共查询到20条相似文献,搜索用时 0 毫秒
1.
Defining Responsiveness of Avian Cochlear Neurons to Brain-Derived Neurotrophic Factor and Nerve Growth Factor by HSV-1-Mediated Gene Transfer 总被引:5,自引:0,他引:5
Juan José Garrido Maria Teresa Alonso Filip Lim Estela Carnicero Fernando Giraldez Thomas Schimmang 《Journal of neurochemistry》1998,70(6):2336-2346
Abstract: The importance of individual members of the neurotrophin gene family for avian inner ear development is not clearly defined. Here we address the role of two neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), for innervation of the chicken cochlea. We have used defective herpes simplex virus type 1 (HSV-1) vectors, or amplicons, to express these neurotrophins in dissociated cultures of cochlear neurons. HSV-1-mediated expression of BDNF promotes neuronal survival similar to the maximal level seen by exogenously added BDNF and exceeds its potency to produce neurite outgrowth. In contrast, cochlear neurons transduced with an amplicon producing bioactive NGF show no response. These results confirm BDNF as an important mediator of neurotrophin signaling inside avian cochlear neurons. However, these neurons can be rendered NGF-responsive by transducing them with the high-affinity receptor for NGF, TrkA. This study underlines the usefulness of amplicons to study and modify neurotrophin signaling inside neurons. 相似文献
2.
Phosphatidylinositol (PI) breakdown represents a powerful system participating in the transduction mechanism of some neurotransmitters and growth factors and producing two second messengers, diacylglycerol and inositol trisphosphate. The transformation of PC12 neuroblastoma cells into neuron-like cells induced by nerve growth factor (NGF) is preceded by a rapid stimulation of PI breakdown; however, it was not known whether PI breakdown mediates actions of other members of the neurotrophin family. The present study analyzed the effects of NGF, brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) on PI breakdown in primary cultures of embryonic rat brain cells. Cultures were grown for 7 days; PI was then labeled by incubating cultures with myo-[3H]inositol, which then were exposed acutely to growth factors. BDNF and NT-3, but not NGF, elevated the levels of labeled inositol phosphates within 10-15 min after addition to the cultures in a dose-dependent manner. ED50 values for BDNF and NT-3 were 12.4 and 64.5 ng/ml, respectively. Comparable effects were found in cultures of cortical, striatal, and septal cells. The actions of BDNF and NT-3 probably reflect actions on neurons, because no effects were seen in cultures of nonneuronal cells. In contrast, basic fibroblast growth factor induced a marked stimulation of PI breakdown in cultures of nonneuronal cells. K252b, which selectively blocks neurotrophin actions by inhibiting trk-type receptor proteins, prevented the PI breakdown mediated by BDNF and NT-3. The findings suggest that rapid and specific induction of PI breakdown is involved in the signal transduction of BDNF and NT-3, and they provide evidence that cortical neurons are functionally responsive to BDNF and NT-3 during development. 相似文献
3.
Production and Characterization of Recombinant Mouse Brain-Derived Neurotrophic Factor and Rat Neurotrophin-3 Expressed in Insect Cells 总被引:3,自引:0,他引:3
Sheryl L. Meyer Diane M. Lang M. Elizabeth Forbes Ernest Knight Jr. James D. Hirsch Stephen P. Trusko Richard W. Scott 《Journal of neurochemistry》1994,62(3):825-833
Abstract: Bioactive brain-derived neurotrophic factor (BDNF) and neurotrophin-3 were produced using the baculovirus expression system and purified to homogeneity using ion-exchange and reversed-phase chromatography. Yields of purified neurotrophin-3 (300–500 μg/L) were similar to levels reported for baculovirus-expressed nerve growth factor (NGF), whereas initial yields of BDNF were significantly lower (20–50 μg/L). Improved production of BDNF (150–200 μg/L) was achieved by expressing BDNF from a chimeric prepro-NGF/mature BDNF construct using the Trichoplusia ni insect cell line, Tn-5B1-4. Examination of the distribution of BDNF protein from both the nonchimeric prepro-BDNF and the chimeric prepro-NGF/mature BDNF viruses in Sf-21-and Tn-5B1-4-infected cells suggests a specific deficiency in the Tn-5B1-4 cells in processing the nonchimeric precursor. In addition, the vast majority of the BDNF protein at 2 days after infection was intracellular and insoluble. N-terminal amino acid sequencing of purified recombinant BDNF and neurotrophin-3 demonstrated that the insect cells processed their precursors to the correct N-terminus expected for the mature protein. Bioactivity was characterized in vitro on primary neuronal cultures from the CNS and PNS. 相似文献
4.
Distribution of Brain-Derived Neurotrophic Factor in Rats and Its Changes with Development in the Brain 总被引:18,自引:3,他引:18
Ritsuko Katoh-Semba Ikuo K. Takeuchi †Reiji Semba ‡Kanefusa Kato 《Journal of neurochemistry》1997,69(1):34-42
Abstract: A newly established, sensitive, two-site enzyme-immunoassay system for brain-derived neurotrophic factor (BDNF) is described. Using this system, we investigated the tissue distribution of BDNF and developmental changes in tissue levels of BDNF in rats. The minimal limit of detection of the assay was 3 pg/0.2 ml of assay mixture. BDNF was successfully solubilized from tissues in the presence of guanidine hydrochloride but not in any of the other buffers examined. In the rat brain at 1 month of age, the highest level of BDNF was detected in the hippocampus (5.41 ng/g of wet weight), followed by the hypothalamus (4.23 ng/g) and the septum (1.68 ng/g). In other regions, levels of BDNF ranged between 0.9 and 1.7 ng/g. The level of BDNF in the posterior lobes of the cerebellum from rats at 30 days of age was slightly higher than that in the anterior lobes. The concentration of BDNF increased in all regions of the brain with postnatal development. In peripheral tissues, BDNF was found at very low concentrations (0.65 ng/g in the spleen, 0.21 ng/g in the thymus, and 0.06 ng/g in the liver). The subfractionation of the hippocampal homogenate indicated that ∼50% of BDNF was contained in the crude nuclear fraction. Immunoblots of BDNF-immunoreactive proteins extracted from the hippocampus, hypothalamus, and cerebellum contained doublet bands of protein of ∼14 kDa, a value close to the molecular mass of recombinant human BDNF. Immunocytochemical investigations showed that, in the hippocampus, BDNF was localized in the nucleus of the granule cells in the dentate gyrus and of the cells in the pyramidal cell layer. The frequency of cells that were stained in the dentate gyrus was greater than that of cells in the pyramidal cell layer. 相似文献
5.
6.
Alessandro Negro Adriana Tavella Claudio Grandi Stephen D. Skaper 《Journal of neurochemistry》1994,62(2):471-478
Abstract: Rat brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) were engineered for expression in a baculovirus-infected Spodoptera frugiperda insect cell system. The BDNF and NT-3 from the culture supernatants were purified by ion-exchange and reverse-phase chromatography to apparent homogeneity. The purification procedure yielded ∼2 mg of pure rat BDNF or NT-3 per liter of culture supernatant. A single N-terminus only was found for either secreted molecule and was analogous to that predicted from the corresponding cDNA sequence. The recombinant neurotrophins obtained were also homogeneous with regard to molecular weight and amino acid sequence. In their native conformation, the insect cell-produced rat BDNF and NT-3 molecules were homodimers consisting of 119 amino acid polypeptide chains. Thus, although the genes transfected into the S. frugiperda cells coded for proBDNF or proNT-3, the BDNF and NT-3 recovered after purification were >95% fully processed, mature protein. Mature recombinant rat BDNF and NT-3 were found not to be significantly glycosylated. Pure, recombinant rat BDNF and NT-3 promoted the survival of embryonic dorsal root ganglion neurons in the low picomolar range. Because recombinant rat BDNF and NT-3 can be obtained in large quantities, purified to near homogeneity, and are identical in amino acid sequence to the corresponding human proteins, they are suitable for evaluation in animal models. 相似文献
7.
R Tremblay K. Hewitt H. Lesiuk G. Mealing P Morley & J. P. Durkin 《Journal of neurochemistry》1999,72(1):102-111
Abstract : Several lines of evidence indicate that a rapid loss of neuronal protein kinase C (PKC) activity is a characteristic feature of cerebral ischemia and is a necessary step in the NMDA-induced death of cultured neurons. Exposing embryonic day 18 primary rat cortical neurons to 50 μ M NMDA or 50 μ M glutamate for 10 min caused ~80% cell death over the next 24 h, but excitotoxic death was largely averted, i.e., by 70-80%, in cells pretreated with brain-derived neurotrophic factor (BDNF). An 8-h preexposure to BDNF (50-100 ng/ml) maximally protected cortical cells from the effects of NMDA and glutamate, although the transient application of BDNF between 8 and 4 h before NMDA was equally protective. These effects of BDNF were abolished at supralethal, i.e., >100 μ M , NMDA concentrations. It is significant that BDNF pretreatment prevented the inactivation of PKC in cortical cells normally seen 30 min to 2 h following lethal NMDA or glutamate exposure. This BDNF effect did not arise from changes in NMDA channel activity because neither whole-cell NMDA current amplitudes nor increases in intracellular free Ca2+ concentration were altered by the 8-h BDNF pretreatment. Furthermore, BDNF offered no neuroprotection to cells treated with the PKC inhibitors staurosporine (10-20 n M ), calphostin C (1-2.5 μ M ), or GF-109203X (100 n M ) at the time of NMDA addition. These results underscore the importance of PKC inactivation in glutamate-induced neuronal death. They also suggest that BDNF neuroprotection arises, at least in part, via its ability to block the mechanism by which pathophysiological Ca2+ influx through the NMDA receptor causes membrane PKC inactivation. 相似文献
8.
Eugenia Yakovchenko Michael Whalin Vilen Movsesyan Gordon Guroff 《Journal of neurochemistry》1996,67(2):540-548
Abstract: Receptors for insulin-like growth factor I (IGF-I) were studied on PC12EY cells, a subclone of PC12. Differentiation of PC12EY cells with nerve growth factor (NGF) did not alter either the number of IGF-I receptors nor their affinity for IGF-I. IGF-I receptors remained fully functional during differentiation, promoting increases in thymidine incorporation, glucose uptake, amino acid uptake, and the phosphorylation of the S6 protein of the ribosomes. IGF-I also increased the proportion of differentiated cells found in S-phase. But although the addition of IGF-I to naive cells caused an increase in cell number, there was no comparable increase when IGF-I was added to differentiated cells. Thus, although the receptor for IGF-I continues to be present and functional, IGF-I fails to induce cell proliferation in differentiated PC12 cells. 相似文献
9.
10.
Hans R. Widmer David R. Kaplan Stuart J. Rabin Klaus D. Beck Franz Hefti Beat Knüsel 《Journal of neurochemistry》1993,60(6):2111-2123
Abstract: Phospholipase Cγ1 (PLC-γ1) is involved at an early step in signal transduction of many hormones and growth factors and catalyzes the hydrolysis of phosphatidylinositol (PI) 4,5-bisphosphate to diacylglycerol and inositol trisphosphate, two potent intracellular second messenger molecules. The transformation of PC12 cells into neuron-like cells induced by nerve growth factor is preceded by a rapid stimulation of PLC-γ1 phosphorylation and PI hydrolysis. The present study analyzed the effects of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) on phosphorylation of PLC-γ1 in primary cultures of embryonic rat brain cells. BDNF and NT-3 stimulated the phosphorylation of PLC-γ1, followed by hydrolysis of PI. The stimulation of PLC-γ1 phosphorylation occurred within 20 s after addition of BDNF or NT-3 and lasted up to 30 min, with a peak after 4 min. ED50 values were similar for BDNF and NT-3, with τ25 ng/ml. Phosphorylation of PLC-γ1 by BDNF and NT-3 was found in cultures from all major brain areas. K-252b, a compound known to inhibit selectively neurotrophin actions by interfering with the phosphorylation of trk -type neurotrophin receptors, prevented the BDNF- and NT-3-stimulated phosphorylation of PLC-γ1. Receptors of the trk type were coprecipitated with anti-PLC-γ1 antibodies. The presence of trkB mRNA in the cultures was substantiated by northern blot analysis. The action of BDNF and NT-3 seems to be neuron specific because no phosphorylation of PLC-γ1 was observed in cultures of nonneuronal brain cells. The results provide evidence that developing neurons of the cerebral cortex and other brain areas are responsive to BDNF and NT-3, and they indicate that the transduction mechanism of BDNF and NT-3 in the brain involves rapid phosphorylation of PLC-γ1 followed by PI hydrolysis. 相似文献
11.
Acute Regulation of the Epidermal Growth Factor Receptor in Response to Nerve Growth Factor 总被引:2,自引:0,他引:2
PC12 cells possess specific receptors for both nerve growth factor and epidermal growth factor, and by an unknown mechanism, nerve growth factor is able to attenuate the propagation of a mitogenic response to epidermal growth factor. The differentiation response of PC12 cells to nerve growth factor, therefore, predominates over the proliferative response to epidermal growth factor. We have observed that the addition of nerve growth factor to PC12 cells rapidly produces a decrease in surface 125I-epidermal growth factor binding capacity. Unlike previously described nerve growth factor effects on 125I-epidermal growth factor binding capacity, which required several days of nerve growth factor exposure, the decreases we report occur within minutes of nerve growth factor addition: A 50% decrease in 125I-epidermal growth factor binding capacity is evident at 10 min. This rapid nerve growth factor response is concentration dependent; inhibition of 125I-epidermal growth factor binding is detectable at nerve growth factor levels as low as 0.2 ng/ml and is maximal at approximately 50 ng/ml, consistent with known ranges of biological activity. No demonstrable differences in the rate of epidermal growth factor receptor synthesis or degradation were observed in cells acutely exposed to nerve growth factor. Scatchard analysis revealed that acute nerve growth factor treatment decreased the number of both high- and low-affinity 125I-epidermal growth factor binding sites, while the receptor affinity remained unchanged. We have also investigated the involvement of various potential intracellular mediators of nerve growth factor action and of known intracellular modulatory systems of the epidermal growth factor receptor for their capacity to participate in this nerve growth factor activity. 相似文献
12.
Expression of Nerve Growth Factor and Nerve Growth Factor Receptor Genes in Human Tissues and in Prostatic Adenocarcinoma Cell Lines 总被引:8,自引:0,他引:8
Nerve growth factor (NGF) mRNAs were detected and quantified in a variety of normal and neoplastic human tissues by northern blot hybridization. Human heart contained the highest NGF mRNA levels, whereas lower but comparable levels were found in the placenta, prostate, and kidney. All tissues examined coexpressed the low-affinity NGF receptor (LNGFR), whereas none of these tissues expressed the high-affinity NGF receptor encoded by the trk protooncogene. The widespread distribution of the LNGFR suggests that it plays a role in the regulation of normal cell growth. No overexpression of NGF or LNGFR mRNA was detected in neoplastic tissues, whereas LNGFR-like immunoreactivity was localized outside of tumor cells. Transforming growth factor-alpha and protooncogene c-fos expression in these tissues did not show a systematic correlation with NGF/LNGFR expression. Furthermore, regulation of the human NGF gene was studied in DU145 cells, a prostatic adenocarcinoma cell line that synthesizes significant NGF mRNA levels. Serum induced, whereas dexamethasone inhibited, NGF mRNA synthesis in these cells. Serum induction was preceded by a rapid and transient activation of the c-fos protooncogene. 相似文献
13.
C. Anthony Altar Carolyn B. Boylan Michelle Fritsche Bruce E. Jones Carl Jackson Stanley J. Wiegand Ronald M. Lindsay Carolyn Hyman 《Journal of neurochemistry》1994,63(3):1021-1032
Abstract: Brain-derived neurotrophic factor (BDNF) promotes the survival of dopamine (DA) neurons, enhances expression of DA neuron characteristics, and protects these cells from 6-hydroxydopamine (6-OHDA) toxicity in vitro. We tested the ability of BDNF or neurotrophin-3 (NT-3) to exert similar protective effects in vivo during chronic delivery of 6-OHDA to the rat neostriatum. Chronic infusions of BDNF or NT-3 (12 µg/day) above the substantia nigra were started 6 days before and continued during an 8-day chronic intrastriatal infusion of 6-OHDA. In control and neurotrophin-treated animals, 6-OHDA treatment selectively depleted 50–60% of nigrostriatal DA nerve terminals but produced little if any loss of pars compacta DA cell bodies. This partial DA lesion resulted in three rotations per minute toward the lesioned hemisphere after treatment with the DA release-inducing drug d-amphetamine. Compared with supranigral infusions of vehicle, BDNF and NT-3 decreased the number of these ipsiversive rotations by 70 and 48% and increased by 20- and 10-fold, respectively, the number of contraversive rotations observed after amphetamine injection. When challenged with the DA receptor agonist apomorphine, BDNF- and NT-3-treated animals also exhibited a seven- and 3.5-fold increase in the number of contraversive rotations relative to the vehicle group, respectively. Compared with vehicle, BDNF increased striatal levels of homovanillic acid (HVA; 86%), 3,4-dihydroxyphenylacetic acid (DOPAC; 42%), and 5-hydroxyindoleacetic acid (5-HIAA; 32%) and the HVA/DA (43%) and 5-HIAA/serotonin (34%) ratios in the DA-denervated striatum. NT-3 augmented only striatal 5-HIAA levels (24%). Neither factor altered the 6-OHDA-induced decrease in striatal DA levels or high-affinity DA uptake and thus did not protect against the destruction of DA terminals and did not alter striatal D1 or D2 ligand binding. Choline, GABA, and glutamate uptake in the striatum were not altered by the lesion or neurotrophin treatment. Thus, BDNF and to a lesser extent NT-3 reverse rotational behavioral deficits and augment striatal DA and 5-HT metabolism in a partial DA lesion model. 相似文献
14.
Regulation by Interleukin-1 of Nerve Growth Factor Secretion and Nerve Growth Factor mRNA Expression in Rat Primary Astroglial Cultures 总被引:6,自引:4,他引:6
Primary cultures of neonatal rat cortical astrocytes contain low cellular levels (about 2 pg/mg of protein) of nerve growth factor (NGF), but secrete significant amounts of NGF into the culture medium (about 540 pg of NGF/mg of cell protein/38-h incubation). Incubation of astrocytes with interleukin-1 (IL-1) increased the cellular content of NGF and the amount secreted by about threefold. In comparison, cerebellar astrocytes secreted significant amounts of NGF, and the secretion was also stimulated by IL-1. The stimulatory action of IL-1 on astrocytes prepared from cortex was dose- and time-dependent. Concentrations of IL-1 causing half-maximal and maximal stimulation of NGF secretion were 1 and 10 U/ml, respectively). Maximal NGF secretion induced by IL-1 (10 U/ml) was seen following 38 h of incubation. The basal secretion of NGF was reduced by about 50% under Ca2(+)-free conditions; however, the percent stimulation of NGF secretion by IL-1 was the same in the absence or presence of Ca2+. The stimulatory action of IL-1 was specific, because other glial growth factors and cytokines were almost ineffective in stimulating NGF secretion from cortical astroglial cells. IL-1 treatment also increased cellular NGF mRNA content twofold. The results indicate that IL-1 specifically triggers a cascade of events, independent of cell growth, which regulate NGF mRNA content and NGF secretion by astrocytes. 相似文献
15.
NGF proteins probably act as informational molecules transferred from end organs to the neurons of the sympathetic nervous system. The direct demonstration of the NGF content of most end organs requires assays more sensitive than those currently available. The high levels of NGF produced by some organs are probably of some other physiological significance. 相似文献
16.
Abstract: The monosialoganglioside GM1 has been shown to possess neurotrophic activity in vitro and in vivo and is now used as an experimental treatment for a variety of neurological disorders and trauma. Little is known about the mechanism of action used by GM1. Because GM1 appears to enhance nerve growth factor (NGF) activity, we have used C6trk+ cells, a derivative of C6-2B glioma cells that express the high-affinity receptor for NGF trkA , to determine whether the neurotrophic effects of GM1 occurs through induction of trkA activity. Exposure of C6trk+ cells to NGF (10–50 ng/ml) resulted in a five- to 10-fold increase in trkA tyrosine phosphorylation within 5 min. Incubation of cells with GM1 resulted in a threefold increase in trkA phosphorylation beginning within 1 h and peaking between 3 and 6 h. Optimal responses to GM1 were obtained using 80–100 µ M concentrations. Moreover, tyrosine phosphorylation of known trkA target proteins, such as extracellular signal-regulated kinases, and suc -associated neurotrophic factor-induced tyrosine-phosphorylated target, were activated upon stimulation of C6trk+ cells with GM1. In addition, GM1 potentiated the NGF-mediated activation of tyrosine phosphorylation of trkA . GM1 failed to induce phosphorylation of trkA and target proteins in mock transfected cells. Thus, our data demonstrate that GM1 mimics some of the effects of NGF and suggest that the neurotrophic properties of GM1 may be attributed to its activation of trkA signal transduction. 相似文献
17.
Interferon Suppresses Sympathetic Neuronal Cell Death Caused by Nerve Growth Factor Deprivation 总被引:6,自引:1,他引:5
Cultured rat sympathetic neurons die within 48 h after being deprived of nerve growth factor. Addition of interferons (IFN-alpha/beta or IFN-gamma) prevented the cell death in a dose-dependent manner. Upon longer periods of nerve growth factor deprivation, IFNs failed to maintain survival. Thus, IFNs retarded neuronal death, but did not prevent it. Ligand binding, autoradiography, and cross-linking experiments demonstrated the presence of specific IFN-gamma receptors on sympathetic neurons similar to those seen on other cell types. The possible relationships of the death-suppressing actions of IFNs are compared to the mechanisms of the antiviral or antiproliferative actions of IFNs. 相似文献
18.
张文瑜 《现代生物医学进展》2007,7(2):306-308
神经营养因子(NTFs)是近几年神经科学研究的热点,研究显示它在神经系统中发挥独特的作用,尤其是神经生长因子(NGF)、脑源性神经营养因子(BDNF)在脑内功能及其表达调控方面具有重要作用。围绝经期妇女随着雌激素水平的降低会产生认知功能的减退,有研究发现去卵巢动物(OVX)雌激素水平降低可以导致某些NGF、BDNF的丢失。通过启动内源性NGF和BDNF的表达而实现对神经元的保护可能为雌激素替代治疗(ERT)脑保护作用的一种机制。本文就近几年的研究进展做一简要综述。 相似文献
19.
Jin Hee KIM Chan Woo PARK Hwa Young SONG Mi Young KIM Chang Ok CHOI Bong Hee LEE 《Entomological Research》2004,34(2):113-122
This study was conducted to investigate effects of brain‐derived neurotrophic factor (BDNF) on the neurite growth of deutocerebral neurons in vitro, and production of BDNF‐like neuropeptide from brain of the silk moth, Bombyx mori. In primary culture of antennal lobe (AL) neurons with BDNF, it promoted a significant neurite extension of putative AL projection neurons and an outgrowth of branches from principal neurites of putative AL interneurons. Results from immunolabeling of brain and retrocerebral complex showed that BDNF ‐like neuropeptide labeled in brain was synthesized by median and lateral neurosecretory cells, then transported to corpora allata for storage. 相似文献
20.
Nerve growth factor-stimulated mitogen-activated protein kinase (pp42/44MAP) kinase was characterized by sequential column chromatography on DEAE-Sephacel, phenyl-Sepharose CL4B, and S-200. The kinase displayed an apparent molecular mass of 42 kDa and reacted with an antiphosphotyrosine antibody. Peptide mapping of myelin basic protein revealed the presence of one phosphopeptide that was phosphorylated on Thr-97. pp42/44MAP kinase activity was dependent on Mg2+ and inhibited by K252a both in vitro and in vivo. Nerve growth factor-stimulated kinase activation was diminished by down-regulation of protein kinase C with 200 nM 12-phorbol 13-myristate acetate or with staurosporine (1 nM), a protein kinase C inhibitor. Genistein, a protein tyrosine kinase inhibitor, blocked nerve growth factor-mediated neurite extension as well as diminished activation of pp42/44MAP kinase. Our data demonstrate that activation of this kinase system by nerve growth factor displays a requirement for both protein kinase C as well as protein tyrosine kinase. In addition, other agents that are capable of promoting neurite outgrowth in PC12 cells, such as fibroblast growth factor or dibutyryl cyclic AMP, do so independently of activating this kinase system. 相似文献