首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
While considerable attempts have been made to recreate the high turnover rates of enzymes using synthetic enzyme mimics, most have failed and only a few have produced minimal reaction rates that can barely be considered catalytic. One particular approach we have focused on is the use of short-sequence peptides that contain key catalytic groups in close proximity. In this study, we designed six different peptides and tested their ability to mimic the catalytic mechanism of the cysteine proteases. Acetylation and deacylation by Ellman’s Reagent trapping experiments showed the importance of having phenylalanine groups surrounding the catalytic sites in order to provide greater proximity between the cysteine, histidine, and aspartate amino acid R-groups. We have also carried out all-atom molecular dynamics simulations to determine the distance between these catalytic groups and the overall mechanical flexibility of the peptides. We found strong correlations between the magnitude of fluctuations in the Cys-His distance, which determines the flexibility and interactions between the cysteine thiol and histidine imidazole groups, and the deacylation rate. We found that, in general, shorter Cys-His distance fluctuations led to a higher deacylation rate constant, implying that greater confinement of the two residues will allow a higher frequency of the acetyl exchange between the cysteine thiol and histidine imidazole R-groups. This may be the key to future design of peptide structures with molecular mechanical properties that lead to viable enzyme mimics.  相似文献   

4.
5.
Pyridoxal kinase catalyses the phosphorylation of the vitamin B6. A human brain pyridoxal kinase cDNA was isolated, and the recombinant enzyme was overexpressed in E. coli as a fusion protein with maltose binding protein (MBP). Pure pyridoxal kinase exhibits a molecular mass of about 40 kDa when examined by SDS-PAGE and FPLC gel filtration. The recombinant enzyme is a monomer endowed with catalytic activity, indicating that the native quaternary structure of pyridoxal kinase is not a prerequisite for catalytic function. Zn2+ is the most effective divalent cation in the phosphorylation of pyridoxal, and the human enzyme has maximum catalytic activity in the narrow pH range of 5.5-6.0. The Km values for two substrates pyridoxal and ATP are 97 microM and 12 microM, respectively. In addition, the unfolding processes of the recombinant enzyme were monitored by circular dichroism. The values of the free energy change of unfolding (AGo = 1.2 kcal x mol(-1) x K(-1)) and the midpoint transition (1 M) suggested that the enzyme is more stable than ovine pyridoxal kinase against denaturation by guanidine hydrochloride. Intrinsic fluorescence spectra of the human enzyme from red-edge excitation and fluorescence quenching experiments showed that the tryptophanyl residues are not completely exposed and more accessible to neutral acrylamide than to the negatively charged iodide. The first complete set of catalytic and structural properties of human pyridoxal kinase provide valuable information for further biochemical studies on this enzyme.  相似文献   

6.
A new enzyme that specifically inactivates apo-protein of pyridoxal enzymes   总被引:3,自引:0,他引:3  
We found a new inactivating enzyme in small intestine and skeletal muscles, which specifically reacts with apo-proteins of pyridoxal enzymes. This inactivating enzyme does not react with all the non-pyridoxal enzymes tested. The inactivation by this enzyme is prevented by the addition of PALP. The enzyme splits apo-pyridoxal enzymes into smaller protein and oligopeptides. The activity of inactivating enzyme increases from 10–20 fold only in the case of B6 deficiency compaired with that of normal rats.  相似文献   

7.
8.
Antimicrobial dendrimeric peptides.   总被引:2,自引:0,他引:2  
Dendrimeric peptides selective for microbial surfaces have been developed to achieve broad antimicrobial activity and low hemolytic activity to human erythrocytes. The dendrimeric core is an asymmetric lysine branching tethered with two to eight copies of a tetrapeptide (R4) or an octapeptide (R8). The R4 tetrapeptide (RLYR) contains a putative microbial surface recognition BHHB motif (B = basic, H = hydrophobic amino acid) found in protegrins and tachyplesins whereas the octapeptide R8 (RLYRKVYG) consists of an R4 and a degenerated R4 repeat. Antimicrobial assays against 10 organisms in high- and low-salt conditions showed that the R4 and R8 monomers as well as their divalent dendrimers contain no to low activity. In contrast, the tetra- and octavalent R4 and R8 dendrimers are broadly active under either conditions, exhibiting relatively similar potency with minimal inhibition concentrations < 1 microm against both bacteria and fungi. Based on their size and charge similarities, the potency and activity spectrum of the tetravalent R4 dendrimer are comparable to protegrins and tachyplesins, a family of potent antimicrobials containing 17-19 residues. Compared with a series of linearly repeating R4 peptides, the R4 dendrimers show comparable antimicrobial potency, but are more aqueous soluble, more stable to proteolysis, less toxic to human cells and more easily synthesized chemically. These results suggest repeating peptides that cluster the charge and hydrophobic residues may represent a primitive form of microbial pattern-recognition. Incorporating such knowledge in a dendrimeric design therefore presents an attractive approach for developing novel peptide antibiotics.  相似文献   

9.
Pyridoxal kinase (ATP:pyridoxal 5-phosphotransferase, EC 2.7.1.35) has been purified 9000-fold from sheep brain by affinity chromatography. The enzyme of 80,000 molecular weight is made up of two identical-size subunits. The interaction of the inhibitor N-dansyl-1,8-diaminooctane with the nucleotide site of the kinase was examined by means of steady and nanosecond fluorescence spectroscopy. N-Dansyl-1,8-diaminooctane is a competitive inhibitor with respect to ATP at saturating concentrations of pyridoxal. It binds to the nucleotide site of the enzyme with Kd = 2.2 microM. Bound N-dansyl-1,8-diaminooctane is shielded from collisional encounters with the external quencher acrylamide. The collisional rate constant for bound N-dansyl-1,8-diaminooctane (Kq = 1.4 X 10(8) M-1 X s-1) is 10-times lower than the value obtained for the free chromophore. Nanosecond emission anisotropy measurements yield a rotational correlation time of 42 ns for the inhibitor complexes to the kinase. Both steady and nanosecond fluorescence results are consistent with a model in which the inhibitor bound to the nucleotide site is immobilized by amino acids located at the catalytic site.  相似文献   

10.
11.
12.
This paper reports the application of a dehydrogenase enzyme mimic as a biomimetic sensor. The model compound investigated was a beta-cyclodextrin (beta-CD) derivative with a nicotinamide group attached to the secondary face of a beta-CD (Fig. 1g). It was envisaged that the nicotinamide group would act as the electron transfer agent and that the cyclodextrin would provide a suitable hydrophobic cavity for the reaction to take place in. Ethanol, propranalol, dopamine and acetone were used as substrates in backgrounds of hydrophilic and hydrophobic anions. Electrochemical and fluorescence techniques were used to study the catalytic effects in solution. It was found that the size of the analyte and the hydrophobicity of the anion affected the catalytic activity of the dehydrogenase mimic. Catalytic effects were most enhanced with ethanol and dopamine in presence of larger and more strongly solvated anions, SO4(2-) and H2PO4- which are excluded from the cavity. The molecule was also immobilised in a sol-gel matrix and investigated as a sol-gel electrochemical biomimetic sensor. Concentration dependence with increasing aliquots of ethanol was observed. These results indicated that a re-usable biomimetic sensor is indeed feasible.  相似文献   

13.
14.
We have discovered an artificial DNA enzyme that mimics the first step of RNA splicing. In vitro selection was used to identify DNA enzymes that ligate RNA. One of the new DNA enzymes carries out splicing-related catalysis by specifically recognizing an unpaired internal adenosine and facilitating attack of its 2'-hydroxyl onto a 5'-triphosphate. This reaction forms 2',5'-branched RNA and is analogous to the first step of in vivo RNA splicing, in which a ribozyme cleaves itself with formation of a branched intermediate. Unlike a natural ribozyme, the new DNA enzyme has no 2'-hydroxyl groups to aid in the catalytic mechanism. Our finding has two important implications. First, branch-site adenosine reactivity seems to be mechanistically favored by nucleic acid enzymes. Second, hydroxyl groups are not obligatory components of nucleic acid enzymes that carry out biologically related catalysis.  相似文献   

15.
A new and very sensitive fluorometric method for the determination of pyridoxal and pyridoxal 5′-phosphate is reported. The specificity is based on the reductive amination of pyridoxal and its 5′-phosphate with methyl anthranilate and sodium cyanoborohydride at pH 4,5 to 5,0. Separation of the highly fluorescent methyl-N-pyridoxyl anthranilate was achieved by a combination of column and thin-layer chromatography on silica gel. This method has been applied to the assay of pyridoxal and pyridoxal 5′-phosphate in seruum.  相似文献   

16.
17.
18.
19.
In the usual reaction catalyzed by D-amino acid transaminase, cleavage of the alpha-H bond is followed by the reversible transfer of the alpha-NH2 to a keto acid cosubstrate in a two-step reaction mediated by the two vitamin B6 forms pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP). We report here a reaction not on the main pathway, i.e., beta-decarboxylation of D-aspartate to D-alanine, which occurs at 0.01% the rate of the major transaminase reaction. In this reaction, beta-C-C bond cleavage of the single substrate D-aspartate occurs rather than the usual alpha-bond cleavage in the transaminase reaction. The D-alanine produced from D-aspartate slowly inhibits both transaminase and decarboxylase activities, but NADH or NADPH instantaneously prevent D-aspartate turnover and D-alanine formation, thereby protecting the enzyme against inhibition. NADH has no effect on the enzyme spectrum itself in the absence of substrates, but it acts on the enzyme.D-aspartate complex with an apparent dissociation constant of 16 microM. Equivalent concentrations of NAD or thiols have no such effect. The suppression of beta-decarboxylase activity by NADH occurs concomitant with a reduction in the 415-nm absorbance due to the PLP form of the enzyme and an increase at 330 nm due to the PMP form of the enzyme. alpha-Ketoglutarate reverses the spectral changes caused by NADH and regenerates the active PLP form of the enzyme from the PMP form with an equilibrium constant of 10 microM. In addition to its known role in shuttling electrons in oxidation-reduction reactions, the niacin derivative NADH may also function by preventing aberrant damaging reactions for some enzyme-substrate intermediates. The D-aspartate-induced effect of NADH may indicate a slow transition between protein conformational studies if the reaction catalyzed is also slow.  相似文献   

20.
Microbacterium luteolum YK-1 has pyridoxine degradation pathway I. We have cloned the structural gene for the second step enzyme, pyridoxal 4-dehydrogenase. The gene consists of 1,026-bp nucleotides and encodes 342 amino acids. The enzyme was overexpressed under cold shock conditions with a coexpression system and chaperonin GroEL/ES. The recombinant enzyme showed the same properties as the M. luteolum enzyme. The primary sequence of the enzyme was 54% identical with that of d-threo-aldose 1-dehydrogenase from Agrobacterium tumefaciens, a probable aldo-keto reductase (AKR). Upon multiple alignment with enzymes belonging to the 14 AKR families so far reported, pyridoxal 4-dehydrogenase was found to form a new AKR superfamily (AKR15) together with A. tumefaciens d-threo-aldose 1-dehydrogenase and Pseudomonas sp. l-fucose dehydrogenase. These enzymes belong to a distinct branch from the two main ones found in the phylogenic tree of AKR proteins. The enzymes on the new branch are characterized by their inability to reduce the corresponding lactones, which are produced from pyridoxal or sugars. Furthermore, pyridoxal 4-dehydrogenase prefers NAD(+) to NADP(+) as a cofactor, although AKRs generally show higher affinities for the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号