domain of histone H5 and the nucleosome.  相似文献   

5.
We describe a chemical investigation of the nucleosome binding site(s) on histone H5. Selective radiolabelling by reductive methylation has led to the identification of lysine residues in H5 that are protected by its association with chromatin. The most strongly protected lysine is Lys-85 which occurs in the globular domain, in a region that is highly conserved between H5 and H1, and in H1 variants, and which probably constitutes a strong binding site for DNA where it enters and leaves the nucleosome. Lysines in the amino-terminal and lysine-rich carboxy-terminal tails are only weakly protected against chemical modification, suggesting a different mode of interaction with DNA.  相似文献   

6.
Histone H5 contains three tyrosines in the central, apolar region of the molecule. All three tyrosines can be spin labeled at low ionic strength. When the central globular domain is folded at high ionic strength, only one tyrosine becomes accessible to the imidazole spin label. Spin labeling the buried tyrosines prevents the folding of the globular structure, which, in turn, affects the proper binding of the H5 molecule to stripped chromatin. Chromatin complexes reconstituted from such an extensively modified H5 molecule show a weaker protection of the 168 base pair chromatosome during nuclease digestion. However, when only the surface tyrosine of the H5 molecule is labeled, such a molecule can still bind correctly to stripped chromatin, yielding a complex very similar to that of native chromatin. Our data supports the idea that not just the presence of the linker histone H5, but the presence of an intact H5 molecule with a folded, globular central domain in essential in the recognition of its specific binding sites on the nucleosomes. Our data also show that during the chromatin condensation process, the tumbling environment of the spin label attached to the surface tyrosine in the H5 molecule is not greatly hindered but remains partially mobile. This suggests that either the labeled domain of the H5 molecule is not directly involved in the condensation process or the formation of the higher-order chromatin structure does not result is a more viscous or tighter environment around the spin label. The folded globular domain of H5 molecule serves in stabilizing the nucleosome structure, as well as the higher-order chromatin structure.  相似文献   

7.
Tetanus neurotoxin binds via its carboxyl-terminal H(C)-fragment selectively to neurons mediated by complex gangliosides. We investigated the lactose and sialic acid binding pockets of four recently discovered potential binding sites employing site-directed mutagenesis. Substitution of residues in the lactose binding pocket drastically decreased the binding of the H(C)-fragment to immobilized gangliosides and to rat brain synaptosomes as well as the inhibitory action of recombinant full length tetanus neurotoxin on exocytosis at peripheral nerves. The conserved motif of S(1287)XWY(1290) em leader G(1300) assisted by N1219, D1222, and H1271 within the lactose binding site comprises a typical sugar binding pocket, as also present, for example, in cholera toxin. Replacement of the main residue of the sialic acid binding site, R1226, again caused a dramatic decline in binding affinity and neurotoxicity. Since the structural integrity of the H(C)-fragment mutants was verified by circular dichroism and fluorescence spectroscopy, these data provide the first biochemical evidence that two carbohydrate interaction sites participate in the binding and uptake process of tetanus neurotoxin. The simultaneous binding of one ganglioside molecule to each of the two binding sites was demonstrated by mass spectroscopy studies, whereas ganglioside-mediated linkage of native tetanus neurotoxin molecules was ruled out by size exclusion chromatography. Hence, a subsequent displacement of one ganglioside by a glycoprotein receptor is discussed.  相似文献   

8.
The linker histones are involved in the salt-dependent folding of the nucleosomes into higher-order chromatin structures. To better understand the mechanism of action of these histones in chromatin, we studied the interactions of the linker histone H1 with DNA at various histone/DNA ratios and at different ionic strengths. In direct competition experiments, we have confirmed the binding of H1 to superhelical DNA in preference to linear or nicked circular DNA forms. We show that the electrophoretic mobility of the H1/supercoiled DNA complex decreases with increasing H1 concentrations and increases with ionic strengths. These results indicate that the interaction of the linker histone H1 with supercoiled DNA results in a soluble binding of H1 with DNA at low H1 or salt concentrations and aggregation at higher H1 concentrations. Moreover, we show that H1 dissociates from the DNA or nucleosomes at high salt concentrations. By the immobilized template pull-down assay, we confirm these data using the physiologically relevant nucleosome array template.  相似文献   

9.
Histone variants within the H2A family show high divergences in their C-terminal regions. In this work, we have studied how these divergences and in particular, how a part of the H2A COOH-terminus, the docking domain, is implicated in both structural and functional properties of the nucleosome. Using biochemical methods in combination with Atomic Force Microscopy and Electron Cryo-Microscopy, we show that the H2A-docking domain is a key structural feature within the nucleosome. Deletion of this domain or replacement with the incomplete docking domain from the variant H2A.Bbd results in significant structural alterations in the nucleosome, including an increase in overall accessibility to nucleases, un-wrapping of ~10 bp of DNA from each end of the nucleosome and associated changes in the entry/exit angle of DNA ends. These structural alterations are associated with a reduced ability of the chromatin remodeler RSC to both remodel and mobilize the nucleosomes. Linker histone H1 binding is also abrogated in nucleosomes containing the incomplete docking domain of H2A.Bbd. Our data illustrate the unique role of the H2A-docking domain in coordinating the structural-functional aspects of the nucleosome properties. Moreover, our data suggest that incorporation of a 'defective' docking domain may be a primary structural role of H2A.Bbd in chromatin.  相似文献   

10.
Trypsin digestion is used to investigate the conformation of histone H5 when bound to DNA. A central region of H5 comprising residues (22--100) is found to be resistant to digestion and it is concluded that this region is compacted whilst the remaining N- and C-terminal regions are more extended. Since this is the same result found previously for the free solution conformation of histone H5 it follows that a 3-domain structure is preserved on DNA binding. The binding of H5 and the central region (22--100) to DNA is also studied using proton magnetic resonance (270 MHz) and a precipitation approach. It is concluded that all 3 domains of H5 bind to DNA at low ionic strengths. The central domain (residues 22--100) is released at 0.3--0.4 M NaCl, but 0.7 M NaCl is required to release the N- and C-terminal regions. Comparison is made of H5 binding to DNA with that of the related histone H1.  相似文献   

11.
Linker histone H1 is the major factor that stabilizes higher order chromatin structure and modulates the action of chromatin-remodeling enzymes. We have previously shown that parathymosin, an acidic, nuclear protein binds to histone H1 in vitro and in vivo. Confocal laser scanning microscopy reveals a nuclear punctuate staining of the endogenous protein in interphase cells, which is excluded from dense heterochromatic regions. Using an in vitro chromatin reconstitution system under physiological conditions, we show here that parathymosin (ParaT) inhibits the binding of H1 to chromatin in a dose-dependent manner. Consistent with these findings, H1-containing chromatin assembled in the presence of ParaT has reduced nucleosome spacing. These observations suggest that interaction of the two proteins might result in a conformational change of H1. Fluorescence spectroscopy and circular dichroism-based measurements on mixtures of H1 and ParaT confirm this hypothesis. Human sperm nuclei challenged with ParaT become highly decondensed, whereas overexpression of green fluorescent protein- or FLAG-tagged protein in HeLa cells induces global chromatin decondensation and increases the accessibility of chromatin to micrococcal nuclease digestion. Our data suggest a role of parathymosin in the remodeling of higher order chromatin structure through modulation of H1 interaction with nucleosomes and point to its involvement in chromatin-dependent functions.  相似文献   

12.
The JIL-1 histone H3S10 kinase in Drosophila localizes specifically to euchromatic interband regions of polytene chromosomes and is enriched 2-fold on the male X chromosome. JIL-1 can be divided into four main domains including an NH(2)-terminal domain, two separate kinase domains, and a COOH-terminal domain. Our results demonstrate that the COOH-terminal domain of JIL-1 is necessary and sufficient for correct chromosome targeting to autosomes but that both COOH- and NH(2)-terminal sequences are necessary for enrichment on the male X chromosome. We furthermore show that a small 53-amino acid region within the COOH-terminal domain can interact with the tail region of histone H3, suggesting that this interaction is necessary for the correct chromatin targeting of the JIL-1 kinase. Interestingly, our data indicate that the COOH-terminal domain alone is sufficient to rescue JIL-1 null mutant polytene chromosome defects including those of the male X chromosome. Nonetheless, we also found that a truncated JIL-1 protein which was without the COOH-terminal domain but retained histone H3S10 kinase activity was able to rescue autosome as well as partially rescue male X polytene chromosome morphology. Taken together these findings indicate that JIL-1 may participate in regulating chromatin structure by multiple and partially redundant mechanisms.  相似文献   

13.
14.
Linker histones (H1) are the basic proteins in higher eukaryotes that are responsible for the final condensation of chromatin. In contrast to the nucleosome core histone proteins, the role of H1 in compacting DNA is not clearly understood. In this study ITC was used to measure the binding constant, enthalpy change, and binding site size for the interactions of H10, or its C-terminal (H10-C) and globular (H10-G) domains to highly polymerized calf-thymus DNA at temperatures from 288 K to 308 K. Heat capacity changes, ΔCp, for these same H10 binding interactions were estimated from the temperature dependence of the enthalpy changes. The enthalpy changes for binding H10, H10-C, or H10-G to CT-DNA are all endothermic at 298 K, becoming more exothermic as the temperature is increased. The ΔH for binding H10-G to CT-DNA is exothermic at temperatures above approximately 300 K. Osmotic stress experiments indicate that the binding of H10 is accompanied by the release of approximately 35 water molecules.We estimate from our naked DNA titration results that the binding of the H10 to the nucleosome places the H10 protein in close contact with approximately 41 DNA bp. The breakdown is that the H10 carboxyl terminus interacts with 28 bp of linker DNA on one side of the nucleosome, the H10 globular domain binds directly to 7 bp of core DNA, and shields another 6 linker DNA bases, 3 bp on either side of the nucleosome where the linker DNA exits the nucleosome core.  相似文献   

15.
《Epigenetics》2013,8(2):112-117
Post-translational modifications (PTM) of histones are key regulators of chromatin function. New mass spectometrical technologies have revealed that PTMs are not restricted to the histone tails, but can also be found in the globular domains, especially at the DNA-binding surface of the nucleosomes. Recent work on this new group of epigenetic marks showed that these modifications have not only the potential to alter the physical properties of the nucleosome, but may act as signals that regulate the recruitment of effector proteins to chromatin as well.  相似文献   

16.
17.
Ramesh S  Bharath MM  Chandra NR  Rao MR 《FEBS letters》2006,580(25):5999-6006
A comparison of the globular domain sequences of the somatic H1d and testis-specific H1t revealed a single substitution of lysine 52 in H1d to glutamine 54 in H1t, which is one of the three crucial residues within the second DNA binding site. The globular domains of both histones were modeled using the crystal structure of chicken GH5 as a template and was also docked onto the nucleosome structure. The glutamine residue in histone H1t forms a hydrogen bond with main chain carbonyl of methionine-52 (in H1t) and is spatially oriented away from the nucleosome dyad axis. A consequence of this change was a lower affinity of recombinant histone H1t towards Four-way junction DNA and reconstituted 5S mononucleosomes. When Gln-54 in Histone H1t was mutated to lysine, its binding affinity towards DNA substrates was comparable to that of histone H1d. The differential binding of histones H1d and H1t towards reconstituted mononucleosomes was also reflected in the chromatosome-stop assay.  相似文献   

18.
Mapping the binding of monoclonal antibodies to histone H5   总被引:2,自引:0,他引:2  
E Mendelson  B J Smith  M Bustin 《Biochemistry》1984,23(15):3466-3471
The binding sites of nine monoclonal antibodies along the polypeptide chain of histone H5 were mapped. Immunoblotting experiments with peptides generated from H5 by trypsin digestion, N-bromosuccinimide cleavage, and cyanogen bromide cleavage revealed that all of the monoclonal antibodies reacted with the globular region of H5 which is encompassed by amino acid residues 22-98. Within this globular segment, the epitopes could be subdivided into three regions. Monoclonals 1G11, 2E5, and 2H5 bind to residues 28-31. The close proximity of the epitopes was verified by a competitive enzyme-linked immunosorbent assay and by their binding pattern to a tryptic digest of H5. Monoclonals 4C6, 6E12, and 2E12 bind to a region encompassed by amino acids 28-53 while monoclonals 4H7, 1C3, and 3H9 bind to a region encompassed by residues 53-98. Precise localization of the epitopes in the primary sequence of H5 will allow detailed studies on the mode of binding of H5 to core particles in chromatin.  相似文献   

19.
Previous work has shown that DNA and the histone proteins will combine to form structures of a complex, yet definite nature. Here, we describe three experiments aimed at a better understanding of the interactions of DNA with the histone octamer and with histone H5. First, there has been some question as to whether the methylation of DNA could influence its folding about the histone octamer. To address this point, we reconstituted the histone octamer onto a 440 base-pair DNA of defined sequence at various levels of cytosine methylation, and also onto the unmethylated DNA. The reconstituted structures were probed by digestion with two different enzymes, micrococcal nuclease and DNase I. All samples were found to contain what appear to be three histone octamers, bound in close proximity on the 440 base-pair DNA. The cutting patterns of micrococcal nuclease and DNase I remain the same in all cases, even if the DNA has been extensively methylated. The results show, therefore, that methylation has little, or no, influence on the folding of this particular DNA about the histone octamer. Second, there has been concern as to whether the base sequence of DNA could determine its folding in a long molecule containing several nucleosomes, just as it does within any single, isolated nucleosome core. In order to deal with this problem, we cut the 440 base-pair DNA into three short fragments, each of nucleosomal length; we reconstituted each separately with the histone octamer; and then we digested the reconstituted complexes with DNase I for comparison with similar data from the intact 440 base-pair molecule. The results show that the folding of this DNA is influenced strongly by its base sequence, both in the three short fragments and in the long molecule. The rotational setting of the DNA within each of the three short fragments is as predicted from a computer algorithm, which measures its homology to 177 known examples of nucleosome core DNA. The rotational setting of the DNA in the 440 base-pair molecule remains the same as in two of the three short fragments, but changes slightly in a third case, apparently because of steric requirements when the nucleosomes pack closely against one another. Finally, there has been little direct evidence of where histone H5 binds within a DNA-octamer complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
We previously documented condensation of the H1 CTD consistent with adoption of a defined structure upon nucleosome binding using a bulk FRET assay, supporting proposals that the CTD behaves as an intrinsically disordered domain. In the present study, by determining the distances between two different pairs of sites in the C-terminal domain of full length H1 by FRET, we confirm that nucleosome binding directs folding of the disordered H1 C-terminal domain and provide additional distance constraints for the condensed state. In contrast to nucleosomes, FRET observed upon H1 binding to naked DNA fragments includes both intra- and inter-molecular resonance energy transfer. By eliminating inter-molecular transfer, we find that CTD condensation induced upon H1-binding naked DNA is distinct from that induced by nucleosomes. Moreover, analysis of fluorescence quenching indicates that H1 residues at either end of the CTD experience distinct environments when bound to nucleosomes, and suggest that the penultimate residue in the CTD (K195) is juxtaposed between the two linker DNA helices, proposed to form a stem structure in the H1-bound nucleosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号