首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some teichoic acids are known to be partially substituted by α-D-glucopyranosyl residues such as the teichoic acids of Streptococcus faecalis NCIB 8191. They will, therefore, bind specifically the phytohemagglutinin concanavalin A. Concanavalin A labelled with mercury or colloidal gold coated with concanavalin A has been used to mark isolated cell walls in order to localize the teichoic acids at the ultrastructural level. Besides these two direct marking techniques, the indirect concanavalin A-peroxidase technique (localization of peroxidase by the diaminobenzidine method followed by postosmication) has been applied to thin sections of premarked cells. All three methods gave almost identical results, namely, a dense and homogeneous distribution of the cell wall teichoic acids. In control experiments total inhibition was achieved in the presence of methyl-α-D-mannopyranoside. After trichloroacetic acid or alkali extraction of the teichoic acids from isolated walls no marking could be detected.  相似文献   

2.
Summary Prolactin granules in the anterior pituitary glands of male rats contain densely stained materials at the periphery of the matrix. These occur in both small spherical and large polymorphic types of granules. The presence of densely stained materials around secretory granules may be a useful criterion for identification of prolactin cells since the dense structure was observed in 95% of these cells after conventional staining by uranyl acetate and lead citrate. The localization of glycoconjugates in the prolactin granules was examined by applying concanavalin A (Con A) on the ultrathin sections. HRP-Con A or ferritinconjugated Con A bound specifically to the densely stained materials in the peripheral region of the prolactin granule matrix, indicating that this densely stained matrix contains glycoconjugates; the significance thereof is discussed with reference to the concentration and packaging of secretory product.  相似文献   

3.
Distribution of teichoic acid in the cell wall of Bacillus subtilis.   总被引:15,自引:11,他引:4       下载免费PDF全文
Hydrolysis of the cell wall of Bacillus subtilis 168 by autolysins or lysozyme resulted in the exposure of glucosylated teichoic acid molecules as evidenced by increased precipitation of [14C] concanavalin A. The number of concanavalin A-reactive sites increased significantly after only limited enzymatic digestion of the walls. Quantitative analyses of [14C] concanavalin A-treated wall or wall hydrolysate complexes indicate that approximately one-half of the teichoic acid molecules are surface-exposed, whereas the remainder are probably embedded within the peptidoglycan matrix. Treatment of the cell walls with sodium dodecyl sulfate or Triton X-100 did not result in new concanavalin A-reactive sites. Partial autolysis diminished the ability of the cell walls to adsorb bacteriophage phi25. Fluorescein-labeled concanavalin A bound intensely over the entire surface of growing B. subtilis 168 cells, suggesting that teichoic acid molecules are located on the total solvent-exposed surface area of the bacteria.  相似文献   

4.
THE FINE STRUCTURE OF ELASTIC FIBERS   总被引:23,自引:8,他引:15       下载免费PDF全文
The fine structure of developing elastic fibers in bovine ligamentum nuchae and rat flexor digital tendon was examined. Elastic fibers were found to contain two distinct morphologic components in sections stained with uranyl acetate and lead. These components are 100 A fibrils and a central, almost amorphous nonstaining area. During development, the first identifiable elastic fibers are composed of aggregates of fine fibrils approximately 100 A in diameter. With advancing age, somewhat amorphous regions appear surrounded by these fibrils. These regions increase in prominence until in mature elastic fibers they are the predominant structure surrounded by a mantle of 100 A fibrils. Specific staining characteristics for each of the two components of the elastic fiber as well as for the collagen fibrils in these tissues can be demonstrated after staining with lead, uranyl acetate, or phosphotungstic acid. The 100 A fibrils stain with both uranyl acetate and lead, whereas the central regions of the elastic fibers stain only with phosphotungstic acid. Collagen fibrils stain with uranyl acetate or phosphotungstic acid, but not with lead. These staining reactions imply either a chemical or an organizational difference in these structures. The significance and possible nature of the two morphologic components of the elastic fiber remain to be elucidated.  相似文献   

5.
1. Walls of Bacillus stearothermophilus B65 contain a glycerol teichoic acid in which repeating structures consisting of 1-O-alpha-D-glucopyranosylglycerol phosphate are held together by phosphodiester linkage between the glycerol and glucose moieties of adjacent units. 2. The walls are not agglutinated on incubation with concanavalin A, nor does the isolated teichoic acid form a precipitate with this lectin. 3. No evidence was obtained of the presence of the glucosylated (1 leads to 2)-poly(glycerol phosphate) teichoic acid which has previously been reported to occur in walls of this bacterium.  相似文献   

6.
Major sites of metal binding in Bacillus licheniformis walls.   总被引:6,自引:2,他引:4       下载免费PDF全文
Isolated and purified walls of Bacillus licheniformis NCTC 6346 his contained peptidoglycan, teichoic acid, and teichuronic acid (0.36 mumol of diaminopimelic acid, 0.85 mumol of organic phosphorus, and 0.43 mumol of glucuronic acid per mg [dry weight] of walls, respectively). The walls also contained a total of 0.208 mumol of metal per mg. When these walls were subjected to metal-binding conditions (T. J. Beveridge and R. G. E. Murray, J. Bacteriol. 127:1502-1518, 1976) for nine metals, the amount of bound metal above background ranged from 0.910 mumol of Na to 0.031 mumol of Au per mg of walls. Most were in the 0.500-mumol mg-1 range. Electron-scattering profiles from unstained thin sections indicated that the metal was dispersed throughout the wall fabric. Mild alkali treatment extracted teichoic acid from the walls (97% based on phosphorus) but left the peptidoglycan and teichuronic acid intact. This treatment reduced their capacity for all metals but Au. Thin sections revealed that the wall thickness had been reduced by one-third, but metal was still dispersed throughout the wall fabric. Trichloroacetic acid treatment of the teichoic acid-less walls removed 95% of the teichuronic acid (based on glucuronic acid) but left the peptidoglycan intact (based on sedimentable diaminopimelic acid). The thickness of these walls was not further reduced, but little binding capacity remained (usually less than 10% of the original binding). The staining of these walls with Au produced a 14.4-nm repeat frequency within the peptidoglycan fabric. Sedimentation velocity experiments with the extracted teichuronic acid in the presence of metal confirmed it to be a potent metal-complexing polymer. These results indicated that teichoic and teichuronic acids are the prime sites of metal binding in B. licheniformis walls.  相似文献   

7.
Interaction of Concanavalin A with the Cell Wall of Bacillus subtilis   总被引:18,自引:6,他引:12       下载免费PDF全文
Interactions between concanavalin A and cell wall digests of Bacillus subtilis 168 resulted in insoluble complexes as observed by double gel diffusion, turbidity, and analysis of the precipitate. The macromolecular constituent of the cell walls complexing with concanavalin A was the polyglucosylglycerol phosphate teichoic acid. The complex exhibited two pH optima: 3.1 and 7.4. The complex could be dissociated by saccharides which bind to concanavalin A. In contrast to concanavalin A-neutral polysaccharide complexes, formation of the concanavalin A-wall complex was inhibited by salts. It was subsequently shown that salts induce conformational changes in cell wall digests. The data suggested that for complex formation to occur a rigid rod conformation in the glucosylated teichoic acid is probably necessary. Concanavalin A can be used as a probe to study structural features of bacterial cell walls.  相似文献   

8.
Organization of teichoic acid in the cell wall of Bacillus subtilis.   总被引:25,自引:14,他引:11       下载免费PDF全文
The phytohemagglutinin, concanavalin A (Con A), interacts specifically and reversibly with the polyglucosyl glycerol phosphate teichoic acid of Bacillus subtilis 168 cell walls. Advantage has been taken of this interaction to examine the organization of the surface teichoic acid at the ultrastructural level. Con A-treated whole cells and cell walls contain an irregular, fluffy layer 25 to 60 nm thick which is absent in untreated or alpha-methyl glucoside-treated preparations. This discontinuous layer is present only on the outer profile of Con-A-treated cell walls. The surface teichoic acid is proposed to be oriented perpendicular to the long axis of the cell. Fixation and embedment for electron microscopy result in condensation of this layer which then contributes to the stainable portion of the wall. Con A treatment binds adjacent teichoic acid molecules in their native configuration producing the irregular, fluffy layer visualized.  相似文献   

9.
Micrographs of isolated gap junction specimens, negatively stained with one molybdate, three tungstate and three uranyl stains, were recorded at low and high irradiation. Fourier-averaged images of the negatively stained gap junctions have been self-consistently scaled to identify conserved and variable features. Intrinsic features in the hexagonally averaged images have been distinguished from residual noise by statistical comparisons among similarly prepared specimens. The cationic uranyl stains can penetrate the axial connexon channel, whereas the anionic stains are largely excluded; these observations indicate that the channel is negatively charged. Variability in the extent of the axial stain penetration, and enhancement of this staining by radiation damage and heating may be accounted for by a leaky, labile channel gate. The peripheral stain concentrations marking the perimeter of the skewed, six-lobed connexon image and the stain-excluding region at the 3-fold axis of the lattice, which are seen only under conditions of low irradiation with both anionic and cationic stains, are identified as intrinsic features of the isolated gap junction structure. The stain concentrations located approximately 30 A from the connexon center appear to be symmetrically related on opposite sides of the junction by non-crystallographic 2-fold axes oriented approximately 8 degrees to the lattice axes at the plane of the gap. The radiation-sensitive hexagonal features seen in the negatively stained images may correspond to substructure on the cytoplasmic surfaces of the paired gap junction membranes.  相似文献   

10.
Insertion and fate of the cell wall in Bacillus subtilis   总被引:12,自引:4,他引:8       下载免费PDF全文
Cell wall assembly was studied in autolysin-deficient and -sufficient strains of Bacillus subtilis. Two independent probes, one for peptidoglycan and the other for surface-accessible teichoic acid, were employed to monitor cell surface changes during growth. Cell walls were specifically labeled with N-acetyl-D-[3H]glucosamine, and after growth, autoradiographs were prepared for both cell types. The locations of silver grains revealed that label was progressively lost from numerous sites on the cell cylinders, whereas label was retained on the cell poles, even after several generations. In the autolysin-deficient and chain-forming strain, it was found that the distance between densely labeled poles approximately doubled after each generation of growth. In the autolysin-sufficient strain, it was found that the numbers of labeled cell poles remained nearly constant for several generations, supporting the premise that completed septa and poles are largely conserved during growth. Fluorescein-conjugated concanavalin A was also used to determine the distribution of alpha-D-glucosylated teichoic acid on the surfaces of growing cells. Strains with temperature-sensitive phosphoglucomutase were used because in these mutants, glycosylation of cell wall teichoic acids can be controlled by temperature shifts. When the bacteria were grown at 45 degrees C, which stops the glucosylation of teichoic acid, the cells gradually lost their ability to bind concanavalin A on their cylindrical surfaces, but they retained concanavalin A-reactive sites on their poles. Discrete areas on the cylinder, defined by the binding of fluorescent concanavalin A, were absent when the synthesis of glucosylated teichoic acid was inhibited during growth for several generations at the nonpermissive temperature. When the mutant was shifted from a nonpermissive to a permissive temperature, all areas of the cylinder became able to bind the labeled concanavalin A after about one-half generation. Old cell poles were able to bind the lectin after nearly one generation at the permissive temperature, showing that new wall synthesis does occur in the cell poles, although it occurs slowly. These data, based on both qualitative and quantitative experiments, support a model for cell wall assembly in B. subtilis, in which cylinders elongate by inside-to-outside growth, with degradation of the stress-bearing old wall in wild-type organisms. Loss of wall material, by turnover, from many sites on the cylinder may be necessary for intercalation of new wall and normal length extension. Poles tend to retain their wall components during division and are turned over much more slowly.  相似文献   

11.
Structural differentiation of the Bacillus subtilis 168 cell wall.   总被引:2,自引:0,他引:2       下载免费PDF全文
Exponential-growth-phase cultures of Bacillus subtilis 168 were probed with polycationized ferritin (PCF) or concanavalin A (localized by the addition of horseradish peroxidase conjugated to colloidal gold) to distinguish surface anionic sites and teichoic acid polymers, respectively. Isolated cell walls, lysozyme-digested cell walls, and cell walls treated with mild alkali to remove teichoic acid were also treated with PCF. After labelling, whole cells and walls were processed for electron microscopy by freeze-substitution. Thin sections of untreated cells showed a triphasic, fibrous wall extending more than 30 nm beyond the cytoplasmic membrane. Measurements of wall thickness indicated that the wall was thicker at locations adjacent to septa and at pole-cylinder junctions (P < 0.001). Labelling studies showed that at saturating concentrations the PCF probe labelled the outermost limit of the cell wall, completely surrounding individual cells. However, at limiting PCF concentrations, labelling was observed at only discrete cell surface locations adjacent to or overlying septa and at the junction between pole and cylinder. Labelling was rarely observed along the cell cylinder or directly over the poles. Cells did not label along the cylindrical wall until there was visible evidence of a developing septum. Identical labelling patterns were observed by using concanavalin A-horseradish peroxidase-colloidal gold. Neither probe appeared to penetrate between the fibers of the wall. We suggest that the fibrous appearance of the wall seen in freeze-substituted cells reflects turnover of the wall matrix, that the specificity of labelling to discrete sites on the cell surface is indicative of regions of extreme hydrolytic activity in which alpha-glucose residues of the wall teichoic acids and electronegative sites (contributed by phosphate and carboxyl groups of the teichoic acids and carboxyl groups of the peptidoglycan polymers) are more readily accessible to our probes, and that the wall of exponentially growing B. subtilis cells contains regions of structural differentiation.  相似文献   

12.
Thin sections of leaves and anthers of Beta vulgaris L., fixed in glutaraldehyde-OsO4 and embedded in epoxy resin, were stained with different stains at pH ranges from 5 to 9 at 50 C to select those that provided polychromatic staining of suitable intensity. The thionin derivatives, Azure B, Toluidine Blue O, and polychrome Methylene Blue provided adequate staining, as did the commercially prepared stain Paragon PS 1301. Azure B stain was superior for sugar beet 0.5μ monitor sections: cytoplasm appeared grey; nuclei, blue-gray; nucleoli, blue; chloroplasts, blue-green; primary walls, blue; and secondary walls, light blue. Choice of one of the stains mentioned probably would depend upon the plant material under study.  相似文献   

13.
A number of stains and stain combinations have been identified that, when used with the hydrophilic resin Lowicryl K11M, produce marked improvements over aqueous uranyl and lead salts (UA-Pb) in terms of low granularity, specificity, and range of components contrasted. Three test specimens, tobacco mosaic virus (TMV), starfish sperm, and cultured mouse fibroblasts, were used to evaluate stain characteristics. UA-Pb showed a preference for nuclei acids, which were stained specifically by osmium ammine-B at pH 1.5. A number of stain combinations in which UA was followed or preceded by salts containing barium, manganese, tungsten, molybdenum, and vanadium provided excellent staining of protein-containing components, each stain combination being unique in terms of the degree to which specific components were discriminated. These stains were particularly effective for visualizing internal components of the nucleus where a number of fibrillar and particulate structures not seen with UA-Pb were well contrasted.  相似文献   

14.
New techniques are proposed for differentiating each type of gastric epithelial cell in the same tissue section. The techniques combine the following stains: paradoxical concanavalin A staining (PCS) to identify mucous neck cells, periodic acid Schiff-concanavalin A staining to distinguish mucous neck cells from surface mucous cells, and a modified Bowie's stain to demonstrate zymogen granules of chief cells. Feulgen hydrolysis preceding the Bowie stain was found to remove most of the nonspecific coloration encountered with the original Bowie method. The results obtained by the new sequences were as follows: Feulgen hydrolysis-PCS-Bowie staining: mucous neck cells stained brown and chief cell zymogen granules deep blue. The other mucin-secreting cells remained unstained; Feulgen hydrolysis-PAS-concanavalin A-Bowie staining: mucous neck cells stained brown, zymogen granules stained deep blue to purplish blue and surface mucous cells stained purplish red.  相似文献   

15.
A column of insoluble concanavalin A was prepared by coupling the protein to cyanogen bromide-activated Sepharose. When autolysates of Bacillus subtilis 168 cell walls were passed over the column, the alpha glucosylated teichoic acid component of the cell wall was retained. The teichoic acid could be eluted with dilute alpha-methylglucopyranose. The teichoic acid prepared by affinity chromatography from cell wall autolysates had a higher sedimentation rate than teichoic acids obtained by conventional methods.

Several authors have shown that concanavalin A (con A) forms complexes with alpha-glucosylated teichoic acids1–3. Doyle and Birdsell1 found that the teichoic acid of Bacillus subtilis 168 (trp C2) would precipitate with con A at neutral pH in dilute buffer. The formation of a precipitate was inhibited by sugars which bind to the active site of con A. This observation suggested that it should be possible to purify the teichoic acid by affinity chromatography using insoluble con A as the affinity probe. Lloyd4 and Donnelly and Goldstein5 have successfully employed insoluble con A to purify polysaccharides and glycoproteins. In this communication, we describe conditions for the rapid purification of the alpha-glucosylated teichoic acid of B. subtilis 168. The teichoic acid prepared by this procedure appears to be less degraded than teichoic acids obtained by conventional methods.  相似文献   

16.
New techniques are proposed for differentiating each type of gastric epithelial cell in the same tissue section. The techniques combine the following stains: A) paradoxical concanavalin A staining (PCS) to identify mucous neck cells, B) periodic acid Schiff-concana-valin A staining to distinguish mucous neck cells from surface mucous cells, and C) a modified Bowie's stain to demonstrate zymogen granules of chief cells. Feulgen hydrolysis preceding the Bowie stain was found to remove most of the nonspecific coloration encountered with the original Bowie method. The results obtained by the new sequences were as follows: 1) Feulgen hydroIysis-PCS-Bowie staining: mucous neck cells stained brown and chief cell zymogen granules deep blue. The other mucin-secreting cells remained unstained; 2) Feulgen hydrolysis-PAS-concanavalin A-Bowic staining: mucous neck cells stained brown, zymogen granules stained deep blue to purplish blue and surface mucous cells stained purplish red.  相似文献   

17.
Sections of oak bark were stained with chlorantine fast green BLL, used as a 0.25% aqueous solution. All tissues were unstained, except for local deposits of material associated with phloem cell walls, which stained deep green. This green-staining material also stained specifically with resorcinol blue and with the aniline blue fluorescence technique, the usual histochemical tests for callose. The chlorantine fast green-staining material was removed from sections by treatment with a beta-1,3-glucan hydrolase. It is concluded that chlorantine fast green BLL stains callose in plant sections and is a useful additional stain for the histochemical detection of this polymer.  相似文献   

18.
Studies have been carried out on the synapses in the cerebral cortex of rat by using impregnation with ethanolic solution of phosphotungstic acid, contrast staining with ruthenium red and impregnation with bismuth iodide, with or without subsequent uranyl acetate and lead citrate staining. It has been established that dense projections are adequately visualized with methods demonstrating basic chemical groups (phosphotungstic acid and bismuth iodide), whereas the synaptic vesicles are stained by techniques demonstrating acid chemical groups (ruthenium red and uranyl acetate and lead citrate). On the basis of these observations a hypothesis is forwarded concerning the mechanisms of migration of synaptic vesicles towards the presynaptic membrane. Measurements of the parameters of the dense projections suggest that the configuration of the presynaptic vesicular grid is not uniform along the presynaptic areas.  相似文献   

19.
Spore walls in fungi are stained with the supernatant obtained by centrifuging at 2000 rev/min for 15 min, equal parts by volume of 10% aqueous tannic acid and 1% aqueous basic fuchsin. Advantages of this technique are: (1) the spore walls show up better than when stained with any other dye; (2) in photomicrographs, the spore walls contrast very well with the cytoplasm; (3) it is performed quickly and easily. A comprehensive review of work done to date by other workers reveals that all of the cell wall stains found in the literature stain the spore walls faintly, or both walls and cytoplasm heavily, or only the cytoplasm.  相似文献   

20.
Several methods are described for distinguishing between the primary wall of the cotton fiber and other fiber components, such as the lumen and the secondary wall. The primary wall, a membrane less than 0.5 μ thick covering the entire fiber, has been stained while still attached to the fiber as well as after it has been mechanically stripped from the fiber. The stains include aqueous or alcoholic solutions of ruthenium red, methylene blue chloride, Nile blue sulfate, oil red, Sudan black B, iodine, and Simons' stain. Various concentrations of sodium hydroxide, cupri-ethylenediamine hydroxide, or sulfuric acid have been used to enhance color changes and to cause cellulosic swelling. Fibers that have been stained with Simons' stain and then swelled with dilute cupri-ethylenediamine hydroxide have shown the greatest color differences between the primary wall and the lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号